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A Hamiltonian/Lagrangian theory to describe guiding center orbit drift motion that is canonical in
Boozer magnetic coordinates is developed to include full electrostatic and electromagnetic
perturbed fields in axisymmetric tokamak geometry. Furthermore, the radial component of the
equilibrium magnetic field in the covariant representation is retained and the background
equilibrium state extends to anisotropic plasma pressure conditions. A gauge transformation on the
perturbed vector potential is imposed to guarantee canonical structure in the Boozer frame.
Perturbed field nonlinear wave-wave interactions affect only the evolution of the guiding center
particle parallel gyroradius. The evolution of the particle coordinate positions retains only linear
wave-particle interactions. For particle motion in magnetohydrodynamic (MHD) instability
structures, the electrostatic potential is linked mainly to the binormal component of the perturbed
displacement vector when finite 0A | components are included. © 2011 American Institute of Physics.

[doi:10.1063/1.3579398]

. INTRODUCTION

The tools of nonlinear Hamiltonian dynamics can
greatly facilitate the implementation of numerical schemes
for guiding center particle orbit motion when the coordinate
system is canonical."? The application of Lagrangian theory
to identify the canonical momenta and angular variables con-
stitutes a very valuable step.’ Previously, a canonical coordi-
nate system for guiding center motion in arbitrary fields was
devised,* but its use is impractical. This is due to problems
associated with the transformation from a coordinate system
typically employed in magnetohydrodynamic (MHD) equi-
librium and stability solvers to it.> One approach that has
allowed the inclusion of arbitrary fields but eliminates the ra-
dial component of the equilibrium magnetic field in the co-
variant representation is achieved by a redefinition of the
guiding center drift velocity.®’ An extension of this formula-
tion to anisotropic pressure and three-dimensional (3D) ge-
ometry has been recently reported.® A drift Hamiltonian
formalism in generalized nonstraight field line coordinates
has been described that is exact in axisymmetric systems and
approximate in 3D geometry.” A canonical drift Hamiltonian
formulation in Boozer coordinates, which retains full station-
ary axisymmetric fields without selectively neglecting higher
order terms,'® has been extended to include electrostatic and
electromagnetic perturbations with only a finite parallel com-
ponent of the vector potential.'' This last work also allowed
for anisotropic pressure which can be very relevant for plas-
mas that are heated with auxiliary methods.'*~"”

In particular, we extend the formalism adopted in Ref.
11 to include the finite 6A; contribution to the guiding
center drift orbit evolution equations in the article. In Sec. II,
we specifically include the anisotropic pressure through the
covariant representation of the equilibrium magnetic field
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which can be interpreted as altering the permeability of the
plasma. Finite electrostatic and full electromagnetic per-
turbed fields are considered in axisymmetric tokamak geom-
etry. A set of canonical variables applicable to guiding
center motion is defined through Lagrangian manipulations.
The imposition of a specific gauge condition for the per-
turbed vector potential is required. The canonical variables
form the basis of a Hamiltonian formulation of the equations
of motion, which is presented in Sec. III. A transformation of
canonical momenta to the Boozer radial coordinate and the
parallel gyroradius is performed, and the equations of motion
are described in a form that clarifies the physics interpreta-
tion. Issues associated with the gauge transformation and the
link to external perturbed fields obtained from wave propa-
gation and MHD codes is addressed in Sec. IV. Finally, the
summary and conclusions appear in Sec. V.

