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Abstract
Objective. Abundant literature suggests the use of slow cortical potentials (SCPs) in a wide
spectrum of basic and applied neuroscience areas. Due to their low signal to noise ratio, these
potentials are often studied using grand-average analysis, which conceals trial-to-trial
information. Moreover, most of the single trial analysis methods in the literature are based on
classical electroencephalogram (EEG) features ([1–30] Hz) and are likely to be unsuitable for
SCPs that have different signal properties (such as having the signal’s spectral content in the
range [0.2–0.7] Hz). In this paper we provide insights into the selection of appropriate
parameters for spectral and spatial filtering. Approach. We study anticipation related SCPs
recorded using a web-browser application protocol and a full-band EEG (FbEEG) setup from
11 subjects on two different days. Main results. We first highlight the role of a bandpass with
[0.1–1.0] Hz in comparison with common practices (e.g., either with full dc, just a lowpass, or
with a minimal highpass cut-off around 0.05 Hz). Secondly, we suggest that a combination of
spatial-smoothing filter and common average reference (CAR) is more suitable than the spatial
filters often reported in the literature (e.g., re-referencing to an electrode, Laplacian or CAR
alone). Thirdly, with the help of these preprocessing steps, we demonstrate the generalization
capabilities of linear classifiers across several days (AUC of 0.88 ± 0.05 on average with a
minimum of 0.81 ± 0.03 and a maximum of 0.97 ± 0.01). We also report the possibility of
further improvements using a Bayesian fusion technique applied to electrode-specific
classifiers. Significance. We believe the suggested spatial and spectral preprocessing methods
are advantageous for grand-average and single trial analysis of SCPs obtained from EEG,
MEG as well as for electrocorticogram. The use of these methods will impact basic
neurophysiological studies as well as the use of SCPs in the design of neuroprosthetics.

S Online supplementary data available from stacks.iop.org/JNE/10/036014/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Slow cortical potentials (SCPs) are defined as the positive
or negative deflections observed in electroencephalograms
(EEGs) and magnetoencephalograms (MEGs), lasting from
about a third of a second to several seconds with magnitudes

up to 50 µV [1, 2]. These potentials are frequently studied in
various cognitive tasks (e.g., language [3]) as well as sensory-
motor tasks (e.g., motor preparation [4] and expectation [5]).
Abundant literature suggests their use in a wide spectrum of
basic and applied fields in neuroscience, e.g., psychophysics,
neuro-rehabilitation, clinical practice and brain–computer
interfaces (BCIs) [6–8].
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Figure 1. The SCPs’ signal characteristics. (a) The magnitude of ISOs compared with different forms of event-related SCPs (in the plot,
sSCP stands for self-regulated SCPs). The statistics are obtained from previously reported studies, [28, 2, 4, 19, 38, 50–52, 33, 34]. The inset
is an illustration of the relative power of SCPs and the 1/ f statistic of FbEEG [35–37] (� � 1 and C is a constant). The background ISOs
below 0.1 Hz exhibit much larger amplitudes compared to SCP magnitudes [34]. (b) Variance of anticipatory SCPs (at Cz electrode) used in
the current study. (c) Spatial variability observed in a typical single trial for the Cz electrode (Go trial in green, or No-go trial in red) and its
four neighboring electrodes (in gray) spectral filtering is 0.1–1 Hz (see section 3).

More recently a few studies have reported a bandpass filter
in the range [0.1 1] Hz [45, 46, 15]. The appropriate choice
of spectral range for the single trial analysis of SCPs has
been elusive. Furthermore, a significant number of studies are
conducted using a single electrode (usually a vertex electrode)
[20, 19, 2, 47]. In the studies using multiple recording sites, the
spatial filtering is either skipped or performed using Laplacian
filters or CAR [39, 22, 48, 49]. Given the homogenous nature
of the SCP scalp distribution, both of these approaches are
likely to be sub-optimal. In this paper, we systematically study
the choice of appropriate spectral and spatial filters for the
single trial analysis of SCPs.

3. Methods

In this section we describe the experimental setup used for
recording anticipation related potentials, FbEEG acquisition,
preprocessing parameters and classification methods.

