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It’s a dangerous business, Frodo,
going out your door.

You step onto the road,
and if you don’t keep your feet,

there’s no knowing
where you might be swept off to.

� Bilbo Baggins

To Tuli the cat. . .
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Abstract
With ever greater computational resources and more accessible software, deep neural networks
have become ubiquitous across industry and academia. Their remarkable ability to generalize
to new samples de�es the conventional view, which holds that complex, over-parameterized
networks would be prone to over�tting. This apparent discrepancy is exacerbated by our
inability to inspect and interpret the high-dimensional, non-linear, latent representations they
learn, which has led many to refer to neural networks as �black-boxes�. The Law of Parsimony
states that �simpler solutions are more likely to be correct than complex ones�. Since they
perform quite well in practice, a natural question to ask, then, is in what way are neural
networks simple?
We propose that compression is the answer. Since good generalization requires invariance
to irrelevant variations in the input, it is necessary for a network to discard this irrelevant
information. As a result, semantically similar samples are mapped to similar representations
in neural network deep feature space, where they form simple, low-dimensional structures.
Conversely, a network that over�ts relies on memorizing individual samples. Such a network
cannot discard information as easily.
In this thesis we characterize the difference between such networks using the non-negative
rank of activation matrices. Relying on the non-negativity of recti�ed-linear units, the non-
negative rank is the smallest number that admits an exact non-negative matrix factorization.
We derive an upper bound on the amount of memorization in terms of the non-negative rank,
and show it is a natural complexity measure for recti�ed-linear units.
We use approximate non-negative matrix factorization to show compression can be suc-
cessfully used to distinguish between networks with different levels of memorization and
generalization. This observation is con�rmed over several datasets and network architectures,
and we show that it even holds at the level of individual output classes, as well as during
training.
With a focus on deep convolutional neural networks trained to perform object recognition,
we show that the two non-negative factors derived from deep network layers decompose the
information held therein in an interpretable way. The �rst of these factors provides heatmaps
which highlight similarly encoded regions within an input image or image set. Shedding some
light into the �black box�, these heatmaps reveal what information a network �nds relevant.
We �nd that these networks learn to detect semantic parts and form a hierarchy, such that
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parts are further broken down into sub-parts. We quantitatively evaluate the semantic quality
of these heatmaps by using them to perform semantic co-segmentation and co-localization.
In spite of the convolutional network we use being trained solely with image-level labels, we
achieve results comparable or better than domain-speci�c state-of-the-art methods for these
tasks.
The second non-negative factor provides a bag-of-concepts representation for an image or
image set. We use this representation to derive global image descriptors for images in a large
collection. With these descriptors in hand, we perform two variations content-based image
retrieval, i.e. reverse image search. Using information from one of the non-negative matrix
factors we obtain descriptors which are suitable for �nding semantically related images, i.e.,
belonging to the same semantic category as the query image. Combining information from
both non-negative factors, however, yields descriptors that are suitable for �nding other images
of the speci�c instance depicted in the query image, where we again achieve state-of-the-art
performance.

Keywords: deep neural networks, convolutional neural networks, non-negative matrix factor-
ization, generalization, over�tting, network interpretability, co-segmentation, co-localization,
content-based image retrieval
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RØsumØ
Avec des ressources informatiques de plus en plus importantes et des logiciels plus accessibles,
les rØseaux neuronaux profonds sont devenus omniprØsents dans l’industrie et le milieu
universitaire. Leur remarquable capacitØ de gØnØralisation à de nouveaux Øchantillons dØ�e
l’opinion conventionnelle selon laquelle des rØseaux complexes et sur-paramØtrØs seraient
susceptibles de surapprentissage. Cette contradiction apparente est exacerbØe par notre
incapacitØ d’inspecter et d’interprØter les reprØsentations latentes, non linØaires et hautement
dimensionnelles que ces rØseaux apprennent, ce qui a amenØ beaucoup à quali�er les rØseaux
neuronaux de �boîtes noires�. La loi de la parcimonie stipule que "des solutions plus simples
ont plus de chances d’Œtre correctes que des solutions complexes". Puisqu’ils fonctionnent
assez bien dans la pratique, une question naturelle à se poser est donc de savoir en quoi les
rØseaux de neurones sont simples?
Nous proposons que la compression est la rØponse. Étant donnØ qu’une bonne gØnØralisation
exige l’invariance à des variations non pertinentes de l’entrØe, il est nØcessaire qu’un rØseau se
dØbarrasse de cette information non pertinente. Par consØquent, des Øchantillons sØmanti-
quement similaires sont mappØs à des reprØsentations similaires dans l’espace de charactŁres
profonds d’un rØseau neuronal, oø ils forment des structures simples et de faible dimension.
Inversement, un rØseau surapprend s’il mØmorise des Øchantillons individuels. Un tel rØseau
ne peut pas se dØbarrasser de l’information aussi facilement.
Dans cette thŁse, nous caractØrisons la diffØrence entre de tels rØseaux en utilisant le rang
non-nØgatif des matrices d’activation. En se basant sur la non-nØgativitØ des unitØs linØaires
recti�Øes, le rang non-nØgatif est le plus petit nombre qui admet une factorisation exacte de la
matrice non-nØgative. Nous Øtablissons une limite supØrieure à la quantitØ de mØmorisation
en termes de rang non-nØgatif, et nous montrons qu’il s’agit d’une mesure de complexitØ
naturelle pour les unitØs recti�Øes linØaires.
Nous utilisons la factorisation matricielle non-nØgative approximØe pour montrer que la
compression peut Œtre utilisØe avec succŁs pour distinguer les rØseaux avec diffØrents niveaux
de mØmorisation et de gØnØralisation. Cette observation est con�rmØe sur plusieurs ensembles
de donnØes et architectures de rØseau, et nous montrons qu’elle se vØri�e mŒme au niveau
des classes de sortie individuelles, ainsi qu’au niveau de la formation.
En mettant l’accent sur les rØseaux neuronaux convolutionnels profonds entraînØs à la recon-
naissance d’objets, nous montrons que les deux facteurs non-nØgatifs dØrivØs des couches
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profondes du rØseau dØcomposent l’information qui s’y trouve d’une maniŁre intelligible. Le
premier de ces facteurs fournit des heat maps qui mettent en Øvidence des rØgions codØes de
maniŁre similaire dans une image d’entrØe ou un ensemble d’images. En Øclairant la �boîte
noire�, ces heat maps rØvŁlent l’information qu’un rØseau trouve pertinente. Nous constatons
que ces rØseaux apprennent à dØtecter les constituents sŁmantiques et à former une hiØrarchie,
de sorte que les constituants se dØcomposent davantage en sous-constituants. Nous Øvaluons
quantitativement la qualitØ sØmantique de ces heat maps en les utilisant pour effectuer la
co-segmentation et la co-localisation sØmantiques. MalgrØ le rØseau convolutif que nous
utilisons et le fait que nous ne sommes formØs qu’avec des Øtiquettes de niveau image, nous
obtenons pour ces tâches des rØsultats comparables ou meilleurs que les mØthodes qui sont à
l’Øtat de l’art du domaine spØci�que
Le second facteur non-nØgatif fournit une reprØsentation de "sac de concepts" pour une image
ou un ensemble d’images. Nous utilisons cette reprØsentation pour dØriver des descripteurs
d’image globaux pour les images d’une grande collection. Avec ces descripteurs en main,
nous effectuons deux variantes de la recherche d’images basØe sur le contenu, c’est-à-dire la
recherche d’images inversØe. En utilisant l’information provenant de l’un des facteurs matri-
ciels non-nØgatifs, nous obtenons des descripteurs qui conviennent à la recherche d’images
sØmantiquement apparentØes, c’est-à-dire appartenant à la mŒme catØgorie sØmantique que
l’image de requŒte. En combinant les informations des deux facteurs non-nØgatifs, on obtient
des descripteurs qui permettent de trouver d’autres images de l’instance spØci�que qui est
reprØsentØe dans l’image de la requŒte, oø l’on obtient à nouveau des performances de pointe.

Keywords: deep neural networks, convolutional neural networks, non-negative matrix factor-
ization, generalization, over�tting, network interpretability, co-segmentation, co-localization,
content-based image retrieval

x



Contents
Acknowledgements v

Abstract (English) vii

List of �gures xii

List of tables xiv

Abbreviations and Notation xvi

1 Introduction 1
1.1 Thesis contributions and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 From single neurons to deep convolutional neural networks . . . . . . . 7
2.2.2 Training and gradient �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Generalization and over�tting . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Network interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Matrix factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Principal component analysis (PCA) . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 k-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Non-negative matrix factorization (NMF) . . . . . . . . . . . . . . . . . . 28
2.3.4 Random ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Memorization and the non-negative rank 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Memorization bound through Common information . . . . . . . . . . . . . . . . 35
3.3 Non-linearity and rectangle cover number . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Estimating the non-negative rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



Contents

3.4.1 Single-class batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Datasets and networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Feature compression and memorization . . . . . . . . . . . . . . . . . . . 44
3.5.3 Feature compression and generalization . . . . . . . . . . . . . . . . . . . 51
3.5.4 Experiments on VGG-19 and ImageNet . . . . . . . . . . . . . . . . . . . . 56

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Semantic localization with matrix U 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 NMF Heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 CNN Feature maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 NMF on feature maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 PCA heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Experiments on iCoseg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 Qualitative investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Object and part co-segmentation . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Layer depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Experiments on PASCAL VOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Object co-localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Part co-segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Semantic retrieval with matrix V 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Gradient ascent visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Experiments on Oxford and Paris buildings . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Instance-based retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Semantic image retrieval on PASCAL VOC . . . . . . . . . . . . . . . . . . . . . . 103
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusion 107
6.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 119

xii



List of Figures
1.1 Training and test curves of CNNs trained on CIFAR-10 forced into various levels

of memorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example NMF heatmaps with VGG-19 on iCoseg . . . . . . . . . . . . . . . . . . 4
1.3 Gradient ascent visualization of NMF basis derived from VGG-19 on iCoseg 1 . 5

2.1 Linear regression with single neuron . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Logistic regression with single neuron . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 AlexNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 VGG-16 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Activation functions for neural networks . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 ResNet building block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Over�tting vs model complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 AlexNet �rst layer �lters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 AlexNet �rst layer �lters with gradient ascent . . . . . . . . . . . . . . . . . . . . . 21
2.10 AlexNet �fth layer �lters with gradient ascent . . . . . . . . . . . . . . . . . . . . 22
2.11 CAM sailency map pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.12 PCA in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.13 PCA vs. k-means vs. NMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 k-means in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.15 NMF in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.16 RA in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Label randomization test error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Support of a ReLU activation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Image datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Layer-by-layer NMF compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 NMF reconstruction error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Detecting memorization via matrix factorization: CIFAR-10 . . . . . . . . . . . . 49
3.6 Detecting memorization via matrix factorization: Various datasets . . . . . . . . 50
3.7 Detecting memorization with i.i.d. batches . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Detecting memorization with NMF and PCA ablations . . . . . . . . . . . . . . . 53

xiii



List of Figures

3.9 Detecting generalization via compression . . . . . . . . . . . . . . . . . . . . . . 54
3.10 NMF for early stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.11 Detecting memorization on VGG-19 . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.12 NMF runtime on a typical ImageNet batch . . . . . . . . . . . . . . . . . . . . . . 58