Il. LAGRANGIAN DETERMINATION OF CANONICAL
VARIABLES

The equilibrium magnetic field in the covariant repre-
sentation in Boozer coordinates' for anisotropic plasmas is

oB = J(s)VO —I(s)V¢ + oB,Vs (D)
and in the contravariant representation is

B =V x Vi +q()V x VO = Vo x Vi
= -V x (YVa), )

where 0 and ¢ are the Boozer poloidal and toroidal angles,
respectively, ¥ is the poloidal magnetic flux function, / is the
poloidal current flux function, J is the toroidal current flux
function, ¢ is the inverse rotational transform (safety factor),
By = ,/gB-V0 x V¢, /g is the Jacobian, o = ¢ — q(¥)0,
and o =1 — py(p —p1)/B* is the anisotropy parameter
when the parallel pressure pj is different from p,
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(perpendicular pressure). ¢ > 0 indicates the firchose stabil-
ity criterion."® The full potential A can be written in the form

A=A, +0A = —YVa+ 5A,Vp + A,V0 + 5A, Vi
= U(lpv 03 d)a t)le - [l// - I(lp)Wx(lljv 07 ¢7 l)]VOC
+V(¥,0,¢,1)0B, (3)

where we define

5A9(‘//a 07 ¢7 t) + q(l//)éA(ﬁ(lp’ 0’ ¢’ t)

W04, = 700 — g ’
— 5A9(l//7 07 (]57 t) + [J(lﬁ)/[(lﬂ)]aA(f)(lﬂ, 97 qs’ t)
Wil = 700) — 4 ) |

U(wv 97 (bv t) = 5Al//(lp7 0; d), t)
[0By — SE1(¥)016A + [q(W)oBy — 55T (4)0]6A,

- G
T(W) —q()I(¥)
The momentum in the drift approximation is
B
PZPHE-I-KA, 5

where e is the electronic charge of a particle. It is useful to
define parallel and effective parallel gyroradii

p” EPH/(EO'B),
pc = p” + Vv

The form p,. is used in the formulation where only finite 0A|| is
retained.>'" The Lagrangian for the guiding center motion is

Ldt =P - dx — Hdt

7
=e(poB +A) - dx — Hdt, @

and the vector distance element

dx = \/gVy x VOdo+ \/gVe x VdO + /3V0 x Vody.
®)

Using ¢ = o + ()0, we express oB as'*!'!

0B = I(Y)A(Y. 0)Vy + h())V0 — 1)V, (9)
_ O'Bw ﬂ

h() =J (W) —q(W)I(). (1D
Substituting this in the Lagrangian, we get

KA g+ p, () + p, ()0

+ A WAW,0) + U, 0,¢,0a ~ =" (12)

This form of the Lagrangian does not satisfy canonical prop-
erties due to the finite amplitude of the term multiplying
dl//,3 which requires Ldt = ), pidq; — Hdt (p; are the canon-
ical momenta and ¢; are the angular momenta).
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The process of eliminating the di/ term entails defining
the parameters'®-!!

o = —o+ AW, 0,P,), (13)
v
A, 0,P,) = J A(w, 0)dw, (14)
Pﬁ
W
S= J wA(w, 0)dw, (15)
P1

where P, is the momentum associated with the o variable.
As the Lagrangian is invariant to the addition or subtraction
of a full differential, we can write

Ldt
7—d8— |:p‘h(l//)_Pa89 PIW%

+ W+ ol (W)]doe + (UG, 6, ,1)
HIOAW, W), 0, 6,y — "5 (16)

By Jv/ A
+

dw] do

w

This system remains noncanonical, but the dy term now
involves only perturbed vector potential projections. Without
loss of generality, we can impose the gauge condition

U(lﬁ, 0, ¢, t) + I(lﬂ)A(l//, G)Wa('pa 0, , t) =0.

Substituting for U, W,,, and A simplifies the gauge condition
to

_ 9By
1()

The imposition of this gauge condition renders the Boozer
coordinate frame canonical for guiding center drift motion
with arbitrary perturbed electrostatic and electromagnetic
fields in axisymmetric tokamak geometry.

The poloidal canonical angular momentum is

oAy (Y, 0,¢,1) = 0As (Y, 0, ¢, 1). (17)

Dl v OA
Po=ph(Y) — Py — + J w— | dw. (18)
o0 P, p, 001,
To proceed further, we introduce the identity10
OA(Y,0) _00(y,0)
= . 1
00 19, 19

Then, the components of the canonical momentum are

1
Po= ph(Y) + () — P)O(,0) —j 0(w,0) dw

o

v
=pw[h<w)—1<w>Q<w79>1—j Q(w,0)dw-+W(y,0,,1),

PZ
(20)
and

Py =Y+ p, (W), 2y

where W(lpa 07 4)7 t) = h(w)Wﬁf(l/jv 97 ¢7 t)‘

momenta are thus specified.

