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Abstract—We have generalized the Fluctuation-Dissipation
Theorem to the systems with slowly varying parameters. The
important conclusion of this analysis is to reveal that the spectral
function of the fluctuations is determined not only by dissipation
but also by the derivatives of the dispersion. The non-Joule
dispersion contribution is characterized by a new non-local effect
originating from an additional phase shift between the force and
the response of the system. That phase shift results from the
parametric control to the system. Finally, an electrical oscillation
circuit is considered as a concrete example. In that system, it is
shown that the dispersive contributions strongly affect the Q
factor.

Index Terms—non-equilibrium fluctuations, FDT, Q-factor

I. INTRODUCTION

Any oscillating system is characterized by two main param-
eters: the proper frequency and the quality factor. The latter is
inversely proportional to the width of the spectral line of the
parameter fluctuations. In thermodynamic equilibrium, fluctu-
ations are determined by the system temperature Θ and the
dissipation. The first fluctuation-dissipation relation between
the diffusion coefficient and the dissipative friction coefficient
was derived independently by Einstein and Smoluchowski in
their theory of Brownian motion [1], [2]. Later, this relation
was established by Nyquist [3] for electric circuits and was ex-
perimentally confirmed by Johnson [4]. The Nyquist-Johnson
relation was extended by Callen and Welton [5] to a general
class of dissipative thermodynamic equilibrium systems (see
also [6]). In the classical case the spectral function of the
fluctuations has the form:

(x2)ω =
2Θ

ω
Imα(ω), (1)

where α(ω) - is the response function, and Θ - is the
temperature in energy units. The linear response theory and the
fluctuation-dissipation theorem for arbitrary dynamic systems
was developed by Kubo [7], Mori [8] and Zwanzig [9]. In
the Kubo method the response of the density matrix to the
external field is calculated, whereas the Mori-Zwanzig tech-
nique introduces a projection operator to the space of variables
that describe macroscopic states of the system. Generally,

the system parameters may depend on both time and space.
Inhomogeneities in space and time on scales greater than the
fluctuation scales will certainly also contribute to fluctuations.
Recently, in the context of plasma physics, and using the
Langevin approach and the time-space multiscale technique, it
has been shown that the amplitude and the width of the spectral
lines of the electrostatic field fluctuations and the electron form
factor are determined not only by the imaginary part of the
dielectric susceptibility but also by the derivatives of its real
part [10]. As a result of the inhomogeneity, these properties
become asymmetric with respect to the inversion of the sign
of the frequency. In the kinetic regime, the form factor is more
sensitive to space gradients than the spectral function of the
electrostatic field fluctuations. This asymmetry of lines can be
used as a diagnostic tool to measure local gradients in the
plasma.

In this communication we generalize the fluctuation-
dissipation theorem for slowly varying processes. Using the
momentum method and the time multiscale technique, a
generalized Callen-Welton formula is derived. The width and
the amplitude of the spectral lines of the fluctuations are
determined not only by the dissipation but also by the deriva-
tives of the dispersion. These two effects have a comparable
influence for systems with a high quality factor. The non-
Joule dispersion contribution is characterized by a new non-
local effect originating from an additional phase shift between
the force and the response of the system. This phase shift
results from the parametric control to the system. As an
application we consider a LC-circuit. It is shown that the
spectral function of the current depends not only on the real
part of the impedance (dissipation) but also on the derivatives
of its imaginary part (dispersion). It is also shown that at finite
time intervals one can increase drastically the quality factor by
the simultaneous increasing the inductance and decreasing the
capacity.

II. RESULTS

Let us consider an arbitrary system whose evolution is
described by the following equation:



(
∂

∂t
+ L(t)·

)
G(t, t′) = 0, t > t′, (2)

where L(t) is generally a non self-conjugate, linear operator
in the Hilbert space. This operator varies slowly in time. The
term ”slowly” means that the control parameter undergoes
only a small change during the period of the system motion.
G(t, t′) may be the Heisenberg operator. Then L(t) · G(t, t′)
will be the commutator with the Hamiltonian. In other cases
G(t, t′) could be a density matrix, and L(t) would appear as
the Liouville operator. Finally, for G(t, t′) we can take the
two-time correlator G(t, t′) =

〈
δfnm(t)δf∗n1m1

(t′)
〉

of the
deviation from the referent state fn(t) of the density matrix in
the energy representation δfnm(t) [11], [12]. In such a case
L(t) takes into account the self-consistent field and collisions.
The time dependence in L(t) manifests itself in the referent
state and in the terms containing the external force. The slow
scale is much larger than the characteristic fluctuation time.
We can therefore introduce a small parameter µ, which allows
us to describe fluctuations on the basis of a multiple time
scale analysis. Obviously, fluctuations vary on both ”fast” and
”slow” time scales. The solution of the linear equation (2) can
be expressed through the Green’s function or the propagator
U(t, t′) of Eq. (2) as:

G(t, t′) = U(t, t′) ·G(0), (3)

where in the case of the kinetic fluctuations, the one-time
moment G(0) is given by

G(0) =
〈
δfnm(t′)δf∗n1m1

(t′)
〉

= δnn1
δmm1

fn(µt′) + fm(µt′)

2
.