4.1 NMF heatmap extraction pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 NMF and PCA heatmaps with K ˘ 3 with VGG-19 on ImageNet 1 . . . . . . . . . 64
4.3 NMF and PCA heatmaps with K ˘ 3 with VGG-19 on ImageNet 2 . . . . . . . . . 65
4.4 NMF and PCA heatmaps with K ˘ 3 with VGG-19 on ImageNet 3 . . . . . . . . . 66
4.5 NMF and PCA heatmaps with K ˘ 3 with VGG-19 on ImageNet 4 . . . . . . . . . 67
4.6 Incremental NMF with VGG-19 on iCoseg 1 . . . . . . . . . . . . . . . . . . . . . 69
4.7 Incremental NMF with VGG-19 on iCoseg 2 . . . . . . . . . . . . . . . . . . . . . 70
4.8 Incremental NMF with ResNet-50 on iCoseg 1 . . . . . . . . . . . . . . . . . . . . 72
4.9 Incremental NMF with ResNet-50 on iCoseg 2 . . . . . . . . . . . . . . . . . . . . 73
4.10 Average IoU score for NMF with different layers of VGG-19 on iCoseg . . . . . . 79
4.11 Example NMF heatmaps with VGG-19 on PASCAL-Part 1 . . . . . . . . . . . . . 81
4.12 Example NMF heatmaps with VGG-19 on PASCAL-Part 2 . . . . . . . . . . . . . 82

5.1 NMF as a bipartite graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Gradient ascent visualization of NMF basis derived from VGG-16 on iCoseg 2 . 90
5.3 Gradient ascent visualization of NMF basis derived from VGG-16 on iCoseg 2 . 91
5.4 Gradient ascent visualization of NMF basis derived from ResNet-50 on iCoseg 2 92
5.5 Gradient ascent visualization of NMF basis derived from ResNet-50 on iCoseg 3 93
5.6 Example images from Paris buildings with NMF heatmaps from VGG-16 . . . . 95
5.7 Example images from Paris buildings with NMF heatmaps from ResNet-50 . . . 96
5.8 NMF global image descriptor extraction pipeline . . . . . . . . . . . . . . . . . . 99
5.9 Image retrieval with NMF top 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.10 NMF localization for top retrieved search results . . . . . . . . . . . . . . . . . . 102

xiv



List of Tables
3.1 Neural network architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Part co-segmentation with VGG-19 on iCoseg . . . . . . . . . . . . . . . . . . . . 78
4.2 Object co-segmentation on iCoseg . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Co-localization on PASCAL VOC 2007 . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Part co-segmentation with VGG-19 on PASCAL-Part . . . . . . . . . . . . . . . . 84
4.5 Part co-segmentation comparison against state-of-the-art . . . . . . . . . . . . . 85

5.1 Instance-based retrieval mAP with NMF and other methods . . . . . . . . . . . 101
5.2 NMF IoU scores on Oxford and Paris Buildings query sets . . . . . . . . . . . . . 103
5.3 Semantic image-retrieval on PASCAL VOC 2010 . . . . . . . . . . . . . . . . . . . 104

xv





Abbreviations and Notation
List of Abbreviations

Abbreviation Description

NN Arti�cial neural network
CNN Convolutional neural network
SGD Stochastic gradient descent
PCA Principal component analysis
NMF Non-negative matrix factorization
RA Random ablations
ReLU Recti�ed-linear unit
BN Batch normalization

xvii



List of Tables

List of Symbols
Symbol Description

R¯ Non-negative real numbers [0, inf)
M ,P arbitrary integers representing high dimensional spaces, e.g. RM

¯

⁄(¢) A function representing a neural network
⁄i (¢) A function representing the i th layer of a neural network
‘ A loss function de�ning an optimization objective, not to be con�sed with
‘2 The Eculidean norm
X, X , x Neural network input in tensor, matrix and vector form, respectively
I An input image
A, A, a Neural network activations in tensor, matrix and vector form, respectively
�A, �A, �a Approximation of activations via matrix factorization
X , Z Random variables representing NN input and hidden activation respectively
�y NN last layer output
y Ground truth target NN should predict
Y A random variable distributed over ground truth targets
X £ Y The true data distribution of input output pairs
A,B Generic random variables
P ,I ,C,H The probability operator, mutual information, common information, and Shan-

non entropy
V A matrix holding basis vectors of a matrix factorization
U A matrix holding per-sample coef�cients for matrix factorization
N Number of samples in a dataset or batch
H Height of image or feature map
W Width of image or feature map
C Number of channels at a convolutional layer
K Positive integer rank of matrix factorization, or a random variable de�ning a

categorical distribution on matrix factors
T Number of output classes
c,k, t A speci�c channel, factor, or target, i.e., 1 • c • C , 1 • k • K , 1 • t • T
F A random variable de�ning a categorical distribution over each of the K matrix

factors
a,b, i , j Genetic subscripts for enumerating collections
D, Dtest Datasets used for training and testing, respectively
i A discrete random variable indexing a batch or dataset with P(i ˘ i ) ˘ 1

N
p The probability of randomizing a training label
supp The support of a matrix
r c The rectangle cover number of a binary matrix

xviii



List of Tables

Symbol Description

U The matrix U reshaped and rescaled to form a tensor of heatmaps
B The tensor U after binarization
G A tensor containing ground truth binary segmentation masks. Unlike y , this is

not used for NN training.
R Number of relevant images with respect to a query image
r The number of relevant images retrieved up to a given rank
v NMF global image descriptor

xix





1 Introduction

Since the advent of digital computers in the 1940s, researchers have sought to use them to
automate tasks traditionally solved by human labor. As computational resources grew, so
did the desire to automate more complex and high-level tasks, such as translating natural
language texts, recognizing objects in images, etc.

Early strides towards that goal were based on rigid rule-based systems, distilling expert knowl-
edge of a task-speci�c domain. These systems, however, did not scale to the level of variation
which exists in most real-world inputs. A task as simple as, for instance, recognizing dog
images requires approximating a function which maps thousands or even millions of pixels
into a yes/no decision, while considering that dogs can be large or small, light or dark, 4-legged
or 3-legged, indoors or outdoors - but are not to be confused with cats or even wolves. For
such problems, machine learning proposed to design algorithms that automatically learn how
to solve a given task.

For example, the most common paradigm in machine learning is supervised learning, i.e.,
learning by example. In this setting, a dataset is given which consists of input-output pairs,
and a parametric model is trained (i.e., its parameters are gradually re�ned) to predict the
output given the input.

The availability of large datasets and powerful computational resources over the past decade
has facilitated the rise in popularity of deep neural networks. This �exible class of models is
at once general, i.e., requiring little domain-speci�c expertise, while nonetheless showing
state-of-the-art performance across diverse domains. This technology has had a profound
impact on the high-tech industry, with the deep learning market expected to reach $US 18
Billion by 20241.

1https://www.marketresearchengine.com/deep-learning-market
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Figure 1.1 � Shown here are (a) training and (b) test curves during training of six convolu-
tional neural networks on the CIFAR-10 dataset forced into different degrees of memorization.
Marked in red is the outcome at the end of the training procedure. Given the �nal training set
accuracy, is it possible to predict the test set accuracy? In this thesis we �nd that a distinguishing
property which characterizes the difference between these networks, and correlates with better
generalization and less memorization, is the non-negative rank of their activation matrices.

However, the success of deep networks has also been accompanied by a certain measure of
obfuscation. The factors determining the success or failure of learning are not well understood,
and methods of evaluating what was learned are limited.

For instance, while the ultimate goal is to generalize well to new data, which is not seen during
training, some models are prone to over�tting, i.e., simply memorizing the training data. In
spite of having millions and even billions of parameters, deep neural networks have shown a
measure of resilience to this phenomenon, defying the traditional �wisdom� that models with
many parameters are likely to over�t. The factors governing a network’s tendency to over�t
are still subject to intensive study these days.

Consider for instance the learning curves in Figure 1.1. Although all networks achieve perfect
accuracy on their training sets, they have very different levels of generalization. What is the
distinguishing factor between these networks? Can it be detected independently of a test set?
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1.1. Thesis contributions and outline

In this thesis we propose that compression is a key factor, distinguishing between networks
that generalize well and those that simply memorize their training data. Any predictive rule
with a degree of generality must ignore certain aspects of the instance to which it is applied,
effectively compressing it by discarding irrelevant information.

The notion that compression is a hallmark of well-generalizing models is not new. It is an
extension of a principle going back to antiquity and made famous as Occam’s razor: �Entities
are not to be multiplied beyond necessity�. In this case, we prefer a network that learns one
general rule that accommodates many inputs, over a network that learns many speci�c rules
that accommodate individual inputs.

Compression not only gives us a criterion by which to evaluate generalization behavior, it also
addresses questions regarding the interpretation of neural networks. It is natural to ask why a
certain prediction was made, by which reasoning, or by considering which aspects of the input.
The nonlinear interactions between the millions of parameters makes exact answers to these
questions incomprehensible to human beings. As these networks are deployed into products
and services all around us - from targeted advertisement on social media to autonomous
vehicles - there is a growing need to validate and understand the outcome of learning.

By examining the compression a convolutional neural network applies to images, we can
create heatmaps which allow us to see how a deep neural network conceptualizes its input. In
Figure 1.2 we show an example of this visualization, showing that in a deep network layer, a
scene or object is decomposed into its constituent parts. This demonstrates how the network
discards information it �nds irrelevant, such as scale, perspective, various object deformations
etc. At the same time, for the object recognition task it was trained to accomplish, the presence
or absence of speci�c entities, e.g., tower or person, are deemed important enough to retain.

Furthermore, by characterizing images using the information a convolutional neural network
considers relevant about them, we can semantically compare two images. This gives a mecha-
nism with which to search for semantically similar images given a query image, and localize
the semantically matching regions within the images.

1.1 Thesis contributions and outline

Our main contribution is actualizing the idea of using compression into a working algorithm.
Our tool of choice is non-negative matrix factorization (NMF) [59], which is applicable to
neural network layers with non-negative activation, e.g. by using the popular recti�ed-linear
activation function (section 2.2.2). Let A 2 RP£M

¯ be an intermediate representation pro-
duced by a convolutional neural network at one of its deep layers. NMF decomposes this

3
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(a) Pyramids, K ˘ 4

(b) Taj Mahal, K ˘ 3

Figure 1.2 � What in this picture is the same as in the other pictures? Non-negative matrix
factorization allows us to see how a deep CNN trained for image classi�cation would answer
this question. Here shown is an example of VGG-19 trained on ImageNet classi�cation, and
then applied to subsets from the iCoseg dataset. (a) Pyramids, animals and people correspond
across images. (b) Monument parts match with each other.

representation into two parts:

A …UV (1.1)

where U 2 RP£K
¯ , V 2 RK £M

¯ . When K is the smallest integer which maintains A ˘ UV , it is
called the non-negative rank of A.

4



1.1. Thesis contributions and outline

(a) Pyramids, K ˘ 4

(b) Taj Mahal, K ˘ 3

Figure 1.3 � Gradient ascent visualization of the features obtained through non-negative
matrix factorization applied to VGG-19 activation for the Pyramids and Taj Mahal subsets
from iCoseg. These visualizations of the rows of V correspond to the heatmap visualizations
of the columns of U shown in Figure 1.2 using the same color encoding, i.e., the blue framed
visualizations above correspond to the blue heatmaps in each corresponding row.

In Chapter 2 introduce interesting properties of NMF as well other factorization methods. In
the same chapter we review deep neural networks, and convolutional networks in particular,
with a focus on the challenges posed by generalization and interpretation.

In Chapter 3 we derive an upper bound over the amount of memorization in a network layer,
expressed in terms of the non-negative rank of its activation matrices. We then explicitly apply
compression to the intermediate representations learned by deep neural networks, which
allows us to compare neural networks and determine which one is likely to generalize better -
without the use of a validation set.