The canonical
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lll. THE HAMILTONIAN FORMALISM
The Hamiltonian for the guiding center drift motion is
2 2p2
‘H  epjo°B B
e+ = (22)
e 2m

where m is the particle mass, p is the magnetic moment, ®g
is the electrostatic potential, and the resulting equations of
motion become

dPy _ OH, . d0_OH, (23)
dt 00 Po,Py ot R OPg P1,979€<»J7

dPa B a'HE ) dOCC . aHe

dt % |p,pos At OPylp g, .

where we have dropped the subscript ¢ from P, and the nota-
tion |oz-,/i-v denotes that the variables o, 5, and y are held fixed
in the evaluation of the partial derivative. Expanding the
Hamiltonian, invoking the relations presented in Appendix A
yields the canonical equations of motion

d0 60_232 dl 1
(24)
P, _ oW | dO
da - ? _% w,:E’ =
dpPy 00 ' 90 ow @
o = Do—|pdW) 55 ’w + L% ) WJ dr
d0 oW
_ + ,0 - ng Dy ———— ’
[g(¥) + 0, 0) — O( )]< ?dr 0 w,t)
(26)
do. ed’B?
dr ~ migp) "1~ PeAE “’OH{WHQW’())
() ow }df’
= 0Py, 0) =52+ AP, 0 a7
QP 0) =gy * AP O35 |, S 7

where the terms D, are written out in Appendix B and

D=J) —qW)I(y)
dl al 8(03‘/,)
+ Py f(lﬁ)w—[(‘ﬁ)w—](lﬁ) 20 w]
ow ow
—I(¥) % o — 0By, % x//70_t. (28)

The equations for the canonical momenta are really only use-
ful for the application of symplectic integration schemes. It
is physically more intuitive to follow the guiding center par-
ticle radial position s[0 <s<1 in the plasma with
W = (s)] and its parallel gyroradius p||.2’6’7’” Invoking the
algebraic manipulations described in Ref. 11 and the trans-
formation to SI units prescribed in Appendix C, we obtain

ds  poJ(s) 1oZ (s) ed’B>  OW
“_ D Dy — Al 29
a~ b, T, P, ag s Y
d0 ec’B? , uZ(s) 0B,
R Il _ 0
dt mD pH[lp (S) + pw:u() (S)] Dv s D
(30)

Full-field drift Hamiltonian particle orbits in axisymmetric tokamak geometry
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d¢ 60'232 , , 0(oBys)| oW
G~ mD, P D'(s) + o (s) —PvTop s‘f'a o
D, D,
dpy  OT 1 oT oT
jiiaso¢+l) |:‘MOI()60‘ +H0‘7()8¢ ods
ow 1
+—=— Dy, — — W' (s) + pottoZ’ (s
I S Rt
ar ar
i MOI(S)a 0,61 " GBX% s,ej D
1., , 0(oBy)
- |06+ e 6) - 0, 25 s
ow ar or
+—=—|  FuJ(s) 5| —0Bi; ]D?-GZ)
Os 0. 0 Os 0.0 00 syt ”

The finite 0A | contributions appear through the derivatives of
W. The forms presented in these equations recover the finite
5A|| model (Egs. (43)—(46) described in Ref. 11) by taking
W = 0, replacing p,, with p. and T with V. The terms involv-
ing oB; are neglected in most other formulations of the guid-
ing center drift problem. In this work, we retain all terms
O(Ppy). Expanding W(s, 0, $,1) = 6Ag + [T (s)/Z(s)] 04y
and T'(s, 0, ¢,t) = —0A4 /1oL (s)], we can alternatively write
the guiding center particle drift orbit equations of motion as