(4)
If the operator L does not depend on time, the dependence

on time of the Green’s function appears only through the
interval t− t′. However, when we consider an operator L(µt)
slowly varying in time, and when we take non-local effects
into account, the time dependence of U(t, t′) is more subtle
[13], [14].

U(t, t′) = U(t− t′, µt′). (5)

Here we want to stress that the non-local effects appear due
to the slow time dependences µt′. At first order, the expansion
of Eq. (5) with respect to µ leads to

U(t, t′) = (1− µτ ∂

∂µt
)U(τ, µt); τ = t− t′. (6)

Let us introduce the resolvent operator Ř(z) which can be
defined formally as the Laplace transform of the propagator
U (τ):

Ř(z) =

∞∫
0

U(τ) exp(izτ)dτ ; z = ω + i0 (7)

The Laplace transform of Eqs. (3,6) gives

G+(z) = (1 + i
∂2

∂t∂ω
)Ř(z) ·G(0). (8)

For sake of convenience we omit µ from that equation and
throughout this communication, keeping in mind that the
time derivatives are taken with respect to the slowly varying
variables. Thus in first approximation the expression for the
spectral function of the fluctuations is

G(ω) = 2 Re(1 + i
∂2

∂t∂ω
)Ř(z) ·G(0). (9)

The spectral density of the fluctuations of the internal
parameters of the system in local equilibrium can be defined
as usual [12], [15].

(δAδB)ω = A ·G(ω) ·B

= ~[ImαAB(ω) +
∂2

∂t∂ω
ReαAB(ω)] coth(~ω/2Θ), (10)

where

αAB(ω) = i~
∑
nm

Řnmnm(z)AmnBnm(fm − fn) (11)

is the response function for diagonal resolvent [12].
In the classical limit ~ −→ 0 the generalized Callen-Welton

formula (10) takes the form

(δAδB)ω = [ImαAB(ω) +
∂2

∂t∂ω
ReαAB(ω)]

2Θ

ω
. (12)

In deriving Eqs. (10,12) we assumed the system to be
in a local equilibrium state, so that the characteristic time
for parameters variation exceeds the relaxation time of the
distribution function. When expanding the Green’s function in
Eq. (6) in terms of the small parameter µ, there appears an
additional term at first order. It is important to note that the
imaginary part of the response function is now replaced by
the real part. If the quality factor of the system is of the order
of 1 (it can be a broad-band system or a process near the
zero frequency), the real and imaginary parts of the response
function are of the same order and the correction is negligibly
small. But in the case of systems with a high quality factor,
for which the real part of the response function is greater
than the imaginary part, the second small parameter appears
to be inversely proportional to the quality factor. An example
of such system with a high quality factor could be plasma
fluctuations near the Langmuir frequency when the quality
factor is inversely proportional to the small plasma parameter
[10]. When this small parameter is comparable with µ, the
second term in Eqs. (10,12) may have an effect comparable
to the first term. This will be shown in the next example. At
the second order in the expansion in µ, the corrections appear
only in the imaginary part of the response function, and they
can reasonably be neglected. It is therefore sufficient to retain
the first order corrections to solve the problem. The same
derivatives of the dispersion, as in Eqs. (10,12), appear in the
geometrical optics approximation [16] and play an important
role in defining the adiabatic invariant in a dispersive medium
[17].



As an example we consider the electrical oscillation circuit
which can be used to model many oscillation processes in
nature. We assume that all the circuit elements (resistance R,
inductance L, and capacity C) have the same temperature
Θ, which can change adiabatically. Therefore the system
parameters R, L, and C will vary slowly in time. Moreover
the change of these parameters may also be mechanical, due to
the action of external forces, by ”hand”. It is this case that we
will consider when evaluating the quality factor of LC-circuit.

The thermal motion of the charged particles in the circuit
give rise to thermal oscillations which can be considered to be
equivalent to Brownian motion. The corresponding Langevin
equation is

dq

dt
= J ; L(µt)

dJ

dt
+R(µt)J +

q

C(µt)
= Ě, (13)

where q is the electric charge, J is the current, and Ě is the
Langevin source. It can be treated as the e.m.f. equivalent
to the action of the thermal motion of the charged particles
in the circuit. Coming back to the momentum method, we
can represent the two-time correlator of the electric current
GJ(t, t′) as

GJ(t, t′) = U(t, t′)GJ(0), (14)

where U(t, t′)- is the propagator of the set of equations (13),
and where the initial condition GJ(0) for the local equilibrium
state is

GJ(0) =
(L/C)1/2

2πΘ

∫
J2 exp

(
−LJ

2 + q2/C

2Θ

)
dqdJ

=
Θ(µt′)

L(µt′)
. (15)

Applying the procedure above, we obtain the following ex-
pression for the spectral function of the current in the circuit.