We show empirically that NMF is more effective than other matrix factorization techniques at
distinguishing between memorization and generalization. Our method is also effective during
training, which we demonstrate by performing early stopping, before over�tting commences.

Matrix factorization methods have been used for exploratory data analysis for decades. As a
dimensionality reduction method, matrix factorization retrieves a compressed representation
of the data, with fewer redundancies and correlations. When the dimensionality is suf�ciently
reduced, qualitative interpretation by human beings is made possible.

5
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We show that this decomposition distills much of the semantics learned by a deep convolu-
tional neural network. We roughly characterize U as �where� and V �what�.

In Chapter 4, we use the U matrix of the NMF decomposition to produce heatmaps as in Figure
1.2, which offer an interpretable view into what information the network considers relevant
and what information it discards. We �nd that for object recognition, the network learns to
recognize �ne-grained object parts, with invariance to complex transformations and noise.
For instance, for the task of detecting cars we see that color is not a discriminative feature,
whereas the presence or absence of wheels is.

We quantitatively demonstrate the rich semantics encoded in the matrix factors by applying
them to real-world tasks such as co-localization and co-segmentation of a common object
across a set of images. We obtain state-of-the-art results, with performance comparable or
surpassing even hand-crafted domain-speci�c methods.

Each heatmap produced by the matrix U corresponds to a network feature which is stored
in matrix V . For instance, using feature visualization techniques can visualize V as shown in
Figure 1.3. These visualization are informed of the original images shown in Figure 1.2 only
through the features in V .

In Chapter 5 we use the matrix V to describe an image globally as a bag-of-concepts. We
evaluate this representation by performing image search. Speci�cally, we derive global image
descriptors using V and show they can be used to retrieve images containing similar objects,
with all the invariances learned by the network. For example, given an image of a dog, we
search through a dataset and rank highly other images that portray dogs, regardless of scale,
rotation and even dog breed.

By combining information from both U and V we perform instance-based search, i.e., given
an image of a building, we rank highly only images of that particular building, and not images
of other similar looking buildings. We again �nd that this approach outperforms comparable
state-of-the-art methods.

In Chapter 6 we conclude the thesis with a summary of our contributions and directions for
future work.
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2 Related Work

2.1 Introduction

The methods proposed in this thesis concern various aspects of neural networks in general,
and convolutional neural networks in particular. The �rst half of Section 2.2 therefore provides
an introduction to neural networks, focusing on the necessity for multiple layers in order
to achieve good performance on complex prediction tasks, and describing common design
choices in modern networks.

Section 2.2 then proceeds with an introduction of the two main themes of our work. We
discuss empirical methods to detect over�tting, its impact on generalization, and theoretical
work providing upper bounds on the generalization error. We then introduce the challenge of
network interpretability, reviewing existing approaches with a focus on convolutional neural
networks.

Our tool of choice for both detecting memorization and opening an interpretable window
into convolutional neural networks, is non-negative matrix factorization. We introduce this
method as well as other matrix factorization methods in Section 2.3.

2.2 Convolutional neural networks

2.2.1 From single neurons to deep convolutional neural networks

The class of computational models referred to as arti�cial neural networks (NNs) contains
many diverse models. A common characteristic to all NNs, which they share with their
biological namesakes, is the composition of simple computational units, the so-called neurons,
into a larger collective, capable of computing more complex functions.

7
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y y

x x

(a) (b)

Figure 2.1 � A single-neuron neural network with identity activation and mean squared error
loss is equivalent to linear regression. Model predictions lie on the red line. (a) The data follows
a linear distribution and the linear regression gives accurate predictions. (b) The data follows
a non-linear distribution and linear-regression is too limited to give accurate predictions.

Linear-prediction: Single neuron and single layer

At its simplest, a single neuron is a function ⁄ : RM ! R:

⁄(x) ˘ f (x>w ¯ b) (2.1)

i.e., a weighted-sum of the input vector x with weights w , both in RM , followed by the addition
of a bias term b 2 R. Finally the activation function f is applied to form the neuron output,
called simply the activation.

A single-neuron NN can already retrieve common statistical models. We denote the output
prediction of a NN as �y ˘ ⁄(x). Letting D ˘ {xi , yi j1 • i • N } be a training dataset of input-
output samples, the weights w and the bias term b are trained to minimize the empirical
loss:

‘D ˘
1
N

X

x ,y2D
‘( �y , y) (2.2)

w⁄,b⁄ ˘ argmin
w ,b

‘D (2.3)

where ‘ is the loss function, measuring the prediction error.

Different settings of activation and loss functions de�ne different models. For instance, as
shown in Figure 2.1, when y 2 R, linear regression can be cast as a single-neuron NN with
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2.2. Convolutional neural networks

identity activation and squared-error loss:

f (a) ˘ a (2.4)

‘( �y , y) ˘ k �y ¡ yk2
2 ! ( �y ¡ y)2 if y 2 R

Similarly, for binary classi�cation with y 2 {0,1}, as in Figure 2.2, setting the activation function
to the logistic function and loss to binary cross-entropy results in a single-neuron NN which
performs logistic regression:

f (a) ˘
1

1 ¯ e¡a (2.5)

‘( �y , y) ˘ ¡y log( �y) ¡ (1 ¡ y) log(1 ¡ �y)

An example of multiple neurons composed together arises with the generalization of logistic
regression to the case where y 2 {1, ¢ ¢ ¢ ,T } and we wish to classify x as belonging to exactly
one of T classes. This is accomplished by considering T neurons jointly, where we de�ne the
j th neuron output as the score or probability of belonging to the j th class. In this case, the
weight vectors of the individual neurons are stacked into a single weight matrix, W 2 RM£T ,
and similarly all bias terms to a vector, b 2 RT . Computing the NN output prediction proceeds
as before:

�y ˘ ⁄(x) ˘ f (x>W ¯b) (2.6)

A suitable activation function in this case is the softmax function f (x) ˘ ex

kex k1
, which normal-

izes its input to form a probability distribution. The cross-entropy loss in this case reduces to
the negative log-likelihood of the correct class ‘( �y , y) ˘ ¡ log �yy . This model is referred to as
softmax regression.

Neurons combined as in Eq. (2.6) are said to form a layer of width T . A layer parameterized
this way is called �fully-connected�, since every input affects every output. A fully-connected
layer with M inputs and T outputs has a total (M ¯ 1) ¢ T trainable parameters.

An important property of the single-layer models described thus far is that they make linear
predictions. This can be seen in Figures 2.1 and 2.2. Linear regression explicitly parameterizes
a line equation on which its predictions lie, and both logistic and softmax regression are
characterized by linear decision boundaries.

For classi�cation, the linearity of decision boundaries does not pose a limitation if, indeed, the
vectors associated with a label a, i.e., Xa ˘ {xi jyi ˘ a}, are linearly separable from the vectors
Xb , as in Figure 2.2b. In this case, logistic regression as described above is suf�cient to fully
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x 1 x2 1

x2 x2
2

(a) (b)

Figure 2.2 � A single-neuron neural network with logistic activation and binary cross-entropy
loss is equivalent to logistic regression. The decision boundary at �y ˘ 0.5 is shown in red.
(a) Logistic regression cannot separate clusters which are not linearly-separable. (b) An
appropriate transformation can extract features that result in linear-separability.

minimize the loss.

However, if Xa is not linearly-separable from Xb , as in Figure 2.2a, inherent model error is
introduced that cannot be overcome by any setting of the parameters W and b.

Feature extraction: multiple layers

To overcome this issue, the input vectors x must �rst be transformed, by an additional function
⁄h , into having linearly-separable structure. The transformed output, called features, can then
be fed to the single-layer classi�er:

�y ˘ ⁄(⁄h(x)) (2.7)

In the case shown in Figure 2.2a, although the data is given as two dimensional vectors
x ˘˙ x1, x2 ¨, the cluster identity is determined by the radius length x2

1 ¯ x2
2 . Setting ⁄h(x) ˘˙

x2
1 , x2

2 ¨ is therefore an adequate transformation, which yields the linearly-separable clusters
shown in Figure 2.2b.

The question remains, however, how to �nd appropriate features without requiring case-by-
case analysis. Such analysis typically involves considerable investment and is limited by the
level of domain-speci�c expertise available to the feature designer.
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2.2. Convolutional neural networks

One solution is to augment the input with higher-order interactions, e.g., the squared inputs
used in the above example. It is unclear, however, how complex these interactions must be
in order to achieve linear separability. Furthermore, adding all interaction terms of a certain
order increases the input size combinatorially, which quickly makes the weight matrix W large.
Over-parameterized layers have higher space and time complexity, and are exposed to the
danger of over�tting, discussed in section 2.2.3.

A different approach is to model the function ⁄h similarly to the function ⁄:

⁄h(x) ˘ g (W >
h x ¯bh) (2.8)

where g is an activation function and Wh 2 RM£P . We accordingly rede�ne W 2 RP£T .

The model prediction now becomes a composition:

�y ˘ ⁄(⁄h(x)) (2.9)

and the parameters of ⁄h and ⁄ are both subject to training. Analyzing the features extracted
by ⁄h is an interesting challenge, as discussed in Section 2.2.4.

In the resulting two-layer model, ⁄ is called the output layer and ⁄h is referred to as a hidden
layer, since its P-dimensional output activation is a latent code without any a-priori assigned
meaning. The term input layer is sometimes used to refer to the input x itself. This layered
architecture is called feed-forward, since obtaining the prediction involves feeding the output
of each layer forward to the next layer.

The layer ⁄h has limited expressive power, since it consists of only a single linear transfor-
mation followed by an element-wise activation function. Achieving linear-separability may
require more complex transformations. In this case, complexity could be increased by intro-
ducing additional layers to the model, increasing its depth.

We thus arrive to the general L-layer feed-forward NN model, which is the underlying paradigm
for most modern NN architectures today:

a0 ˘ x (2.10)

ai ˘ ⁄i (ai¡1), 1 • i • L

�y ˘ aL

The number of hidden layers, L ¡ 1, their widths, and the activation functions used are hyper-
parameters de�ning the NN architecture, and are set by the network designer.
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The vector ai is the activation vector at layer i , also referred to as the features extracted by the
�rst i layers. The activation of the �nal layer is the output prediction �y .

The intuition behind deep learning suggests that the deeper the layer i , the more abstract and
semantically meaningful are its features [12].

Convolution

Computer vision deals with image data for tasks such as object recognition and segmentation.
Using fully-connected NNs to solve these tasks quickly runs into a scalability issue: image
data can have hundreds-of-thousands or millions of dimensions, even at moderate image
resolutions.

To resolve this, the convolutional neural network (CNN) was introduced [58]. In this net-
work the basic layer computation is changed to have two properties: local-connectivity and
translation-invariance. These properties drastically reduce the number of network parameters,
thereby reducing computational load and the danger of over�tting.

Local-connectivity means that by applying small �lters to image patches, only interactions
between near-by pixels are considered. This is based on the assumption that, for instance,
a pixel near the top-left corner of the image and a pixel near the bottom-right corner, are
unlikely to be related in a consistent manner which can be useful for making predictions.

Translation-invariance means we can use the same local �lter in all spatial positions. This is
based on the assumption that image statistics distribute identically across the spatial dimen-
sions of the image.

With the properties combined, the result is that a CNN layer performs a 2D spatial-convolution
(or cross-correlation) between the input image and a set of learned �lters. Note that the same
local-connectivity and translation-invariance assumptions can be applied to any directional
data, e.g., time-series or text data, in which case convolution and �lters are 1D.

Formally, an image is represented as a tensor I 2 RCI£HI£WI , where HI and WI are the height
and width of the image respectively, and CI is the number of channels, e.g., CI ˘ 3 for RGB
color images.