ds _pZ(s) (u  eotB ,\ OB
dt D, e m a0
1 0bg 0Dg
+D MOI() a0 :u(]j() a¢ sl
B2 |9(0A 0(0A
v st 5,0t
b pI(s)[(pn  eotB ,\ OB L coB” ecB? 2 0a
dr D, e m Os Pias 0s |
ed’B? , , 1 0Dg
T W 6) + T Sy~ [HOI(S)W N
0Dk ea’B>  [0(6A4)
B, L -
B o9 s,e,r] mD, d { Os 0.t
O'BS 8(5A¢) ]
) (34)
tZ(s) O 5,0,
¢ _ HoJ (s) [ (1 N ectB ,\ (0B  oB, OB
dt D, e m P\ Bs uyJ (s) 00
esB* , 0o ed’B? , ,
G| |+ )+ oy )
3 8(0BS))} U J (s) [GCDE 0B, 0% }
00 D Os lpg, HoJ(s) 00 | 4,
2p2
+ ec’B | |:(9(5A9) 1 <O‘BS 8(5A¢)
mD, Os lpgr HZ(s) 0 | 4.
0(aBy)
+ a0 5A¢)], (35)
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where 7 is the mirror stability criterion parameter.®'® For the
parallel gyroradius, we have

ectB ,

4 , 0
% - _D% (§+ m P) W' (s) + noT (S>PH]8—§

0
— 5 W) + T ()

- Div [‘I’/(S) +p <uoj’(s) - éﬁ(g’g‘) )} (?,%E

1 (u . eatB ,\ OB [0(0Ay)
D, \ e 00| Os
O'B 8 Ap)

5,0t

i1,) e
[(ﬁ eotB 2>8_B +€(732 , 0o }
Os PIas
|- [2os
5,0t D,

i{amw
Os 0.6t
1 [8(540)
D, Os 0.t

(0B, oD,
+ 2 5A¢)] "

~9(64)
syt ad)

(5A9) 0P
o9 |, Os

0B, O(dAy)
toZ(s) O

1 0 (5A¢)
T WTE) (B a0

S,pyt

09: Dv

00

2
5,0,

Syt
(36)

In the evolution of the radial particle positions Eq. (33), the
first term corresponds to the particle interaction with the
equilibrium fields, the second term is the interaction of
the particle with the electrostatic perturbed field, and the last
term deals with particle interaction with the electromagnetic
perturbed field. For the evolution of the angular coordinates,
the first two terms govern the motion of particles in the equi-
librium field, the third term constitutes the particle interac-
tion with the electrostatic perturbed field and the last term is
its interaction with the electromagnetic perturbed field,
respectively. With respect to the parallel gyroradius Eq. (36),
the first term corresponds to motion in the equilibrium field,
the second and third terms constitute interactions of particles
with the electrostatic perturbed field, the fourth, fifth, and
sixth terms are particle interactions with the perturbed elec-
tromagnetic field. The last three terms constitute wave-wave
interactions. They are consequently nonlinear terms and
describe the coupling of the perturbed electrostatic potential
with perturbed electromagnetic field projections. Previously,
the guiding center drift problem with full perturbed fields
was investigated in 3D geometry.® Although we limit our-
selves to axisymmetric geometry in this work, we include
the radial component of the equilibrium magnetic field in the
covariant representation which was neglected in Ref. 8.

IV. POTENTIAL STRUCTURE FOR FULL
ELECTROMAGNETIC FIELDS

The vector potential is only known up to the gradient of a
scalar function. If we consider the output of a wave propagation

5,0t
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code like LEMan," which computes low frequency waves
and employs the Coulomb gauge, we must make then the
identification

SAP + VG = 5AFY, (37)

where the superscript D stands for the form of the vector
potential required for the drift orbit description and the
superscript EW denotes the external wave field calculated
with a solver like LEMan. The radial, toroidal, and poloidal
covariant projections (for example, ,/gV0 x V¢) invoking
the gauge condition 0A; = —oB0Ay/[1eL (s)] yield