3.1. Experimental set-up

The protocol corresponds to an AT software for web browsing
by icon-selection with an auto-scanning mode, as shown in
figure 2 (the scanning of icons was similar to that of [53]). It is a
variant of the CNV paradigm, in which one or more contingent
warning stimuli predicted an imperative stimulus resulting in
a sequence. A cue presented 2 s prior to the beginning of
each sequence indicated the target icon. In each sequence, the
icons were highlighted sequentially every 2 s starting with
the Twitter icon, resulting in 1–4 trials of 2 s length (a trial
corresponds to the time window between the highlight of two
consecutive icons). In each sequence, subjects were asked to
press a button as quickly as possible using their right hand after
the target icon was highlighted—thus requiring anticipation
from the moment of the highlight of the pre-target icon. The

time window from the pre-target icon highlight to the target
icon highlight is considered to be a Go trial. Any other trial,
where the subsequent icon is not the target, is a No-go trial.
Reaction time (RT) and the web-page corresponding to the
target icon were presented to the subjects if the RT � ±100 ms
(thus motivating the subjects to anticipate). If this criterion
was not met, the scan finished approximately 1 s after with
feedback showing an empty web-page. The scanning order
and the positions of the icons remained constant throughout the
experiment. To minimize artifacts, the subjects were instructed
to fix their eyes on a ‘+’ symbol presented in the middle of the
computer screen and to avoid any other movements, such as
of the facial muscles, tongue or head, during the scan period.

3.2. FbEEG acquisition and ERP analysis

We recorded FbEEGs of 11 healthy human subjects (age
26.4 ± 2.4 years, 1 female, all right-handed) with an average
of 123 ± 28 Go trials and 264 ± 68 No-go trials per subject
per session over a minimum of two sessions with a gap of 1–
7 days. Two of the subjects also participated in a third session
(13 and 7 days after first session). The data were acquired with
64 electrodes according to the international extended 10-20
standard along with three electrooculogram (EOG) electrodes
and two electromyogram (EMG) electrodes as shown in
figure 2(c) using a Biosemi Inc. ActiveTwo amplifier. The three
EOG electrodes were used to derive horizontal, vertical and
radial components [54, 55]. The EMG was computed using
the bipolar derivation of the two electrodes placed on the
forearm extensor digitorum muscle. The electrode locations
were chosen to capture the activity related to the right index
finger. No special skin preparation, such as perforation or
scraping was performed, except that the electrode offsets were
kept below 25 mV by applying SignaGel (Parker Laboratories
Inc.), to achieve good contact with the skin. The signals were
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Figure 2. Experimental protocol: an AT framework for web-browsing. This protocol is a variation of the classical CNV paradigm with
sequential warning stimuli. (a) A snapshot of the computer screen presented to the subjects. (b) Time-line of events. Icons are sequentially
highlighted every 2 s (the target icon is YouTube in this example). The Go trial corresponds to the time window from the highlight of the
Gmail icon at 0 s until the highlight of the YouTube icon at 2 s. (c) The placement of EEG, EOG and EMG electrodes.

Figure 3. Scalp topographies of Go (bottom; green line) and No-go
(top; red line) conditions and Cz electrode grand-average potentials
at different time points.

acquired with a low-pass cut-off at 400 Hz at 2 KHz sampling
rate. The acquired signals were zero-phase low-pass filtered
with a cut-off frequency of 25 Hz and then down-sampled
to 64 Hz. Depending on the spectral exploration described in
section 3.3, the data were further bandpass filtered. The trials
were then extracted with [−0.5 2.5] s windows, synchronized
to the highlighting of icons and labeled accordingly (0 s
corresponds the to highlight of pre-target icon (see figure 2(b)).
The data were baseline corrected using the sample at 0 s. The
trials that had a maximum magnitude (at any electrode) above
250 µV, were assumed to contain electrode contact artifacts
and thus discarded from the study (≈1% of total trials).

The data were re-referenced to Oz electrode potentials,
where anticipation related SCPs were expected to have the
lowest magnitude due to polarity shift [1]. Grand-averages
computed across all subjects and days exhibited the well-
known CNV potential: an increasing negativity at the fronto-
central electrodes (maximal at Cz; approx. 10 µV at 1.7 s) for
the Go condition and an almost flat response for the No-go
condition (see figure 3). A slight asymmetry toward the left
hemisphere can be observed, presumably due to hand motor
preparation during the later part of the trial. The topographies
reflect the low spatial frequency nature of the SCPs (i.e., the

rate of change of potentials in adjacent electrodes is small),
contrary to the single trials shown in figure 1(c).