The weight tensor of a convolutional layer W 2 RCout£Cin£HW £WW is viewed as a set of Cout

�lters, each of spatial dimensions HW £WW and as many channels as the layer input. The bias
vector b 2 RCout has a value for every output channel, which is added at all spatial positions.
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2.2. Convolutional neural networks

Figure 2.3 � A schematic of AlexNet. Figure taken from Krizhevsky et al. [55].

A convolutional layer operates in the image’s 2D space and computes:

Ai 2 RCout£HA i £WA i

Ai ˘ ⁄i (Ai¡1) such that [⁄i (Ai¡1)]c ˘ f (Ai¡1 ⁄Wc ¯b) (2.11)

where ⁄ denotes convolution, and Ai¡1 is the layer input, e.g. Ai¡1 ˘ I, and thus Cin ˘ CA i¡1 .

Each of the Cout channels of the resulting activation tensor, ⁄(X), is also called a feature map,
since it is a 2D activation map where each value represents a feature response with respect to
an image patch.

The output dimensions HA i £WA i , being a function of HI and WI , vary from image to image.
In general, convolution produces an output with decreased spatial dimension. To account for
this, padding is added at each layer to give an output with the same spatial dimensionality as
the input.

Commonly, spatial dimensions are reduced with explicit down-sampling, accompanied by
an increase in the channel dimension. This further reduces the memory and computation
requirements. Down-sampling is accomplished by setting the stride of convolutions or pooling
operations to be greater than one.

A common form of pooling is max-pooling. De�ned by a window of size Hp £Wp , the pooling
window slides over the image akin to the convolution operation, and returns at every position
the maximal value within the window. When applied to an activation tensor with C channels,
max-pooling is applied to each channel separately, i.e., given input A 2 RC£Hp £Wp , max pooling
returns a C ¡ di mensi onal vector, having pooled the spatial dimensions.

Arguably the �rst successfully trained large-scale CNN is AlexNet [55]. It consist of several
convolutional layers, followed by several fully-connected layers. A schematic of AlexNet is
shown in Figure 2.3.
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Figure 2.4 � A schematic of VGG16. VGG networks follow the design of AlexNet, but are deeper
and exclusively use small �lters. Figure taken from blog.heuritech.com.

Trained on ImageNet [80], AlexNet classi�es images as belonging to one of 1K classes. With a
total of 60M parameters, this network achieved a top-1 accuracy of 62.5% and top-5 accuracy
of 83%.

The networks VGG-16 and VGG-19 [87] closely follow the architecture of AlexNet. However,
they exclusively use small 3 £ 3 convolutional �lters (compared to 11 £ 11 in the �rst layer of
AlexNet), and have increased depth. VGG-16 improved CNN performance on ImageNet to
classi�cation to top-1 accuracy of 74.4% and top-5 accuracy of 91.9%. See Figure 2.4 for a
schematic.

2.2.2 Training and gradient �ow

Gradient optimization

Minimizing the objective function of the logistic regression model of Eq. (2.4) can be done
analytically: computing the gradient of the loss with respect to w and setting it to zero gives
the well-known normal equation, which has a closed-form solution yielding the optimal w .

Logistic regression, in Eq. (2.5), on the other hand, does not lend itself to a closed-form
solution. Instead, its parameters are iteratively updated with gradient descent (GD). Starting
from a random parameter initialization, at every iteration the gradient rw ‘ is computed, and
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(a) Sigmoid activation functions (b) Recti�ed-linear activation function

Figure 2.5 � The activation function plays a crucial role in the convergence properties of a
deep NN. (a) Saturating activation functions have small gradients far from the origin, which
slows down learning as NN weights grow in magnitude. (b) The recti�ed-linear function [37],
on the other hand, has a gradient of 1 for all positive activations. The non-negativity of the
recti�ed-linear function enables us to use NMF in our analysis of CNN activations. Figure
taken from Glorot et al. [37].

the weights are updated as:

w ˆ w ¡firw (2.12)

where fi is a hyper-parameter controlling the step size.

When the step size is not too large, GD is guaranteed to �nd the globally optimal value of w ,
because the single-layer logistic regression model has a convex objective function.

A NN or CNN with many layers, however, de�nes a highly non-convex function. Minimizing
such a function with GD could theoretically �get stuck� in a sub-optimal local minimum.

With the availability of large datasets for training, stochastic gradient descent (SGD) has been
proposed, which performs a gradient update based on a stochastically sampled subset of
the data, called a batch. The introduction of sampling noise could account for the good
performance of (stochastic) gradient descent methods in practice, since the noise allows the
network to escape from narrow local minima [51].

Augmentations of SGD have also been proposed, such as SGD with momentum [74], Adagrad
[29] and ADAM [52]. These methods all maintain a per-parameter learning rate, resulting in
faster convergence than standard SGD.

One of the main challenges of optimization with SGD variants is the problem of vanishing
and exploding gradients. Speci�cally, the gradient is computed by back-propagating the error
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Figure 2.6 � Residual connections form the basis of ResNets. In this diagram weight refers to a
linear transformation, BN to batch-normalization,and ReLU is the recti�ed-linear function.
Figure taken from He et al. [44].

[79] from the output layer, through deep layers, into early layers. Through multiplicative
interactions along the way, the gradient signal for early layers can have a very small or very
large magnitude, leading to slow convergence. The next two sections deal with proposed
solutions to this phenomenon.

Activation functions and residual connections

The activation function produces the �nal layer output and can greatly affect gradient �ow. For
many years, sigmoidal (�S�-shaped) functions, such as the logistic function and the hyperbolic
tangent were widely used, shown in Figure 2.5.

With the advent of deep networks, it was soon realized that sigmoid functions caused gradients
to vanish. As network weights grew with every SGD update, activations would be pushed into
the high- and low-end plateaus of the sigmoid activation function, where the gradient is very
small.

A solution was proposed in the form of recti�ed-linear units (ReLU) [37]. This activation
function, f (x) ˘ max(x,0), has a gradient that is either 0 or 1, as shown in Figure 2.5b. This
allows gradients to �ow freely (or not at all), and is now standard in most modern CNNs.
ReLU additionally has the property of producing non-negative activations, which enables our
analysis of CNN activations using non-negative matrix factorization.

While ReLUs can pass the gradient unaltered, a long chain of linear transformations is still
suf�cient to hurt network performance. A solution to this issue comes in the form of residual
connections [44], which tweaks the standard feed-forward pipeline as follows:

ai ˘ ai¡1 ¯⁄i (ai¡1), 1 • i • L (2.13)
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In other words, the layer ⁄i computes a residual term, which, once added to the layer input,
achieves the desired transformation. Figure 2.6 shows the basic residual block.

This simple change means that the gradient can �ow into ai¡1 through ⁄i as well as directly.
The popular ResNet-50, which consists of 50 residual layers, further improves upon the stan-
dard feed-forward nets described above, achieving ImageNet classi�cation top-1 accuracy of
79.26% and top-5 accuracy of 94.75%. In addition to residual connections, ResNets employ
ReLU activations and bach-normalization, described below.

Initialization and batch-normalization

The random initialization at the start of training has been found to have a signi�cant impact
on convergence [64]. Effective initialization methods have been proposed to ensure that the
gradient magnitude is maintained constant as it �ows from layer to layer [36; 43], improving
convergence. These methods, however, only affect SGD iterations near the start of training.

Batch-normalization [46], on the other hand, is a method that explicitly normalizes network
activations according to the statistics of the current SGD batch, all throughout training. By
doing so, the magnitude of the gradients is also controlled, and convergence is accelerated.
This technique also is widely incorporated into most modern CNNs, and is applied between
the convolution and ReLU activation.

2.2.3 Generalization and over�tting

The training set D ˘ {xi , yi j1 • i • N } » {X £ Y } is a collection of N samples, each sampled
from the data distribution X £ Y over pairs (x , y). In the discussion so far we have referred to
NN training as the task of minimizing the empirical loss, or training loss, evaluated using D,
as in Eq. (2.2).

The ultimate goal of learning, however, is to do well on new data, unseen during training. We
want to minimize the generalization loss:

‘X £Y ˘ Ex ,y»X £Y [‘(⁄(x), y)] (2.14)

The generalization loss is approximated by measuring the test loss using a test set Dtest, which
contains additional samples from X £ Y not used during training.

Large NNs have the capacity to over�t their training set, i.e., memorize individual input-to-
output mappings, which does not promote good generalization to new data samples. In this
way, the training loss can be minimized while the test loss remains high. This phenomenon is
demonstrated in Figure 2.7.
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Figure 2.7 � Over�tting is characterized by low training error but high test error. This is due
to a model having suf�cient capacity to memorize individual input-to-output mappings, at
the expense of converging onto a more general strategy. This �gure is adapted from Friedman
et al. [34], where 100 datasets were reconstructed using sparse coding. Shown in light blue,
the training prediction error of individual trials steadily decreases with increased model
complexity (e.g., dictionary size). However, when examining the test prediction error, shown
in light red, there is an intermediate model complexity above which over�tting starts to occur.
Average training and test errors are show as solid lines.

It has been observed empirically that modern CNNs have suf�cient capacity to memorize even
very large datasets with random labels [102], but when trained on real data they generalize
well, a behavior which seemed to defy theoretical justi�cation.

Early bounds on ‘X £Y were derived based on properties such as the Vapnik�Chervonenkis
(VC) dimension [92] and Rademacher complexity [7]. These properties indicate a model’s
ability to �t randomly labeled data, i.e., �D ˘ {x , �y jx 2 D}, where �y is a randomly (re-)sampled
label. They can therefore serve as an estimate of model complexity, or more speci�cally the
complexity of the decision boundaries it can produce. However, since these quantities depend
on the number of network parameters, these bounds do not explain the good performance of
NNs, which in modern networks can reach billions.

Generalization bounds were recently proposed which scale with the number of NN layers
[8; 69], as a product of weight matrix norms, but modern NNs have shown better performance
with increased depth, which therefore remains unexplained.

Other work has focused on properties of SGD itself, showing it is biased towards minima that
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2.2. Convolutional neural networks

generalize well [88; 15]. These results relate to the �atness of the local minimum to which the
network converges.

In a �at minimum, applying perturbations to a network’s parameters or activations does
not result in a dramatic change to its (training set) performance, and this is taken as an
indicator of good generalization [45; 17; 51; 68; 61]. Robustness to noise was used also to
derive generalization bounds [2].

However, any reversible transformation, such as simple scaling, can be used to arbitrarily
manipulate the curvature of the local minimum, without affecting generalization [28]. For
instance, analysis could be applied to layer ⁄i with perturbations of a certain magnitude, and
its sensitivity could be measured. Then, dividing the weights of ⁄i by 10 and multiplying the
weights of ⁄i¯1 by 10 does not change the output of a ReLU NN, and so does not affect its
generalization. However, subjecting the re-scaled ⁄i to the same magnitude of perturbations
as before will show it as being more sensitive. Care must therefore be taken to use perturbations
of ‘appropriate units’ [61].

Related to the notion of �at local minima, compression has been proposed to play a key role for
good generalization [2]. Our analysis in Chapter 3 pursues this direction explicitly, where we
study the impact of compression, through matrix factorization, on the performance of NNs.

Notably, the information bottleneck principle (IB) [84] proposes that well-generalizing NNs
have hidden layers which function as minimal suf�cient statistics [86]. Formally, let the random
variable X represent the NN input and Y its output. A hidden variable Z is a function of the
input, and by the data-processing inequality [24]:

I(X ,Y ) ‚ I(X , Z ) (2.15)

where I(¢, ¢) is the mutual information.

