HG-13. SOX9 AS A DOWN-STREAM TARGET IN RAS/MEK-DRIVEN PEDIATRIC GLIOMA

Hanna Sabelstrom1, Rahul Jandial2, Ksenya Shchors1,5, Selma Masic1, Allen Ho3, Scott Vandenberg4, Theodore P. Nicolaides1, Scott Vandenberg4, Theodore P. Nicolaides1, Kim Nguyen1, Stanislava Yakoovenko1, Michael D. Prados1, C. David James1, Mitchel S. Berger1, Gerard I. Evan1, Evan Y. Snyder3, William A. Weiss1, and Anders I. Persson1; 1University of California, San Francisco, San Francisco, CA, USA; 2City of Hope Cancer Center & Beckman Research Institute, Los Angeles, CA, USA; 3Sanford-Burnham Institute for Medical Research, La Jolla, CA, USA; 4University of California, San Diego, La Jolla, CA, USA; 5Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland

 Pediatric high-grade gliomas (pHGGs) represent approximately 8-12% of pediatric central nervous system (CNS) tumors and are associated with a dismal prognosis in patients. Genetic alterations in RAS/MEK/PI3K pathways and aberrant overexpression of receptor tyrosine kinases are a hallmark in glioma. We have recently shown that blockade of RAS/MEK, but not RAS/PI3K signaling, in oligodendrocyte progenitor cell (OPC)-derived murine HGGs block self-renewal and induces robust oligodendrocyte differentiation. To study if aberrant RAS/MEK signaling also prevents normal differentiation in astrocyte precursors, we employed a well-established astrocyte-derived HGG (GFAP-Ha122-Ras-LacZ, G-RAS) model. At birth, transgene expression (LacZ) was first identified in discrete regions, including the subventricular zone (SVZ). Expression of the transgene in SVZ neural stem cells (NSCs), but not OLIG2+ cells, resulted in an early postnatal astrocytoma formation and a progressive loss of neurogenesis. Treatment of SVZ tumorspheres from G-RAS mice and human GBMs, demonstrated that blockade of RAS/MEK, but not RAS/PI3K signaling, induced glial and neuronal differentiation. Treatment of premalignant G-RAS mice with the MEK inhibitor PD325901 completely restored neurogenesis. MEK inhibition in tumorsphere cultures effectively reduced expression of SOX9, a known barrier to neurogenesis. We confirmed that RNA interference of SOX9 induced neuronal differentiation in glioma cells. As one of the target genes of the neuronal determinant miR-124a, we demonstrate that reintroduction of miR-124a in HGG cells block SOX9 expression and induce neuronal differentiation. Our results suggest that a RAS/MEK/miR-124-SOX9 axis in the astrocyte lineage drives pediatric glioma formation.