1100 V AlGaN/GaN MOSHEMTs With Integrated Tri-Anode Freewheeling Diodes

Taifang Wang, Jun Ma, and Elison Matioli, Member, IEEE

Abstract—In this letter, we present high-performance reverse-conduction GaN-on-Si metal–oxide–semiconductor high-electron-mobility transistors (RC-MOSHEMTs) with integrated tri-anode freewheeling diodes. Tri-anode Schottky barrier diode presenting small turn-ON voltage (V_{ON}), ultra-low reverse leakage current, and high breakdown voltage (V_{BR}) was incorporated at portions of the drift region of AlGaN/GaN MOSHEMTs as freewheeling diodes. The tri-anode RC-MOSHEMTs exhibited outstanding reverse-conduction performance with a small V_{ON} of 0.55 V, along with a high V_{BR} of 1150 V, state-of-the-art low ON-resistance (R_{ON}) of 8.83 $\Omega \cdot$ mm, and high-power figure-of-merit ($FOM = V_{BR}/R_{ON,SP}$) of 1.32 GW/cm². These results reveal the potential of the tri-gate/tri-anode technology for future integrated power electronic devices.

Index Terms—GaN, HEMT, reverse conduction, freewheeling diode, Schottky diode, tri-gate, tri-anode, breakdown, leakage current.

I. INTRODUCTION

GaN-on-Si HEMTs are ideal candidates for the next generation of power electronic devices. Low R_{ON} and high V_{BR} can be achieved due to the exceptional properties of GaN, such as large band-gap, and two-dimensional electron gas (2DEG) with high electron mobility and carrier density. Considering its application for power conversion, especially in topologies in which transistors are connected to inductive elements, a reverse conduction path for the current is required to release the stored inductor energy at switching events [1]. In traditional Si- and SiC-based vertical power devices, built-in body diodes can be designed using the doped layers to offer a freewheeling path when the transistor is switched off [1]–[3]. However, such body diodes cannot be formed in lateral GaN HEMTs, due to their unipolar nature and absence of doped layers. In addition, the reverse current of a HEMT, which is dependent on the gate voltage (V_G), is insufficient to offer freewheeling capability [1]. One way to achieve the freewheeling path is by connecting an anti-parallel diode between the source and drain, which provides a path, independent from V_G, for current to flow under reverse drain bias (V_D) [4]. However, using discrete anti-parallel diodes [5] results in extra device area, larger specific on-resistance ($R_{ON,SP}$), and generates additional parasitic components [6]. A compact solution to this issue is to form a SBD on the backside of the GaN-on-Si substrate, which leverages the small V_{ON} of Si SBDs [7]. Nevertheless, this method requires complex Si deep etching process, and the small V_{BR} of Si SBDs hinders the advantage of GaN transistors.

Manuscript received May 19, 2018; accepted May 22, 2018. Date of publication May 30, 2018; date of current version June 26, 2018. This work was supported in part by the Swiss National Science Foundation under Assistant Professor (AP) Energy Grant PYAPP2_166901 and in part by the European Research Council under the European Union’s H2020 Program/ERC Grant Agreement 679425. The review of this letter was arranged by Editor G. H. Jessen. (Corresponding authors: Taifang Wang; Elison Matioli.)

The authors are with the Power and Wide-band-gap Electronics Research Laboratory (POWERlab), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland (e-mail: taifang.wang@epfl.ch; elison.matioli@epfl.ch).

Color versions of one or more of the figures in this letter are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LED.2018.2842031

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Fig. 1. (a) Schematic and (b) top–view SEM image of the RC-MOSHEMT, (c) zoomed-in SEM image after Schottky contact opening and (d) schematic of tri-anode region.
transistors [16]. In this work, we demonstrate RC-MOSHEMT with integrated tri-anode SBDs as freewheeling diodes using a relatively simple process. The tri-anode RC-MOSHEMTs presented excellent reverse-conduction capability (\(V_{\text{ON}} = 0.55\) V), strong voltage-blocking ability (\(I_{\text{OFF}} = 25\) mA/mm at 200 V and \(V_{\text{BR}} = 1150\) V at 1 \(\mu\)A/mm with floating substrate), and a record small forward-conduction \(R_{\text{ON}} (8.83\ \Omega \cdot \text{mm})\).

II. Device Structure and Fabrication

Figures 1(a) and (b) show the schematic and top-view scanning electron microscopy (SEM) image of the tri-anode RC-MOSHEMT. The epitaxy in this work consisted of 5 \(\mu\)m of buffer, 0.3 \(\mu\)m of undoped GaN channel, 23.9 nm of AlGaN barrier, and 1.8 nm of GaN cap layers. The device fabrication started with e-beam lithography to define the fins in the gate and tri-anode regions. Device isolation was done by inductively coupled plasma (ICP) mesa etching, with a depth of \(\sim 180\) nm. The fin width in the gate and tri-anode regions were 200 nm and 620 nm, along with a spacing of 200 nm and 110 nm, respectively, which were designed based on our previous studies to balance ON- and OFF-state performances of the device [13], [17]. Source and drain ohmic contacts were formed by alloying Ti/Al/Ti/Ni/Au. A 17 nm thick SiO\(_2\) was deposited by atomic layer deposition (ALD) as the gate dielectric, which was then selectively removed by CHF\(_3\)/SF\(_6\)-based ICP in the Schottky contact region of tri-anode SBDs (Fig. 1(c)). The anode and gate were formed by Ni/Au (Fig. 1(d)), followed by the deposition of 50 nm-thick ALD SiO\(_2\) interlayer dielectric (ILD) and the second Ni/Au metal layer (M2) as the source-to-anode connection.