In other words, the input X itself contains all the relevant information about the output Y .
The hidden representation Z is considered optimal according to IB if it discards irrelevant
information about X , retaining only the information relevant to the prediction of Y :

Z ˘ argmax
Z

I(Y , Z ) ¡flI(X , Z ) (2.16)

where fl controls the level of compression. Optimizing empirical approximations of the
compression terms has shown to improve generalization in practice [11].

By virtue of using mutual information, IB provides a generalization bound that is invariant
to reversible transformations, addressing the issue raised in perturbation analysis methods.
This advantage carries over to our own analysis, and indeed, our dimensionality-reducing
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Figure 2.8 � First layer CNN �lters can be directly visualized, often revealing Gabor-like �lters
and opponent-color edges. Depicted here are the �rst-layer �lters of AlexNet [55].

perturbations are similarly invariant.

2.2.4 Network interpretability

In section 2.2.1 we introduced the concept of automatic feature extraction. Each layer of a
neural network extracts more complex features, which eventually indicate whether a sample
belongs to a particular output class or another.

A few things are known a-priori. The activation a0 is the input itself. The activation aL

represents scores or probabilities of an input belonging to each output class. The feature space,
i.e., the space of activation vectors, of layer ⁄L¡1 should be such that clusters of activation
vectors aL¡1 belonging to different clusters are linearly separable.

Otherwise, not much is known about the intermediate layers. What features do the hidden-
layer activations a2 or aL¡2 extract? What information does the network use to solve a pre-
diction task? The lack of clear answers to these questions has led to NNs being described as
black-box models.

As NNs are incorporated into applications requiring validation and user trust, such as medical
diagnosis [16] and autonomous driving [13], there is a growing need to answer these questions.
The �eld of network interpretability has therefore received much attention recently.

Speci�cally for CNNs applied to image data, the task of interpretation is somewhat simpli�ed.
Various visualization techniques have been proposed that lend themselves to qualitative
interpretation by humans.
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Figure 2.9 � Gradient ascent visualization of the AlexNet �rst-layer �lters shown in Figure 2.8.

Feature visualization

First layer �lters exist in pixel space and can be visualized. For instance, the �rst layer of
AlexNet consists of 96 �lters of size 11 £ 11 and 3 color channels. Shown in Figure 2.8, these
�lters are reminiscent of the well-known result of Olshausen and Field [71], where sparse-
coding applied to natural images retrieved �lters suggestive of the receptive �eld of biological
neurons in the V1 region of the human visual cortex.

The features extracted by deeper layers do not have a pixel representation, and so cannot be
similarly visualized. However, it is possible to generate an input in pixel space, that once fed
to the CNN results in a high �lter response value for a �lter of interest [31]. Visualizing the
feature corresponding to the j th �lter in the i th layer amounts to �nding:

x⁄ ˘ argmax
x

k [⁄i – ¢ ¢ ¢ –⁄1(x)] j k (2.17)

This optimization can be accomplished with gradient ascent, starting from a random x and
iteratively updating it. For ReLU networks, since activation in not bounded from above, a
norm constraint is added on x . Many additional regularization tricks have been proposed to
improve feature visualization [63; 70].

To get a sense of this type of visualization, we use the method of Olah et al. [70] to generate
visualization for the �rst layer �lters shown in Figure 2.8 and qualitatively compare. The
corresponding gradient ascent visualizations are shown in Figure 2.9. As can be seen, these
visualizations are able to roughly capture the color-selectivity and frequency of the �lters, but
introduce a signi�cant amount of random variation.

When applied to a deep layer, feature visualization can reveal a degree of semantics. In Figure
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Figure 2.10 � Gradient ascent allows us to visualize features in deep layers. Here we visualized
a subset of �lters from the �fth and �nal convolutional layer of AlexNet. As opposed to the
rudimentary features of the �rst layer (Figure 2.9), these features show more variation and can
reveal a degree of semantics. For instance, the �lter visualized on the bottom row, second from
the right, seems to capture a feature related to dogs.

2.10 we apply feature visualization to the �fth and �nal convolutional layer of AlexNet. Some
of the resulting images are suggestive of various objects and landscapes1.

Note that the gradient ascent technique is not limited to visualizing single �lters, but rather
any weighted combination of their responses. In general, whether the axis aligned directions
in feature space (i.e., single �lters) are more meaningful that off-axis directions is an open
question. However, it is not clear a-priori which combination of �lters is meaningful. As we
will show in the sequel, such directions of interest can be found using NMF.

Saliency maps

A different class of methods, exploits the fact that convolutional layers preserve the 2D layout
of the image. To undo the down-sampling induced by the CNN architecture, feature maps of

1If it is not immediately clear, we recommend squinting.
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Figure 2.11 � CAM produces a saliency map with respect to a speci�c output class. The �nal
weight vector entering the output unit corresponding to the class of interest is used to average
CNN feature maps. Figure taken from [103].

a deep layer are up-sampled back to the original image resolution. When overlaid with the
input image, the up-sampled feature map acts as a heatmap, spatially highlighting the image
region which the corresponding �lter responds to.

This is the basis of �network dissection� [10]. Having acquired images with pixel-wise ground
truth annotation, indicating object class, object-part class (e.g., leg), texture and color, the
authors proceed to test each individual feature map for signi�cant overlap with any ground
truth concept.

This method suffers from two main limitations. First, the availability of ground truth is essential
to their analysis, and limits the concepts which can be detected. Second, it does not consider
�lter combinations, though these might correspond to concepts which otherwise would be
missed.

One example of an approach which creates a single heatmap by performing a weighted
combination of feature maps is class-activation maps (CAM) [103]. CAM requires a speci�c
CNN architecture, and therefore cannot be applied to AlexNet and VGG.

The CAM pipeline is shown in Figure 2.11. It requires a CNN classi�er that uses global average
pooling (GAP) to transition to the �nal fully-connected layer. That is, the feature maps of the
last convolutional layer are averaged spatially to yield a vector of �xed-dimension. CAM then
produces class-aware saliency maps, by averaging the feature maps (before pooling) using the
weights of the fully connected layer which correspond to the output class of interest.

CAM can be seen as a special case of using the gradient with respect to a speci�c output
unit to derive weights for combining features maps. This observation has led to the more
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general Grad-CAM method [83], which can be applied to any CNN architecture. Grad-CAM
is still, however, limited to producing maps with respect to the set of output classes used for
training the network. Layer-wise Relevance Propagation [56] produces heatmaps similarly to
Grad-CAM, but propagates a relevance score instead of the gradient.

The heatmaps we derive with NMF, however, are not associated with an output unit or output
class. Instead, NMF heat maps capture common activation patterns, which allows us to create
saliency maps which localize objects never seen before by the CNN, and for which there is no
designated output unit.

2.3 Matrix factorization

Matrix factorization techniques describe each data point in a matrix A 2 RN£M as a combina-
tion of K basis vectors:

A …UV (2.18)

where U 2 RN£K and V 2 RK £M . In this paper we consider factorizations minimizing the
Frobenius or ‘2 norm of the reconstruction error, i.e., kA ¡UV kF .

Factorization can give zero reconstruction error as long as K is greater or equal to the intrinsic
dimension of the data, i.e., the dimension of the data manifold encoded by the matrix A. When
K is smaller than the intrinsic dimension, lossy compression occurs.

In addition to limiting the number of basis vectors K , different factorization methods impose
additional constraints on what these vectors can be and how they can be combined. We
consider several factorization methods, introduced below.

2.3.1 Principal component analysis (PCA)

A classical method for dimensionality reduction is principal component analysis (PCA) [48].
Projecting the data from the low-dimension space back to the original space give an approxi-
mation that is constrained in its rank. As a matrix factorization method, then, PCA �nds an
approximation that is optimal (in the ‘2 sense):

PCA(A,K ) ˘argmin
�AK

kA ¡ �AK k2
F ,

subjectto �AK ˘ AV V >,

V >V ˘ IK ,

(2.19)
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(a) K ˘ 2 (b) K ˘ 1

Figure 2.12 � Principal component analysis in 2D. (a) Setting K ˘ 2 naturally returns an
orthonormal basis that spans R2, and so the 2D data is perfectly reconstructed. (b) Setting
K ˘ 1 projects the data onto a 1-dimensional subspace, leading to lossy compression.

where VK 2 RM£K is an orthonormal basis.

PCA has an incremental property, meaning the K basis vectors of a K -rank approximation are
also the �rst K basis vectors of a (K ¯ 1)-rank approximation. The smallest K that admits an
exact PCA approximation A ˘ �AK is the rank of A, rank(A).

An example of PCA in 2D is shown in Figure 2.12.

2.3.2 k-means

Though normally viewed through the lens of clustering, k-means can be seen as a factorization
method, optimizing the following objective:

k-means(A,K ) ˘argmin
�AK

kA ¡ �AK k2
F ,

subjectto �AK ˘UV >,

[U ]i 2 {e1, ¢ ¢ ¢ ,eK },

(2.20)

where U 2 RN£K , H 2 RK £M , and e j is the canonical vector of dimension j . As such, a row in A
in approximated by exactly one row of V .

As can be seen, although the constrains are different, the basic objective is the same as PCA
[27]. An example of k-means in 2D is shown in Figure 2.14.

From a probabilistic point of view, k-means is equivalent to performing maximum-likelihood
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Figure 2.13 � Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas k-means and principal components analysis (PCA) learn representations whose
components are only explicable by reference to the whole. The three factorization methods
were applied to a database of 2,429 greyscale facial images, each consisting of 19 £ 19 pixels,
forming a matrix A 2 R2,429£192

. Each method approximates A …UV . On the left, the K ˘ 49
rows of V form a set basis images. Positive values are shown in black and negative values in
red. A particular instance of a face is approximated by a weighted combination of basis images.
The row of U corresponding to that image holds the coef�cients for this combination, and is
shown to the right of V . The resulting approximation is shown on the right. Figure adapted
from Lee and Seung [59].
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(a) K ˘ 2 (b) K ˘ 1

Figure 2.14 � k-means in 2D. A datapoint is approximated by one of the K centroids that is
closest to it. Assuming no duplicate datapoints, perfect reconstruction requires setting K ˘ N .

estimation, with hard assignments, with respect to a mixture of Gaussians.

Consider the probability density function of a (single) multivariate Gaussian centered at Vk ,
with identity co-variance:

P(Ai jVk ) ˘ c exp
µ
¡

1
2

kAi ¡Vkk2
¶

(2.21)

where c ˘ 1p
(2…)M

. It is evident then that ¡ logP(Ai jVk ) / kAi ¡ Vkk2, which is the mean-

squared error objective (assuming cluster indicator U ˘ 1).

The connection to a Gaussian mixture usually proceeds by de�ning global mixture weights !k :

P(Ai jV ) ˘
KX

k
!kP(Ai jVk ) (2.22)

and then introducing hard assignments as an exponent:

P(Ai ,kjV ) ˘
KX

k
!kP(Ai jVk )Ui ,k (2.23)

We adopt a different view, where the mixture weights are de�ned per-sample.

P(Ai ) ˘
KX

k
Ui ,kP(Ai jVk ) (2.24)

where a hard cluster assignment collapses the sum over K to the single index where U ˘ 1. In
the next chapter we will extend this view to non-negative matrix factorization, where it will be
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used to derive a memorization bound.

A variant of k-means is spherical k-means [26], which only considers the angle between a
centroid and a data point. Therefore instead of minimizing the mean squared-error objective,
spherical k-means minimizes the cosine dissimilarity:

spherical k-means(A,K ) ˘argmin
�AK

X

i
1 ¡ cos(Ai , [ �AK ]i ), (2.25)

where cos(u, v ) ˘ u>v
kuk2kvk2

.