3.3. Spectral and spatial filtering

The CNV Go No-Go potentials are clearly separable at the
level of grand-averages (see figure 3), but the single trials
suffers high variability (see figure 1(b)) due to high amplitude
ISOs and high-frequency spatial noise (i.e., adjacent electrodes
contain different SCP trends; see figure 1(c)). To assess
the effect of both spectral and spatial filtering we define
a separability index f (see section 3.4) that represents
the discriminability of Go and No-go potentials estimated at
the Cz electrode.

We systematically explored parameters for spectral
filtering (using zero phase finite impulse response (FIR)
filters with order N = 10 x sampling rate to ensure a sharp
transition; designed using fir1 and applied using filtfilt
routines of Matlab software, Mathworks Inc., USA). We
investigated four categories of filters. In the first category
we studied three filters—NO filtering (raw potentials), a
low-pass filter with a cut-off at 5 Hz and a bandpass of
[0.01–5] Hz. This category is similar to the commonly
applied filtering parameters, where no filtering or just low-
pass filtering is applied (supplementary table 1, available
from stacks.iop.org/JNE/10/036014/mmedia). In the second
category we fixed the low-pass cut-off at 1 Hz while setting
the high-pass cut-off to 0.01 Hz, 0.05 Hz, 0.1 Hz, 0.2 Hz,
0.3 Hz, 0.4 Hz, and 0.5 Hz. For the third category we fixed
the low-pass cut-off at 2 Hz and varied the low-pass from 0.1
to 0.5 Hz in steps of 0.1 Hz. The fourth category is similar
to the third category, where the high-pass cut-off was fixed
at 3 Hz. These spectral categories were chosen to identify
the appropriate candidates for high-pass cut-off and low-pass
cut-off frequencies suited to the discriminability of CNV.

We also explored various spatial filters for the spectral
filters described above. Again, the potentials at the Cz
electrode were used for this study. First, we compared small
Laplacian filter (SLAP), a large Laplacian filter (LLAP), CAR
and no spatial filtering (just referencing to Oz electrode,
Oz-REF). Given a recording at the ith electrode, ei(t),
CAR returns eCAR

i (t) = ei(t) − 1
N

� N

j e j(t), where N is
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the number of electrodes (= 64). The Laplacian filtered
data were computed as eLaplace

i (t) = ei(t) − 1
K

� K
j e j(t).

Where j is the index of neighboring electrodes (K = 4)
chosen in ‘plus (+)’ configuration around electrode i [56].
For the SLAP the immediate neighboring electrodes were
chosen, whereas for LLAP the second neighboring electrodes
were chosen. Second, we tested a weighted average filter
(WAVG), which is an anti-Laplacian filter, where the average
neighboring activity is added rather than subtracted (i.e.,
eWAVG

i (t) = ei(t) + 1
K

� K
j e j(t), where the chosen electrodes

are similar to the SLAP configuration). This filter was applied
to CAR referenced data. Third, we studied a generalized
version of the WAVG filter, the spatial smoothing filter
(SSF), which was obtained by the spatial convolution of
SCP data with a Gaussian kernel with the CAR referenced
data. The eSSF

i (t) = � K
j wi je j(t), where wi j = exp(− d2

i j

2σ 2 )

and di j was the Euclidean distance between electrodes i and
j in 3D coordinates of a unit sphere fitted to the average
head model (we assume spatially symmetrical distribution of
SCP surrounding the selected electrode). The meta-parameter
σ value was obtained from training data as described in
section 4. The rationale of this smoothing filter is that, given
a measurement of SCP source s(t) at electrode i, ei(t) =
wis(t) + n(t), where n(t) ∼ N (0, σ ) and wi is a positive
fraction that represents the extent to which ith electrode may
carry the signal components s(t). The spatial smoothing filters
are treated as a way to reconstruct s(t), where s′(t) = wiei(t),
with 〈s′(t)〉 = wi〈s(t)〉 + wi〈n(t)〉, which is equivalent to
a scaled 〈s(t)〉 (ie. 〈s′(t)〉 = wi〈s(t)〉). The key difference
between the smoothing filter and the Laplacian filter is that the
later removes a fraction of the common activity of adjacent
electrodes, thus increasing the spatial resolution, whereas the
former reduced the unshared activity. In other words, SSF
filters act as spatial low-pass filters or blurring kernels. Such
Gaussian kernel based smoothing filters are widely used in the
analysis of fMRI data [57], but to the best of our knowledge,
these filters have not been explored in the analysis of SCPs.

