Numerical optimization of the ramp-down phase with the RAPTOR code

A.A. Tepluhina1, O. Sauter2, F. Felici2, A. Merle1, the TCV team3, the ASDEX-Upgrade team3, the EUROfusion MST1 team3 and JET contributors4

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
2 Eindhoven University of Technology, Department of Mechanical Engineering, PO. Box 513, 5600 MB Eindhoven, The Netherlands

MODEL

Research directions

1. Development of an optimization procedure for the ramp down phase of the plasma discharge to terminate plasmas in the safest and fastest way:
 - Determination of the optimal time evolution of the plasma parameters, like plasma current I_p, plasma elongation x, auxiliary power P_aux, to terminate plasma discharge as fast as possible.
 - For the safe termination physical constraints have to be specified, a constraint on normalized x and poloidal beta Bpol on the basis to avoid MHD modes, a constraint on the plasma inductance I_d to avoid vertical instability...
 - Define technical constraints to reach experimental limits, like the max ramp rate of the plasma current dI_p/dt, constraints on the rate of change in the vertical magnetic field B_z, for radial position control.
 - Determination of the optimal time of H- L-mode transition

2. Development of the RAPTOR code:
 - The RAPTOR code - Rapid Plasma Transport simulator[2]
 - The first code in which a transport code without an equilibrium solver.
 - A time dependent geometry can be used.
 - The gradient-based transport models [3,4] for the electron heat and particles transport have been implemented.
 - Interpolation validation via simulations of TCV and AUG electron wall fluxes and comparison with the experimental measurements [5]

The TCV plasma simulation: #56693, NBH, LHL-modes

The AUG plasma simulation: #33589, NBH, LHL-modes

The generic ramp-down optimization

The ramp-down optimization of the plasma current and the boundary elongation at t<0 is first the AUG-like plasma with the cost function J_p(x) dt.

The reference case and the unconstrained optimum

The ramp-down optimization: TCV #55520 and AUG #33589, test TCV #55672

Future directions

The RAPTOR code development:
 - Improved transport equilibrium:
 - A scaling law for the pedestal pressure for L- H-mode to determine p_0 directly.
 - A radial-dependent core gradient lambda_c
 - Continue the model validation with JET simulations.
 - Continue for ITER simulations.

The ramp-down optimization:
 - Constraints related to the pedestal pressure and impurities.
 - Technical constraints on the rate of change in the electron density.
 - Technical constraints related to the plasma shape control
 - Technical constraint on the vertical position control (constraint on dH/da).
 - JET/ITER ramp-down optimization.

OPTIMIZATION

The trajectories optimization [2]

To get a good trajectory optimization
1) realistic predictive simulations => appropriate transport models;
2) a fast solver => RAPTOR.

The RAPTOR code transport equations

Diffusion equations: the poloidal flux, the electron temperature and density, the ion temperature:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j}_e = 0 \]
\[\frac{\partial T_e}{\partial t} + \nabla \cdot \mathbf{j}_e \frac{T_e}{2} + \nabla \cdot \mathbf{j}_i T_i = 0 \]
\[\frac{\partial (\mathbf{B} \cdot \mathbf{j}_i)}{\partial t} + \nabla \cdot (\mathbf{B} \cdot \mathbf{j}_i) = 0 \]

The inverse scale length [3]:

\[l_i = \frac{\mu_0}{e n_i} \left[\frac{1}{1 + \frac{2\beta_p}{\beta_i}} \right] \]

Transport coefficients: the gradient-based model [3,4]

The PLANS

The JET plasma modelling: #92207

Prescribed parameters:
 - same as for the AUG case: \(\lambda_c \approx 0.3 \) and \(p_0 \approx 0.08 \)
 - for L-H mode: \(\lambda_c \approx 0.3 \) for L-H mode.

Prescribed variables:
 - a as for the TCV case = electron density n_e

Equilibrium: 23 EFTI equilibria (marked a+ on the \(I_p \) plot).

CPU time: 4 minutes for a time grid with 10 ms step (the shot duration 20 s).

Note: L-H at 4.5, x_H at 6.5 a.