Probabilistically, spherical k-means can be seen as a mixture of von Mises�Fisher distributions
[6]:

P(Ai jVk ) ˘ c•,M exp(• ¢ cos(Ai ,Vk )) (2.26)

where c•,M is a constant determined by the ambient dimension M and the concentration
parameter •.

2.3.3 Non-negative matrix factorization (NMF)

Though many variants and constraints have been proposed, in its simplest form, non-negative
matrix factorization (NMF) [60] aims to �nd the optimal low-rank approximation:

NMF(A,K ) ˘argmin
�AK

kA ¡ �AK k2
F ,

subjectto �AK ˘UV ,

8i j ,Ui j ,Vi j ‚ 0,

(2.27)

where U 2 RN£K
¯ and V 2 RK £M

¯ are element-wise non-negative. The smallest K that admits an
exact NMF, i.e., A ˘ �AK , is called the non-negative rank of A, r ank¯(A).

Compared to low-rank approximation using PCA, which spans an Rk subspace, NMF predic-
tions are restricted to a simplicial cone in the positive orthant, whose rays are the rows of V .
This gives NMF a probabilistic interpretation as forming a probability simplex, interpolating
between the rays. In the next chapter, we adopt this view to cast NMF as a mixture model,
which forms the basis of our memorization bound.

Note that although NMF minimizes a mean squared-error objective, by virtue of having U
entries of any scale, it is more similar to spherical k-means than standard k-means.

Unlike PCA and k-means, NMF predictions are always non-negative. The matrix A to be
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(a) K ˘ 2 (b) K ˘ 1

Figure 2.15 � None-negative matrix factorization in 2D. (a) Unlike PCA, NMF basis vectors are
not orthogonal to each other. Furthermore, since interactions between them are only additive,
they do not span R2, but rather a cone whose edges are the basis vectors themselves.

approximated must therefore also be non-negative. For our study of NNs, since ReLUs project
their input data points onto the positive orthant, NMF can naturally be applied to network
feature activations.

The approximated features �AK are expressed only through additive interactions, which has
been observed to lead to part-based decomposition, as shown in Figure 2.13.

NMF has gained popularity due to its producing meaningful factorizations that lend them-
selves to qualitative interpretation across various domains such as document clustering [101],
audio source separation [40], and face recognition [41]. An example of NMF in 2D is shown in
Figure 2.15. There has been work extending NMF to multiple layers [20], implementing NMF
using neural networks [30] and using NMF approximations as input to a neural network [95].

In this thesis we show that, by virtue of the non-negativity of ReLU activations, NMF can
be applied to CNN activations. To the best of our knowledge, the application of NMF to the
activations of a neural network has not been previously proposed. The resulting factorization
has applications towards both detecting memorization and network interpretability, which we
demonstrate in subsequent chapters.

2.3.4 Random ablations

In Chapter 3 we compare our approach to that of Morcos et al. [66]. In their main experiment,
the authors establish a positive correlation between a NN’s generalization performance and
its robustness to random ablations (RA) of canonical directions. RA is implemented by setting
the activation value of several units or feature maps to zero, as in dropout [89].
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(a) (b)

Figure 2.16 � Random ablations in 2D. Random ablation simply set a subset of M ¡ K dimen-
sions to constant zero. This can be viewed as a crude form of dimensionality reduction. Shown
are the two possible projections when setting K ˘ 1.

We note that simply removing M ¡ K units from an M-dimensional datapoint results in its
projection onto a K -dimensional subspace. This can be seen as a crude form of compression,
i.e., by simply removing dimensions:

�AK ˘ AV (2.28)

where V ˘ diag(v ) is a diagonal matrix with v 2 {0,1}M being a mask binary mask containing
K ones and M ¡ K zeros. In accordance with the convention for dimensionality reduction, we
will talk about retaining K basis vectors, which is the same as ablating M ¡ K dimensions. An
example of RA in 2D is shown in Figure 2.16.

Note however that for PCA, k-means and NMF, retaining K dimensions with is not equivalent
to ablating the (M ¡ K )-rank approximations. In other words, RA does not consider matrix
statistics, and therefore handles each datapoint independently of the others.

2.4 Conclusion

In this chapter we reviewed the fundamentals of deep learning with convolutional neural
networks, and reviewed some of the practical challenges and their solutions.

We introduced the two main directions of investigation taken in this thesis, detecting memo-
rization and interpreting network activations.

Both tasks will be addressed by use of non-negative matrix factorization. In our review of
matrix factorization, we additionally reviewed several well-known methods, which we will use
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as additional quantitative and qualitative baselines for our NMF-based approaches.
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3 Memorization and the non-negative
rank

3.1 Introduction

A fundamental challenge in machine learning for classi�cation is that while the true objective
is de�ned by a data distribution (x , y) » P , the objective optimized in practice is de�ned by an
empirical distribution derived from a training set D ˘ {xi , yi j1 • i • N } » P .

While deep NNs have achieved state-of-the-art generalization performance on many bench-
marks, across various domains, they have also been shown to be over-parameterized to the
point of being able to memorize very large training sets of randomly labeled data [102].

Speci�cally, a dataset with random labels �D ˘ {x , �y jx 2 D} was created, where �y is a randomly
(re-)sampled label. Interestingly, setting the probability of replacing a label with a random
one to p, i.e., P( �y ˘ y) ˘ 1 ¡ p, leads to intermediate level of over�tting and generalization.
In other words, while the training error remains unaffected by label randomization (due to
memorization), intermediate values of p lead to intermediate levels of test error, as can be
seen in Figure 3.1.

Understanding what distinguishes networks that learn from networks that memorize is a mat-
ter of much importance, with applications towards better network design and optimization.

The empirical studies of Morcos et al. [66] and Arpit et al. [3] also study networks induced into
memorization in this way. Speci�cally, Morcos et al. [66] set random axis-aligned directions
in feature space to zero, This can be viewed as a crude form of dimensionality reduction, i.e.,
by simply removing canonical dimensions, as in dropout [89]. The authors �nd the network
that learn and do not memorize are more robustness to this type of perturbation. In our

Some of the work presented in this chapter �rst appeared in [23].

33



Chapter 3. Memorization and the non-negative rank
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Figure 3.1 � Label randomization can be used to control the level of memorization and mem-
orization in a CNN. Gradually increasing the probability of label randomization p results in
a gradual increase in test error. Shown here are results for CIFAR-10, where in all cases the
training error (not shown) is completely minimized. Figure taken from Zhang et al. [102].

experiments we refer to this method as random ablations (RA).

In this thesis we identify the key difference between networks that learn and those that mem-
orize as robustness to compression. We begin our study of factors involved in memorization
by recalling the information bottleneck principle (IB) [86]. IB proposes that compression in
hidden layers plays a key role in good generalization.

Let X and Y be random variables that represent the network input and output, respectively,
and let Z represent a hidden layer. The IB-functional de�nes an optimality criterion for hidden
activations:

I(Y , Z ) ¡flI(X , Z ) (3.1)

where I(¢, ¢) is the mutual information and fl controls the level of compression.

To make the problem of memorization explicit, we modify the IB-functional compression
term:

I(Y , Z ) ¡flI(i, Z ) (3.2)

where the random variable i indexes the training set D, taking on values in [1, ¢ ¢ ¢ , N ] with
equal probability. For networks with the same value of I(Y , Z ), lower I(i, Z ) directly indicates
less memorization and implies better generalization. A similar expression was used in Alemi
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et al. [1], albeit for unsupervised learning.

We study the term I(i, Z ) by considering a related concept, the common information [98; 100],
which upper bounds the mutual information between a pair of variables via an auxiliary
variable that explicitly captures interactions between the pair. This allows us to both quantify
memorization, as well as analyze a network’s hidden representations through analysis of the
auxiliary variable, which is the basis for the subsequent chapter in this thesis.

Inspired by [14], we prove that an exact non-negative factorization of a ReLU activation
matrix contains the common information between i and Z , yielding an upper bound on
memorization in terms of the non-negative rank (Section 3.2). We further show a the non-
negative rank to be a natural measure of complexity for a ReLU activation matrix capturing its
departure from linearity (Section 3.3).

Although computing the non-negative rank is NP-hard [93], we can restrict it with approximate
non-negative matrix factorization (NMF). Consequently, we propose to estimate the impact of
NMF on NN performance over a grid of approximation ranks K , as described in Section 3.4.

This procedure can be seen as measuring the robustness of a NN to increasing compression
applied to its activations. Throughout our experiments in Section 3.5, we therefore compare
our NMF approach to three additional dimensionality reduction techniques, namely principal
component analysis (PCA), k-means, and RA.

Our experimental setup is similar to that of Morcos et al. [66] in that both NMF and RA are a
form of compression to hidden activations. Our results show that robustness to NMF compres-
sion is much more correlated with low memorization/high generalization than robustness to
RA.

Using our approach, we make several interesting observations, which we verify over a variety
of network architectures trained on several image and audio datasets. In Section 3.5.2, we
show that the structure of convolutional networks results in memorization being localized to
deeper layers.

Furthermore, we show our method can effectively detect memorization during training (Sec-
tion 3.5.3), as well as with respect to individual output classes (Section 3.5.4).

3.2 Memorization bound through Common information

The common information [98; 100] between random variables A and B is:

C(A,B) ¢˘ inf
F :A?B jF

I ((A,B) ,F ) (3.3)
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where (A,B) represents the joint distribution of A and B . A variable F that satis�es I(AB jF ) ˘ 0
is said to contain the common information between A and B , and by de�nition I((A,B),F ) ‚
C(A,B).

Since I(A,B) • C(A,B), to obtain an upper bound over the mutual information it is suf�cient
to �nd an appropriate variable F . This is the strategy taken by Braun and Pokutta [14], who
prove the following proposition:

Proposition 1 (Braun and Pokutta [14]). Let A and B be discrete random variables over a �nite
set, and let their joint distribution be represented as a non-negative matrix A 2 RjAj£jB j

¯ where
P(A ˘ i ,B ˘ j ) ˘ Ai j . Let A ˘UV be an exact NMF of rank K . Then:

I(A,B) • logK (3.4)

Proof. NMF can be seen as a sum of K rank-1 matrices:

A ˘
KX

k
U¢kV k¢ (3.5)

(3.6)

De�ne a discrete random variable F taking on values in {1, ¢ ¢ ¢ ,K }, such that:

P(F ˘ kjA ˘ i ,B ˘ j ) ˘
Ui ,kVk, j

A[i , j ]
(3.7)

It then follows that:

P(F ˘ k) ˘
X

i , j
Ui ,kVk, j (3.8)

P(A ˘ i ,B ˘ j jF ˘ k) ˘
Ui ,kVk, j

P
i 0, j 0 Ui 0,kVk, j 0

(3.9)

and we can already see that the probability consists of a product of terms that depend either
on i or on j , which veri�es the conditional independence of A and B given F . Finally, by using
the de�nition of common information and the properties of mutual information:

I(A,B) • C(A,B) • I((A,B),F ) • H(F ) • logK (3.10)

where H is Shannon entropy.

It is interesting to seek a similar interpretation of NN activation matrices. While the index
variable i is discrete and can be assumed to distribute uniformly across the rows, the variable
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Z is not discrete. Instead, Z is a continuous vector variable, and as a result, unlike Proposition
(1), the individual entries of a ReLU activation matrix A (even after normalization) cannot be
interpreted as probabilities.

Fortunately, we can derive similar bounds also in this case, based on a probabilistic interpreta-
tion of clustering.

Proposition 2. Let the A 2 RN£M
¯ represent the joint distribution of a discrete index variable i,

uniformly distributed across the N rows, and a continuous vector variable Z , such that:

P(i ˘ i , Z ˘ z) ˘ P(i)P(Z ji)

˘
1
N

’(z jAi ) (3.11)

where ’ is a probability density function de�ned below.