The tri-anode RC-MOSHEMTs consisted of a tri-gate MOSHEMT and hybrid tri-anode SBDs integrated in its access region between the gate and drain. To equilibrate the forward and reverse current, 33% of the channel width was occupied by the SBDs, which defines a filling factor (\(FF\)) as the width of SBDs divided by the width of device footprint, which will be discussed later. All measurement results in this work were normalized by the width of the device footprint, which was 60 \(\mu\)m. Most of results used the dimensions shown in Fig. 1 (a), unless otherwise specified.

III. Results and Discussion

As shown in Fig. 2(a), the integrated tri-anode SBDs enhanced significantly the reverse conduction performance of the transistors (Fig. 2(a)). The tri-anode RC-MOSHEMTs presented a \(V_{\text{ON}}\) as small as 0.55 V (at \(I_D = 1\) mA/mm), along with a small reverse forward voltage (\(V_P\)) of 1.5 V (at \(I_D = 50\) mA/mm) at \(V_G = -7\) V. In contrast, the \(V_{\text{ON}}\) and \(V_P\) of the reference MOSHEMT consisting of a tri-gate structure with 15 \(\mu\)m were 2.70 V and 4.15 V at the same \(V_G\), respectively. The small \(V_{\text{ON}}\) is due to the direct contact of the metal to the 2DEG in the tri-anode SBDs [13], [18]. In forward-conduction mode, the tri-anode RC-MOSHEMTs presented a small \(R_{\text{ON}}\) of 8.83 \(\Omega\cdot\text{mm}\), which is comparable to the reference device (7.69 \(\Omega\cdot\text{mm}\)), and yields the smallest \(R_{\text{ON}}\) among reverse-conduction GaN transistors reported in literature. The RC-MOSHEMTs also presented small \(I_{\text{OFF}}\) and high ON/OFF ratio, which were identical to the reference devices (Fig. 2(b)), due to the small reverse leakage current of the hybrid tri-anode SBDs [13], [15], [19].

The small \(R_{\text{ON}}\) achieved in the tri-anode RC-MOSHEMTs is mainly attributed to the optimized FF, as it determines the percentage of the channel width used for forward and reverse current conduction. Figure 3(a) plots the \(I_D\) in reverse-conduction mode of the tri-anode RC-MOSHEMTs (\(L_{GD} = 21\ \mu\)m, at \(V_D = -5\) V) as a function of their FFs. When \(V_G\) is higher than \(V_{TH}\), the reverse \(I_D\) is independent of the FF as the transistor is in ON-state. When \(V_G\) is below \(V_{TH}\), FF = 33% is already large enough to nearly saturate the reverse \(I_D\). This indicates that a small FF value is already enough for tri-anode SBDs to extract most of electrons injected from drain side. In forward-conduction mode, the \(I_D\) decreases while the \(R_{\text{ON}}\) increases with increasing FF (Fig. 3(b)), which is caused by the smaller effective channel width and higher spreading resistance. Based on these results, a FF of 33% was selected, which provided high freewheeling current with small degradation in the forward performance, resulting in a record small \(R_{\text{ON}}\), which is highly desirable for efficient power conversion.

The tri-anode RC-MOSHEMT presented good reverse-conduction performance at high temperature. From 25 °C to 150 °C, the \(V_{\text{ON}}\) increased to 0.63 V, and the reverse current reduced to 213 mA/mm (at \(V_D = -5\) V) (Fig. 4(a)). In forward bias, the \(R_{\text{ON}}\) was 20.69 \(\Omega\cdot\text{mm}\) at 150 °C, which is comparable to other integrated devices [6], [16], revealing the great potential for high temperature applications (Fig. 4(b)).
Figure 5 shows the breakdown characteristics of the tri-anode RC-MOSHEMT and reference devices. The V_{BR} of tri-anode RC-MOSHEMT was 1040 V, which is close to that of the reference MOSHEMT (tri-gate MOSHEMT with $L_{GD} = 15 \, \mu m$) and significantly improved as compared to the planar RC-MOSHEMT (planar MOSHEMT with planar SBDs, and L_{GD} of $20 \, \mu m$). Such enhancement in V_{BR} is attributed to the better leakage control capability of integrated tri-anode SBDs [15], [19]–[21]. In addition, a very small I_{OFF} of 0.6 μA/mm at 650 V was observed for the tri-anode RC-MOSHEMTs, which is due to the reduced voltage drop at the Schottky junction in the hybrid tri-anode SBDs [15], [19]. With floating substrate, the V_{BR} of the RC-MOSHEMTs was as high as 1150 V at 1 μA/mm, and the hard breakdown (HBD) did not occur until 1800 V due to better-distributed electric field of tri-gate MOSHEMTs [14], [15].

The RC-MOSHEMTs with integrated tri-anode SBDs were compared with other literature results of reverse-conduction GaN transistors in Tab. 1, presenting small R_{ON}, V_{ON}, and I_{OFF}, along with the highest V_{BR} of 1040 V. We further benchmarked the tri-anode RC-MOSHEMTs against GaN-on-Si power MOSHEMTs and lateral SBDs. The V_{BR} was defined at 1 μA/mm and a 15 μm transfer length of source/drain was considered for the calculation of $R_{ON,SP}$. Only V_{BR} larger than 500 V have been considered in this benchmark.

IV. Conclusion

In this work we presented reverse-conduction GaN-on-Si MOSHEMTs with state-of-the-art performance, by integrating tri-anode freewheeling SBDs. The devices exhibited excellent reverse performance, along with a record small R_{ON}, which can be promising for the next-generation of efficient power converters.

REFERENCES