3.4. Feature selection and classification

We selected features from the Cz electrode under which
the CNV potentials are more prominent. For each trial, the
potentials at eight equally spaced time points (i.e., at 0.25 s,
0.5 s, . . . , 2.0 s) were concatenated and chosen as a feature
vector, x = [eCz(T1) eCz(T2) . . . eCz(T8)] ∈ R8 where, Tk

represents kth time point. Based on preliminary analysis the
number of features was restricted to eight. The small number
of features sufficiently represents the evolution of an SCP in a
2 s window, while allowing one to properly estimate the feature
distributions even in the case of a reduced number of samples.
These feature vectors were used to compute a separability
index f for Go and No-go features as well as in training
and testing the linear classifiers. To compute this index, the
feature vectors were projected into a canonical space y ∈ R by
using y = wT x for better separation. The projection matrix w,
maximizes the between-class variance whilst simultaneously

minimized the within-class variance [58]. Using the projected
data, the separability index is computed as

f = (µGo − µNogo)2

(σ Go)2 + (σ Nogo)2
(1)

where, µ and σ are the mean and standard deviation computed
in the canonical space for both Go and No-go trials. This score
can be interpreted as ‘the extent to which a linear classifier can
discriminate the two distributions’. In other words, this score
is used as a measure to predict the performance of the linear
classifiers described below.

For the single trial classification of these SCP features
we made the following assumptions. (1) The feature vectors
of the Go and No-go classes follow unimodal Gaussian
distributions. (2) Both Go and No-go classes have the same
covariance matrices that are estimated from training data (we
did not made an assumption of feature independence). (3) The
training samples represented, to a fair extent, the underlying
distribution of the Go and No-go conditions and did not change
over time (from day to day). Based on these assumptions,
we used a linear discriminant analysis (LDA) classifier for the
single trial classification of a feature vector x. Assuming a prior
probability p(CGo) (= 0.5 in the absence of any knowledge),
the posterior probability p(CGo|x) is computed using the Bayes
rule [58],

p(CGo|x) = p(x|CGo)p(CGo)�
k∈{Go,NoGo} p(x|Ck)p(Ck)

(2)

p(x|Ck) = 1

(2π)
d
2 |�| 1

2

e− 1
2 (x−µk )

T �−1(x−µk ) (3)

where µk were mean vectors of Go and No-go classes.
The shared covariance matrix was computed as � =
1
2 (�Go + �No−go). d was the number of dimensions of the
feature vector x (= 8). The feature vector x was assigned to
the Go class if the posterior p(CGo|x) � θ .

Single trial classification performances are often evaluated
using measures such as accuracy or error rates. However,
these measures depend on the prior probabilities and the
threshold θ , which could only be inferred from a particular
application-based loss function. To avoid the dependency on θ ,
we computed the AUC of the receiver operating characteristics
(ROC) graph. This measure represents ‘the probability that
the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance’ [59, 60]. We
further obtained the confidence on the estimated AUC using a
k (= 10) fold cross-validation technique [59]. The confidence
on the averaged ROC graph was obtained by computing the
standard deviation over folds of the true positive rate (TPR) and
the false positive rate (FPR) at each threshold (i.e., 0 � θ � 1).
The maximum bound on the standard error (SE) in estimating
the AUC measure was computed taking into account the
number of class-specific samples [60].

4. Results

4.1. Spectral filtering

Figure 4(a) shows the separability index, f , computed on
data from day 1 for the four spectral filter categories of
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Figure 5. The averagef value across 11 subjects for the SSF �lter
applied at CAR referenced Cz electrode potentials. The
topographies correspond to SSF kernels for� = 0.01, 0.15 and 0.4.
The dotted line representsf values obtained for a spatial �lter
combination of CAR and WAVG. On average the peakf value was
observed at� = 0.15.