Let A ˘UV be an exact matrix factorization of rank K , where U is non-negative (but V may not
be). Then:

I(i, Z ) • logK (3.12)

Proof. Following the discussion in Section 2.3, the matrix factorization de�nes per-row i
mixture of probability distributions centered as the rows of V , with coef�cients Ui ¢P

k Ui k
as

mixing weights.

We thus de�ne ’(z ja) to be the probability of z under the mixture de�ned by a.

For a 62 A, let U (a) be the operator to extract optimal coef�cients with respect to V , con-
sidering V as a frozen basis. The operator is a simple convex program that can be solved
deterministically. It is of course the case that U (Ai ) ˘Ui ¢.

We therefore have:

’(z ja) ˘
KX

k

U (a)kP
k 0 U (a)k 0

`(z jVk¢) (3.13)

where ` is any density function over RM , e.g., a von Mises�Fisher distribution with �xed •.

The �rst term in the above sum indicates P(F ˘ kji ˘ i ). The second term in the sum indicates
P(Z ˘ z jF ˘ k).
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Chapter 3. Memorization and the non-negative rank

It then follows that:

P(i ˘ i , Z ˘ z) ˘
1
N

’(z jAi ) (3.14)

˘ P(i ˘ i )
KX

k
P(F ˘ kji ˘ i )P(Z ˘ zjF ˘ k) (3.15)

and we get that Z is conditionally independent of i given F .

This proof builds on a clustering interpretation of matrix factorization which is obvious
for k-means, but perhaps less intuitive for NMF. It does not apply to PCA, since the matrix
U typically contains negative values, and the mixing weights in Eq. (3.13) depend on the
non-negativity of factorization coef�cients.

The mixing weights re�ect properties of the factorization. For k-means, for instance, cluster
assignments are hard, i.e. the probability mass is concentrated on a single value k⁄ where
U (a)i k⁄ ˘ 1. The density in this case collapses to ’(z jAi ) ˘ `(z jVk⁄¢).

With NMF, the factorization de�nes a simplex, on which each point de�nes a categorical
probability distribution over the K corners of the simplex, i.e., the rows of V . Conditioning
on a vector in this case, ’(¢ja), results in a soft mixture. This view explicitly casts NMF as a
relaxation of spherical k-means clustering. In other words, while NMF does indeed ‘span’ a
cone in RM , perfectly reconstructing all points in the cone, the probability density de�ned
above considers the rays of the NMF cone as modes and penalizes mode averaging. That is, for
a point a inside the simplex, the mode of ’(¢ja) is not at a, but rather at the ray closest to it.

The smallest K that satis�es the bound is the non-negative rank of A, yielding:

Corollary 2.1. With i, Z and A de�ned as in Proposition (2):

I(i, Z ) • logrank¯(A) (3.16)

In the next section we show an additional view of rank¯(A) as a measure of non-linearity with
respect to ReLU activation matrices.

3.3 Non-linearity and rectangle cover number

Consider a ReLU layer parameterized by a weight matrix W 2 RM£P . For a batch of N inputs
X 2 RN£M , we compute the layer activation matrix A as A ˘ max(X W ,0) 2 RN£P

¯ . We omit the
bias term for notational convenience.

Since ReLU is piece-wise linear, the processing of a single input x by a ReLU network is
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3.3. Non-linearity and rectangle cover number
Sa

m
pl

es

Channels
(a) Linear (b) Approximately linear (c) Highly non-linear
r c(M) ˘ 1 r c(M) ˘ 3 r c(M) ˘ 8

Figure 3.2 � The support of a ReLU activation matrix is determined by the threshold at zero. (a)
When all the rows of the support are identical, there is a sub-weight-matrix such that the layer
is fully linear with respect to the input batch. (b, c) As the support becomes more complex,
which we characterize by the increase in its rectangle cover number, the layer becomes more
non-linear.

equivalent to sampling a linear sub-network with respect to the sample [97]. The linear
function is obtained by setting to zero the columns of each W whose dot product with the
input is negative (and would thus be set to zero by ReLU), after which the ReLU can be
removed.1

Extending this notion to a batch of several input samples, suppose that at some layer the
samples are suf�ciently close such that they all share the same ReLU mask m 2 {0,1}P . In this
case, we may say that the layer is linear with respect to its input batch. This is because, for the
entire batch, instead of using ReLU, we could zero out a subset of columns and obtain a linear
system, i.e., A ˘ X W diag(m).

To characterize how far an activation matrix diverges from the linear case, consider the support
M ˘ supp(A), such that Mi , j ˘ 1 where Ai , j ¨ 0 and is 0 elsewhere. Because A is a ReLU
activation matrix, the support is mainly determined by the thresholding at zero.2 If all the rows
of M are identical to a unique vector m, we can say the layer is completely linear with respect
to X . In general, the ‘simpler’ the support M , the closer to linearity the layer.

One measure that captures this idea is the rectangle cover number of a matrix, r c(M), an
important quantity in the study of communication complexity [53]. Also known as the Boolean
rank, r c(M) is the smallest number r for which there exist binary matrices UB 2 {0,1}n£r ,
VB 2 {0,1}r £q such that their Boolean matrix multiplication satis�es M ˘UBVB . As a complexity
measure for ReLU activations, r c(M) ˘ 1 means the layer is linear with respect to its input, and

1This is a similar intuition to that of viewing dropout as an approximation to a model ensemble, where the
dropout mask is seen to sample a sub-network [89].

2The probability of an activation value being exactly zero prior to thresholding is negligible.
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Chapter 3. Memorization and the non-negative rank

higher values r c(M) imply increasing non-linearity. This is visualized in Figure 3.2.

Intuitively, imagine having to �t a layer with ‘ReLU switches’, each of which controls a subset
of weight matrix columns. In the linear case, one switch would suf�ce to describe the data.
In the most non-linear case, we would require a switch for every column, which is also the
maximal value of r c(M). Since adding a new row to the support M such that the row is a union
of existing rows of M does not increase the rectangle cover number, there is no increase in the
number of switches.

The non-negative rank is also hard-constrained by the combinatorial arrangement of supp(A),
but additionally accounts for the precise value in the non-zero entries of A, thus yielding [33]:

r c(supp(A)) • rank¯(A) (3.17)

3.4 Estimating the non-negative rank

For convolutional networks, we reshape the activation tensor from N £C £ H £W to (N ¢ H ¢
W ) £C , i.e., we �atten the batch (N ) and spatial (H ,W ) dimensions to form an activation
matrix with C columns, where C is the number of channels in that layer. We then inversely
reshape the factorized features to continue forward propagation. Compression is thus applied
treating each single C -dimensional vector as a separate data point, rather than each whole
feature map. In the convolutional case, the index variable i therefore indexes patches, rather
than whole images.

Although computing rank¯(A) is NP-hard, we restrict it by performing approximate NMF. The
factorization error depends on the magnitude of the activations, which makes comparison
across networks and layers dif�cult. We therefore evaluate the impact of compression by
forward-propagating the compressed activations and measuring the change in �nal network
performance (i.e., classi�cation accuracy) as we change K .

Concretely, if we let A j be the activation matrix at layer j , during the forward pass we replace
the feature activations of one or several layers with their rank K approximations:

�A j ˘UV (3.18)

A j ¯1 ˘ ⁄ j ¯1
¡ �A j

¢

The resulting curves allow us to estimate a value for rank¯(A). We estimate the usefulness of
our approach by applying it to networks with varying levels of memorization and generaliza-
tion error.
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3.5. Experiments

3.4.1 Single-class batches

The activation matrix A represents a batch of samples from a larger training set. The distribu-
tion of Y over the batch de�nes a lower bound on the memorization term I(i, Z ):

Proposition 3. With i, Z , and Y de�ned as above, I(i, Z ) ‚ I(Z ,Y )

Proof. The chain rule of mutual information decomposes:

I(Z , (i ,Y )) ˘I(i, Z ) ¯I(Z ,Y ji) (3.19)

˘I(Z ,Y ) ¯I(i, Z jY )

Dependence of i is described by the Markov chain

i ! Y (3.20)

i ! X ! Z

and we get that I(Z ,Y ji) ˘ 0. Since I(i, Z jY ) ‚ 0 we get the result.

We thus sample a batch where all input samples map to same output, such that I(Z ,Y ) ˘ 0
and I(i, Z ) is lower bounded only by zero. We refer to such batches as single-class batches, as
opposed to multi-class batches which are sampled i.i.d. The effect of different sampling is
discussed in Section 3.5.2.

3.5 Experiments

In this section we present results that empirically con�rm the connection of the non-negative
rank to memorization and generalization. Our experiments include various datasets and
network architectures, and check for correlation between the non-negative rank of deep
activation matrices and memorization/generalization post-training, during training, as well
as per-class.

3.5.1 Datasets and networks

Datasets

We perform experimental evaluations on several image datasets (see examples in Figure 3.2),
as well as an audio classi�cation dataset.
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(a) CIFAR-10 examples

(b) Fashion-MNIST examples
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3.5. Experiments

(c) SVHN examples

(d) ImageNet examples

Figure 3.2 � Examples from the four image datasets we used in our study of NN memorization.
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Chapter 3. Memorization and the non-negative rank

CIFAR-10 CIFAR-10 [54] consists of 60K 32 £ 32 RGB images classi�ed into ten categories:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The dataset has a standard
split into 50K training images and 10K test images.

Fashion-MNIST Fashion-MNIST [99] consists of 70K 28 £ 28 greyscale images, classi�ed into
ten categories: T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot.
The dataset has a standard split into 60K training images and 10K test images.

SVHN SVHN [67] (Street View House Numbers) consists of approximately 560K 32 £ 32 RGB
images classi�ed into ten categories, one for each digit 0-9. The images are cropped from
Google Street View images containing house numbers.

The dataset has a standard split into approximately 73K training images, 25K test images, and
an additional 531K ’easy’ samples as extra training images. In this thesis, we only make use of
the �rst training set.

ImageNet ImageNet [80] is a dataset of about 1.2M RGB images classi�ed into 1K categories,
including types of animals, �owers, furniture, tools, etc. While these images are originally of
varying sizes, we use them here in conjunction with a pre-trained VGG network [87], for which
the input was scaled to 224 £ 224.

Urban Sounds Urban Sounds [82] consists of almost 9K audio clips, each of up to 4 seconds
long, classi�ed into ten categories: air conditioner, car horn, children playing, dog bark,
drilling, engine idling, gun shot, jackhammer, siren, street music. The dataset has a standard
split into 10 folds, of which we use the �rst 8 for training and the �nal 2 as test.

Neural Network Architectures

The exact architectures we used for each dataset are given in Table 3.1. We denote a linear or
convolutional layer followed by a ReLU as Linear¯ and Conv¯, respectively.

In addition to these networks, we tested VGG-19 on ImageNet data.