0G 0G
UL () s + GBJ% = I (s)SAEY + aBséAgW, (38)
oG
D EW
A = A% 95 (39)
0G

Thus, we first would need to solve Eq. (38) for the scalar
function G. Subsequently, we compute JA} and JAF. To
determine the electrostatic potential @z, we invoke Fara-
day’s Law from which we obtain either

oDy _ 00" N 00Ag"Y  00A7
oo ¢ ot o’

(41)

or

902 90EY  95AEY  9oAD
a0 90 ot or

(42)

Typically a Fourier method would be applied; hence, Eq.
(41) would be used to solve for all toroidal mode number
n # 0 amplitudes of ®2, while Eq. (42) would be applied for
the remaining n =0 and poloidal mode number m # 0
terms.

For the evolution of the guiding center particle orbits in
MHD instability structures, then the MHD vector potential is
SAMHD — £ B (where ¢ is the perturbed displacement vec-
tor) and the electrostatic potential (I)MHD = 0. Typically in
codes like TERPSICHORE,*® we express

E— JEVO x V4 DX VS Vsn + %B. (43)

The vector potential components in the MHD model reduce to
W ()& —'(s)".
After applying Faraday’s Law [Eqgs. (41) or (42)], replacing

the label EW with MHD and considering the time derivative
of projections of Eq. (37), we get the relation

SAMHD _ o 5AMHD _ SAYHD

=1

oG

E_E'

Then, the radial, toroidal, and poloidal components of the
vector potential for the drift motion become
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ooh ooy on &
Z(s)——=+ oBs— = p1yZ(s oB; 44
Ho()a+ B Mo (s) 5, T oBY (s) 5 (44)
OSAD & a@D
T () e
il A e 5 (45)
DOAD .08 0D
TR T T (40

In this case, we solve first for ®2(s, 0, ¢, ¢) and subsequently
obtain 9AY and 0A7.

V. SUMMARY AND CONCLUSIONS

The Boozer coordinate frame remains canonical for the
description of a Hamiltonian/Lagrangian theory of guiding
center particle drift motion that includes full static equilib-
rium, perturbed electrostatic and perturbed electromagnetic
fields in axisymmetric tokamak geometry for plasma condi-
tions that allow anisotropic pressure from auxiliary heated
energetic particle species. We have thus extended the
method developed by Wang'® and Cooper ez al.'! to consider
also the impact of finite A | on the orbit evolution. A critical
step is then imposition of a gauge transformation for dA to
guarantee that the Boozer coordinates retain canonical struc-
ture. The guiding center particle coordinate position evolution
contains only equilibrium field effects and linear wave-parti-
cle interactions. Nonlinear wave-wave interactions from the
perturbed fields consist of couplings between vector potential
components with the electrostatic potential and impact only
the evolution of the parallel gyroradius.

As the vector potential is only known to within the gradi-
ent of a scalar function G, we solve first for G which depends
on the radial and toroidal components of the external electro-
magnetic potential in the covariant representation for fields
obtained from a wave propagation code. Once this is known,
the perturbed electromagnetic field components 5A1¢), and 0A%
required for the drift motion can be evaluated and subse-
quently the application of Faraday’s law yields the electro-
static potential. For fields obtained from a MHD stability code,
the electrostatic potential is calculated first in terms of the
binormal and radial components of the displacement vector &.
This scalar potential depends mainly on the binormal compo-
nent 1 of &. For models that retain only finite 5AH,2’6’7’” the
equivalence of the perturbed radial magnetic field 6B - Vs in
the drift and external field representations of the potentials is
invoked and this leads to a dependence of the electrostatic
potential @ on the radial component of & for motion in
MHD-like fields. This difference of the @z dependence will be
an important issue to address in future numerical simulations.
Once @y is determined, the electromagnetic potential compo-
nents 5Ag and JAY can be linked to their MHD counterparts.

