### Specification of a micro-transgranular fracture parameter

*S.M. Taheri Mousavi, J.F. Molinari, N. Richart, C. Wolff, Y. Kadin, Ch. Vieillard*

Cluster 2. Multi-scale fundamentals of materials, project M23.2.09347
Computational Solid Mechanics Laboratory (LSMS), EPFL, Lausanne, Switzerland

#### Aim of the project
- Measuring experimentally the **micro-transgranular** fracture parameter (energy release rate) is an open issue.
- Experimentally possible to measure the transgranular fracture **percentage** in a long main crack.
- Calibration of micro-transgranular by **efficient** numerical simulations knowing the micro-intergranular parameters.

#### Challenges
- **Problem size:** main crack size and grain numbers should be comparable to experiment.
- **Dynamic loading:** extract and analysis of dynamic crack pattern.
- **Number of simulations:** many simulations are required to calibrate the data.

#### Approach
- Dynamic insertion of cohesive elements in explicit time-integration scheme with a **scalable parallel** library.
- Using **graph** algorithms such as connected component and depth first search to extract the main crack from a crack pattern.
- Parametric studies on micro-transgranular $G_c$.

#### Future work & Valorisation steps
Studying the mechanical fracture parameters and simulation of the ball indentation with current simulation tool including frictional contact.

#### Project Progress (in years)

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

---

*Figure 1: The crack produced by an indenter in Si$_3$N$_4$ (number of grains = 2300, measured transgranular percentage = **40%**, micro-intergranular $G_c$ = 15.8 J/m)*

*Figure 2: Numerical simulation of dynamic crack propagation in Si$_3$N$_4$ (number of grains = 3200, loading rate = 5*10$^7$/s, number of processors = 104), the window shows the graph representation of the main crack with **40%** of transgranular fracture.*

*Figure 3: Simulation results for different micro-transgranular $G_c$, $G_c = 17.27$ J/m corresponds to the 40% measured transgranular percentage.*