CAR+SSF (� = 0.15) discussed in sections4.1 and 4.2.
Although [0.3–1] Hz seems to be a better spectral range, we
report for the [0.1–1] Hz �lter as they resulted in statistically
similar f values. To assess the generalization capabilities we
trained subject-speci�c classi�ers using the data of day 1
and test on day 2 for all the subjects. Moreover, we also
performed these tests using data from day 3 for the two subjects
(1 and 3) for whom the data were available.

Generalization capabilities. As seen in �gure 6, the
classi�ers showed remarkably high performance when tested
on day 2. It is worth noting that even for the lowest performing
subject (8), the AUC was 0.81 ± 0.03. The best performer
(subject 7), achieved 0.97 ± 0.01 and the average AUC over
the 11 subjects is 0.88± 0.05. Two out of 11 subjects (7 and
10) showed AUC above 0.95, 2 subjects (3 and 6) fall in the
range 0.90–0.95, and the rest are in the range 0.8–0.9.

The generalization capabilities of the classi�cation
techniques are further assessed for day 3 on two subjects (see
�gure 7). The AUC values for the third day are similar to
day 2 with a slight improvement of approximately 2% for
both subjects (the third day recordings for these subjects were
separated by a gap of 13 and 7 days from the �rst session,
respectively). These results suggest that the obtained models
are robust enough for generalization across days. These stable
performances are likely due to the stability of the underlying
SCPs features.

Multi-electrode classiÞer fusion

The classi�cation results reported in the previous section are
based on single electrode (Cz) features alone. However, due to
imprecise estimation of parameters, a single classi�er is likely
to be prone to errors. This error can be reduced by fusing
the classi�ers computed for each electrode. In this work, we
choose a Bayesian fusion technique at the level of classi�ers
[61]. Alternatively, the fusion could be applied at the level of

features. However, the later requires a larger amount of data
due to the increased feature dimension. The fusion technique
based on Bayes’ average is implemented as below.

Given a posterior probabilitypi (CGo|x) of a classi�er
computed for an electrodei, the fused decision functionD
for K of such classi�ers is calculated by,

D(x � CGo) =
1
K

K�

i= 1

pi (CGo|x) (4)

This technique is based on the assumption that the
individual classi�er’s posterior probability suffered an error
with a zero mean Gaussian distribution. If all theK classi�ers
are non-random and task-relevant, the Bayes-average fusion is
expected to result in a betterD.

The mean AUC over all subjects for Bayes-average
classi�er fusion for different electrode con�gurations is shown
in �gure 8(a). The electrode con�gurations are chosen by
the order of increased Euclidean distance from Cz electrode
location. The resulting AUC increases as the number of
electrodes are increased from one to nine until most of the
fronto-central electrodes are included. The AUC obtained by
fusing 5 (with AUC= 0.89± 0.17) and 9 (AUC= 0.9± 0.14)
electrode con�gurations resulted in a statistically signi�cant
improvement over a single electrode (Cz) (Wilcoxon,p =
0.01). The AUC decreases as the outer electrodes are included
in the fusion. Note that the outer electrodes carry no
task-relevant information and the corresponding individual
classi�ers perform close to random level (see inset of
�gure 8(a)). The inclusion of such electrodes in the fusion
formula impairs the Bayes average. We emphasize that this
is a simple classi�er fusion technique, other techniques that
take into account the classi�er’s confusion matrix are worth
exploring in the future [62].

Artifact inßuence

Like any EEG signal, SCPs are prone to artifacts resulting
from eye, muscular and tongue movements, as well as skin
conductance changes [18, 38, 51, 50, 33, 34]. In this work,
the number of movement artifacts is reduced by explicit
instructions to avoid blinking or to move. However, it is
essential to test whether the classi�cation models exploit such
artifacts in case they are systematically introduced with respect
to the tasks (i.e., classes). To do so, we computed similar
LDA classi�ers on the three EOG and EMG derivations and
compared their performance to the classi�ers built with each
EEG electrode (trained using day 1 and tested using day 2
recordings). In all cases, the signals are bandpass �ltered
in [0.1–1] Hz. Figure8(b) shows the comparison of AUC
of classi�ers based on the EOG and EMG derivation with
respect to the Cz electrode. The topographic plot in the inset
of �gure 8(a) shows the average AUC over 11 subjects for each
electrode. From the �gures, we observe that the AUC of Cz is
signi�cantly higher than EOG and EMG channels (Wilcoxon,
p = 0.01). Indeed, the AUCs of EOG and EMG derivations
are close to chance level (Wilcoxon,p = 0.01). Furthermore,
the AUCs have high values only at central electrodes, where
the anticipatory SCP is known to be prominent, and not at the
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Figure 6. ROC curves and AUC values for the test data of day 2 for 11 subjects (10-fold cross-validation). The red line represents random
performance and blue lines represents the ROC curves. The blue “ + ” is the standard deviation across folds of FPR along the x-axis and that
of the TPR along the y-axis. The gray lines indicates the corresponding cross validation ROC curves for each of the ten folds. The values of
AUCs are shown at the bottom of each ROC curve.