(J2)ω = 2 Re(1 + i
d2

dtdω
)Ř(z)

Θ

L

=
2[ReZ(ω) + d2

dtdω ImZ(ω)]Θ

Im2 Z(ω) + [ReZ(ω) + d2

dtdω ImZ(ω)]2
, (16)

where Z(ω) = R− i(Lω−1/Cω) is the complex impedance.
In deriving Eq. (16) we assumed that the time variations

of the parameters in the resolvent take place at scales much
greater than the oscillation period, and the local equilibrium
initial state (15) is achieved when R is greater than dL

dt .
The second restriction can be relaxed by introducing the
nonequilibrium initial correlator of the current Gneq

J (0). In
this case the Eq. (16) takes the form:

(J2)ω =
2[ReZ(ω) + d2

dtdω ImZ(ω)]Θ̃

Im2 Z(ω) + [ReZ(ω) + d2

dtdω ImZ(ω)]2
, (17)

where Θ̃ = LGneq
J (0). We will see that the initial correlator

is not important when calculating the spectral line width and
the quality factor of the electrical oscillation circuit.

Using the Langevin equations (13) the expressions for the
spectral function of the current takes the form

(J2)ω =
(Ě2)ω

Im2 Z(ω) + [ReZ(ω) + d2

dtdω ImZ(ω)]2
. (18)

The comparison of Eqs. (16) and (18) gives for the spectral
density of the e.m.f.

(Ě2)ω = 2[ReZ(ω) +
d2

dtdω
ImZ(ω)]Θ̃

= 2[R− dL

dt
+

1

ω2C2

dC

dt
]Θ̃, (19)

which is a generalized Nyquist formula. One can see that in
the general case the spectral density of the e.m.f. for slow
processes depends on the frequency and is not always white
noise.

Now let us come back to a point discussed in the beginning,
namely to the quality factor of the oscillation system. As
the time derivative can have different signs, the dispersion
corrections in Eq. (16) may both decrease and increase the line
width and therefore also the oscillation system quality factor.
The independent variation of the reactive parameters L and C
results in a shift of the circuit proper frequency. To avoid this
frequency shift we should change the reactive parameters L
and C as

dC

dt
= −C

L

dL

dt
, (20)

which follows from the condition of the stability of the circuit
frequency: ω0 = (LC)−1/2 = const. In this case Eq. (16)
takes the form

(J2)ω =
2Θ̃[R− dL

dt (1 + 1
ω2LC )]

(Lω − 1/Cω)2 + [R− dL
dt (1 + 1

ω2LC )]2
. (21)

Near the resonance point ω = ω0

(J2)ω =
Θ̃

L

γ

(ω − ω0)2 + γ2
+

Θ̃

L

γ

(ω + ω0)2 + γ2
, (22)

where the line width is given by

γ =
1

2L
(R− 2

dL

dt
). (23)

We see from Eqs. (22), (23) that the correction is still symmet-
ric with respect to the change of sign of ω , but the intensities
and broadening are different from the stationary case. In the
case of local equilibrium, the integral of the intensity over
frequency remains the same as in the stationary case (Fig 1).

The quality factor becomes now

Q =
ω

2γ
= (

L

C
)1/2

1

R− 2dL
dt

. (24)

Note that the initial correlation is not present in the expressions
for the line width (23) and the quality factor (23), these
expressions being fully determined by the singularities of
the resolvent. Usually the quality factor increases as the
inductance increases and the capacity decreases, but due to
the nonstationary dispersion terms it can increase drastically.



Frequency (Hz)

ω0-R/2L ω0 ω0+R/2L

In
te

ns
ity

 (
A

rb
. U

ni
ts

)

(δI2)
ω

ω

Fig. 1. Spectral function of current fluctuations as a function of frequency. The
solid and dashed lines correspond to dL

dt
= dC

dt
= 0 and dL

dt
= −L

C
dC
dt

=
2
5
R respectively.

The higher the initial quality factor of the system, the stronger
the effect. Thus for a circuit proper frequency of 1 kHz and a
quality factor =1000, the second term in Eq. (23) is comparable
to the first one, when the reactive parameters L and C of
the system vary by several tenths per second. As we consider
the linear approximation, to avoid misunderstanding we as-
sume that R > 2dL

dt . Therefore, at finite time intervals one
can increase drastically the quality factor by simultaneously
increasing the inductance and decreasing the capacity. Similar
situations can appear in other oscillating systems.

III. CONCLUSION

Using the momentum method and the time multiscale
technique, we have generalized the Callen-Welton formula
to systems with slowly varying parameters. The important
conclusion of this analysis is to reveal that the spectral function
of the fluctuations is determined not only by dissipation
but also by the derivatives of the dispersion. The non-Joule
dispersion contribution is characterized by a new non-local
effect originating from an additional phase shift between the
force and the response of the system. That phase shift results
from the parametric control to the system. Finally, an electrical
oscillation circuit is considered as a concrete example. In that
system it is shown that the dispersive contributions strongly
affect the quality factor. These results are applicable to other
systems and are important for the understanding of various be-
haviors observed in different field of physics, communication,
chemistry and biophysics.
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