The equations we have presented are more clearly
designed for drift kinetic analysis of magnetically confined
plasmas. However, the applicability to gyrokinetic modeling
can also be considered. The impact of full electromagnetic
effects in a nonlinear gyrokinetic description of a plasma
could be assessed with the guiding center drift orbit equa-
tions we have derived. For example, this would entail replac-
ing Egs. (26) and (27) in Ref. 21 with Eqgs. (33)—(36) of this
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manuscript, after performing gyro-orbit averaging. The non-
linear terms in the p|| Eq. (36) would constitute a drift nonli-
nearity (to second order in the perturbed field expansion),
which is formally of the same order as the second order par-
allel velocity nonlinearity described in Ref. 21.
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APPENDIX A: DERIVATIVES WITH RESPECT
TO THE CANONICAL VARIABLES

The quantities ¥, p,,, and ¢ can be expressed as func-
tions of the canonical variables. Hence, we derive the follow-
ing relations

N _ 1)
OPy P02, D’
N _Iy) B JW)
Sh| = p AW ow 0 00~
0,Y,%¢
ow
+ A(Py, 0)—- }
8¢ V.0t
oy 1) 00 v ow
g7 =) )= e A
90y, D\ V)50 J J,, |, "0 ),,,
ow
~law)+ 0w - ool | L.
V.0t
4 _Iy)ow
Ot Po.Py0 D 0¢ l//,()Vt,
ap,, 1 ( dI)
1+ p,
OPy P, dy
ap, 1 di '\ oy 1
=———11 + Pw 7 + TN
aP“ Py,0,0 I( ) ( d‘//>6POC Py,0,0, I(Ip)
ap,, 1 dl \ oy
= (U pus |56
80 PgﬁP,(,o(L I(W)< p dl//>80 P(;,Pq,o((‘
ap,, 1 ( d[) ow
=—(14p, )| .
0% |p,p,0 D dy) 0 oy
Noting that ¢ = —a,. + q(¥)0 + A(y, 6, P,,), then
99 _ By
aPU Py, 0,0 D ’
8(;5 O'Bl/, alﬁ
— A(P,,0),
P, Py,0,0c (lﬂ) P, Py,0,0c ( )
8(1) O'Bl/, 81//
v =q) +0(,0) — Q(P,, 0 +1550
00y, ~ W) WO OE O 150,
o9 ___9ByoW
L2 Po.Py0 D 9¢ lﬂ,@,f.
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APPENDIX B: DEFINITION OF D, TERMS

The notation adopted in Ref. 11 is used. Thus
DW = DWI + D'I/Z’
Dy = Dy, + Dy,),
Dy =Dy, + Dy,

D ed?B?  OT
= T P57 )
W m !l B "
D etdB , 8B+e(732 , 0o +8(DE
T e oy Plagl, oy |,
2p2
ed-B oT
Dy, = = Plag )
Vit
D (eraB ) u) OB 0®g
0, — \ —— I ) a5 T an )
m e) 00 00 Y
ed’B®>  OT
Dy, = — P ar )
b1 m I ad) Y
oo
D¢’2 = — )
a¢ V,0,t

where 7 is the mirror stability criterion parameter.'>'®

APPENDIX C: CONVERSION TO SI UNITS

To convert the guiding center particle equations of
motion to SI units and in the form applicable for implemen-
tation in the VENUS code,” we identify I(y) = uoZ(s),
JW) = wJ(s). 0By = oB./Y/(s). D= D./W/(s). Dy
= D,/ (s), and dy/dy = y'(s)/y/(s) for any variable y
that is a flux surface quantity. Note that the Jacobian
becomes

V8, = oW (5)T (5) — @' (5)Z(s)]/(aB%),

and D, is
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Dy =0\/8,B* + ityp) L‘oj ($)Z'(s) = moZ () T'(s)

8(O'BA~) _ 8(5/4()) _ 0(5144,)
+ I(S) 80 X:| /“t():z- as 6t :u()j 8.5 b
A(5A) T (s)0(A4) ]
— 0B,
’ [ 9 o T T() 06 |y,
(0B,
. (gg ) 55A¢(s,9,¢,t).
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