(a)

(b)

Figure 7. Generalization capabilities of classifiers for days 2 and 3 for subjects 1 and 3. (a) The ROC curves for day 1 (training data) and for
days 2 and 3 (test data). (b) The mean AUC for subjects 1 and 3 for training (day 1) and test data (days 2 and 3) are shown.
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Figure 9. The effect of spectral and spatial filters on feature distributions of CNV Go (green) and No-go (red) features. In the top row the
distributions in the canonical space (y; see section 3) are shown for different stages of spectral and spatial filtering. The bottom row shows
distribution of features in two dimensions (x3 and x8). The first column corresponds to the features without any spectral filtering referenced
to the Oz electrode. The second column corresponds to features obtained after the application of spectral filters 0.1–1 Hz. The last column
shows the feature distributions after the application of both spectral filtering and spatial filtering using CAR+SSF (with σ = 0.15). The f
values are shown at each stage of preprocessing.

a Bayesian fusion technique that combines multiple single
channel classifiers, yielding an increase of approximately 2%.
We also controlled that the classification methods were not
affected by artifacts such as EOG or EMG.

The SSF introduced for the spatial filtering of SCPs
assumed a symmetric distribution around the electrode under
study (e.g., the Cz electrode). In reality this assumption is not
fully valid (see figure 3). To address the asymmetric nature of
SCP distribution, data driven approaches for spatial filtering
similar to common spatial patterns (CSP) [64], independent
component analysis [65] and beamforming techniques are
worth investigating [66]. The performance of SSF with
different electrode densities should be compared. In this paper
we assume stationarity of the SCP features. However, due to
learning effects (suggested by the improved RTs of the exper-
imental subjects with the web browsing protocol, results not
reported here), the associated SCP feature distributions could
change over time, becoming better separable [23]. Under such
conditions, we could resort to adaptation techniques to better
model the SCP by tracking the feature distributions [67–69].

6. Conclusions

Our study on anticipation related SCPs suggests that it is
necessary to bandpass filter the FbEEG around [0.1–1] Hz
to effectively reduce the high amplitude ISOs and non-time
locked frequencies above mid-delta oscillations. It is worth
noting that the parameters of the spectral filter identified in
this study have been successfully applied to other single trial
analyses of SCPs such as movement related SCPs [70, 71] and
CNV potentials. Interestingly, this spectral band has also been
utilized in decoding movement parameters by other groups
[13–15, 72, 45, 46].

To reduce high frequency spatial noise we suggest
applying a spatial filter that combines CAR with the spatial
smoothing filter. In [73], the method works even if SCPs
develops over 1 s. It should be noticed that the requirement of
a sharp high-pass cut-off at 0.1 Hz to reduce ISOs comes with
the cost of significant group delay, creating a challenge for
applications that require real-time analysis. In this respect, the
use of a high-pass cut-off at 0.3 Hz, which yields statistically
similar results, could alleviate this problem.

The suggested spatial and spectral methods are aimed
at improving the SNR, and thus are not only useful for the
single trial analysis but also for the grand-average analysis.
Furthermore, we believe these methods are also applicable
to any SCPs recorded with EEG and MEG, as well as
electrocorticogram (ECoG) analysis. Moreover, our study
points out the need for carefully choosing the preprocessing
methods when analyzing EEG, a fact often overlooked in
the literature (see supplementary table 1, available from
stacks.iop.org/JNE/10/036014/mmedia); [74–77]).
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