3.5.2 Feature compression and memorization

We study networks that have been forced into different levels of memorization due to label
randomization applied to their training set [102], as described in Section 3.1. The level of
induced memorization is controlled by setting a probability p for a training label to be ran-
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CIFAR-10
Type Dim Kernel Padding Stride
Conv¯ 64 3 1 1
Conv¯ 64 3 1 1
Conv¯ 128 3 1 2
Conv¯ 128 3 1 1
Conv¯ 128 3 1 1
Conv¯ 256 3 1 2
Conv¯ 256 3 1 1
Conv¯ 256 3 1 1
Conv¯ 512 3 1 2
Conv¯ 512 3 1 1
Conv¯ 512 3 1 1
Linear 10 - - -

Urban Sounds
Type Dim Kernel Padding Stride
Conv¯ 64 3 1 1
MaxPool - 2 - 1
Conv¯ 128 3 1 1
Conv¯ 128 3 1 1
MaxPool - 2 - 1
Conv¯ 256 3 1 1
Conv¯ 256 3 1 1
MaxPool - 2 - 1
Conv¯ 512 3 1 1
Conv¯ 512 3 1 1
MaxPool - 2 - 1
Linear¯ 4096 - - -
Linear¯ 4096 - - -
Linear 10 - - -

SVHN
Type Dim Kernel Padding Stride
Conv¯ 64 3 1 1
Conv¯ 64 3 1 1
Conv¯ 128 3 1 2
Conv¯ 128 3 1 1
Conv¯ 256 3 1 2
Conv¯ 256 3 1 1
Conv¯ 512 3 1 2
Conv¯ 512 3 1 1
Linear 10 - - -

Fashion-MNIST
Type Dim Kernel Padding Stride
Linear¯ 128 - - -
Linear¯ 512 - - -
Linear¯ 2048 - - -
Linear¯ 2048 - - -
Linear 10 - - -

Table 3.1 � Neural network architecture used for each dataset in this chapter.

domized, i.e., p ˘ 0 is the unmodi�ed dataset and p ˘ 1 has fully random labels. The capacity
of these networks is suf�ciently large that they achieve a training accuracy of 1 in all cases,
for all values of p.

As such, we use batches of training data and observe the accuracy drop, from 1 to constant
guess, as the level of compression is increased. In all experiments, sampling single-class
batches is done with respect to the label used for training (i.e., the random label if p ¨ 0). Since
all datasets we consider here have 10 classes, we stochastically sample 10 batches, one per
class in the single-class case, and standard i.i.d in the multi-class case. We have found all
methods discussed below to be robust to the batch size (e.g., 20-100) and the exact samples
chosen. In all our experiments we set the batch size to 50.

45



Chapter 3. Memorization and the non-negative rank

Fully-connected NN on Fashion-MNIST
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(a) fc1, single-class NMF (b) fc2, single-class NMF (c) All layers

CNN on CIFAR-10
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(d) conv3_1, single-class

NMF
(e) conv4_1, single-class

NMF
(f) All layers

Figure 3.3 � Layer-by-layer NMF compression in (a,b,c) fully-connected vs. (d,e,f) CNNs.
Increasing p indicates a higher level of memorization. We compress the activations of a
layer using NMF with increasing K and observe the impact on classi�cation performance. In
(a,b,d,e) we see that layers at different depth respond differently. (c,f )To get a global view of
the effect of compression, we describe every layer by the area under the curve (AuC) of its K
vs. classi�cation accuracy curve. Unlike fully-connected networks, memorization in CNNs is
localized to deeper layers. Interestingly, the case p ˘ 1 shifts the process to earlier layers.

Layer by Layer Analysis

We begin by studying each NN layer individually using NMF. We trained a total of 60 neural
networks, ten networks (with different random initializations) trained per randomization level
p.

In Figure 3.3 (a,b,d,e) we show examples of NMF compression applied to individual layers
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of these networks, where we measured the impact on classi�cation accuracy as we vary the
factorization rank K . As can be seen, networks trained with different levels of label randomiza-
tion respond differently to compression, depending on the layer and overall architecture. At
some layers, memories with no induced memorization are signi�cantly more robust to NMF
compression than those forced into memorization.

The pro�le of such a K -vs.-accuracy curve can be characterized by its area under the curve
(AuC), such that a higher non-negative rank memorization corresponds with lower AuC, and
vice versa. To compare between layer, we normalize the AuC by dividing it by the layer width,
such that the AuC is at most 1. Considering the AuC allows us to characterize each network
layer with a single scalar, giving a bird’s eye view of the network, shown in Figure 3.3 (c,d).

In the fully-connected networks shown in Figure 3.3c, we �nd that deeper layers are more
robust to compression than earlier layers, as expected if we assume deeper activations become
more abstract and invariant to nuisance variables. In the convolutional networks, however,
shown in Figure 3.3f, we �nd that memorization is localized to deeper layers, where there is a
big difference between memorization levels.

Early layers and the last layer show similar statistics across all memorization levels. We
hypothesize that this is due to the network shifting from �place-coding� to �channel-coding�
(similar observations are made in [81]), as features extracted at lower layer are integrated to
produce more global representations. Interestingly, setting p ˘ 1 shifts the process to earlier
layers, explaining why layer-by-layer these networks appear as outliers.

CIFAR-10
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Layer Layer
(a) Raw NMF error (b) Normalized NMF error

Figure 3.4 � Layer-by-layer view of (a) raw and (b) normalized NMF reconstruction errors. This
is the error that the NMF objective is trying to minimize. The reconstruction error itself is
sensitive to the arbitrary magnitude of network weight, which makes it dif�cult to interpret
across layer and networks.
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In addition to classi�cation accuracy, the NMF reconstruction error itself is also a quantity
of interest. The main dif�culty involved with interpreting the NMF error is scale. The error
depends on the magnitude of the activations, which varies across networks, layers, and even
channels.

In Figure 3.4 (a) and (b) we show the raw and normalized NMF reconstruction error, i.e.
kA ¡ �Ak2 and kA¡ �Ak2

kAk2
respectively. Measurements are taken over the same networks discussed

in Figure 3.3 (d,e,f). Observing the normalized values reveals that, proportionally, activation
matrices become harder to approximate with depth, with an interesting interaction between
the memorization level and depth. The error in absolute terms echo the accuracy curve, with
p ˘ 1 again presenting outlier behavior.

Factorization methods

We compare k-means, PCA, NMF and RA. Rather than compress a single layer, we sequentially
apply compression to several layers one after another during the forward pass. In particular,
we apply compression to each layer in the �nal convolutional block of our CNN, consisting
of three layers, each of which consists of 512 channels (see Table 3.1). In fully-connected
networks, we applied compression to all layers.

In Figure 3.5 we report results for the CIFAR-10 dataset. Given its limited expressiveness,
k-means requires a very large K to approach good classi�cation accuracy, and the result is
not useful for distinguishing levels of memorization. NMF produces the best results, clearly
distinguishing different levels of I(i, Z ). In contrast, PCA, which is less constrained, regains
good accuracy already with small values of K , but is less discriminative with respect to the
level of memorization.

Finally, we con�rm that robustness to RA correlates with less memorization, however less
so than NMF. It should be noted, however, that NMF does show more variance than other
methods, and incurs some additional overhead, as discussed below.

We show additional results in Figure 3.6 for on three additional datasets and network architec-
tures, including a fully-connected network for Fashion-MNIST. These results further establish
NMF as a good method for distinguishing levels of memorization.
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Figure 3.5 � We compress NN activation using various matrix factorization methods. Factoriza-
tion was applied to the �nal three (convolutional) layers of CNNs trained on CIFAR-10 with
different levels of label randomization (p). (a) k-means requires on the order of N (number
of samples) centroids to approach a good approximation, and does not seem to be a feasible
method for detecting memorization. (b) NMF approximates the activations well enough to
retain good accuracy, while clearly distinguishing between different levels of I(i, Z ) across
the networks. (c) Due to its expressiveness, PCA is able to well approximate the activations
even with small values of K , but is therefore less distinctive between levels of I(i, Z ). (c)
Though not taking into account batch statistics, RA does distinguish between different levels
of memorization, albeit less signi�cantly.
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Figure 3.6 � We show that NMF-based compression is sensitive to memorization in diverse
settings. Each row shows results for a speci�c dataset and network architecture. PCA and RA
consistently show less sensitivity to memorization compared with NMF.
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Following the discussion in Section 3.4.1, in Figure 3.7 we evaluated the effect of compression
with multi-class batches, i.e., sampled i.i.d. Compared to single-class batches (Figures 3.5
and 3.6), the different levels of memorization are indeed less distinct. Another view of this
behavior is that batching samples from various classes together assures the batch distribution
is multi-modal. This naturally requires a higher factorization rank in order to obtain a good
approximation.

Ablating NMF and PCA directions

We study the impact of ablating the activation in the directions found by NMF and PCA by
forward propagating the residual, i.e.,

A j ¯1 ˘ ⁄ j ¯1
¡
A j ¡ �A j

¢
(3.21)

This is interesting because in the case of PCA, for instance, the top K directions are those that
capture most of the variance in the activation matrix, and presumably the K directions found
by NMF are of similar importance. This is not true for RA, where the ablated directions are of
no special importance.

In Figure 3.8 we see that networks with no induced memorization that are most vulnerable to
ablation of NMF and PCA direction. In other words, while non-memorizing networks are more
robust to random ablations, they are less robust to ablations of speci�c important directions.
This is in contrast to the interpretation of Morcos et al. [66] that non-memorizing networks
are more robust to ablations of single directions.

3.5.3 Feature compression and generalization

So far we have dealt with networks that were induced into memorization by randomizing their
training labels. We now show that NMF is useful for predicting good generalization in a more
realistic setting.

For this experiment, we trained 96 CNNs on CIFAR-10, over a grid of hyper-parameter values
for the batch size, weight decay and optimization algorithm, SGD vs. ADAM [52]. Following
the procedure of Section 3.5.2, we computed the AuC of the K -vs.-accuracy curve of each
network’s �nal convolutional block.

In Figure 3.9 we compare the AuC of NMF, PCA, and RA against the generalization error on
the test set. While all three methods show correlation with generalization error, NMF is most
correlated with a Pearson correlation of -0.82, followed by PCA with -0.64 and RA with -0.61.
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Figure 3.7 � Compared with Figures (3.5 and (3.6), using multi-class batches results in de-
creased sensitivity to memorization, as discussed in Section 3.4.1.
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Figure 3.8 � NMF and PCA directions are more important in networks which do not memorize.
Compared to Figures 3.5 and 3.6, where non-memorizing networks are more robust to random
ablation (RA), in all cases we see they are less robust to ablation of NMF and PCA directions
compared to memorizing networks. 53
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Figure 3.9 � Area under the curve (AuC) of K -vs.-accuracy curves derived with NMF, PCA and
RA. While all three methods show correlation with generalization error, NMF is most correlated
with a Pearson correlation of -0.82, followed by PCA with -0.64 and RA with -0.61.

NMF thus gives us a tool to evaluate a network’s test error, although it is based on training
data. We test the usefulness of NMF as a proxy to the test error in the next section, by using
NMF to determine when to perform early stopping.

Early Stopping

One feature of over�tting is that it does not happen all at once. In early training iterations, the
test (or validation) error decreases along with training error. It is only later that the network
starts to depend on noisy variations in the input to decrease the training error at the expense
of the test error. Early stopping refers to training only up to the point when over�tting starts,
and not past it.

While this is typically achieved using a validation set, in this experiment we test whether NMF
can serve as an early stopping indicator while seeing only training data.

Once more, we trained CNNs on CIFAR-10 with the original labels, i.e., p ˘ 0. Each network
was trained for 10K batches with a batch size of 100. We recorded the test set error every 250
batches, and applied factorization to the deepest three convolutional layers using single-class
NMF with a coarse grid on K . As before, we compute the area under each K vs. accuracy curve.
Finally, we also computed the area under the curve produced by RA.

Results of two instances are shown in Figure 3.10 (a) and (b). We smooth the plots using a
radius of two epochs to reduce noisy �uctuations. The matching-color dashed lines mark the
local minima of the test loss in as well as the location of the �rst local maxima of the NMF and
RA AuC curves after smoothing has been applied. We notice that the test loss minima align
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Figure 3.10 � Early stopping for CNN training on CIFAR-10. (a, b) The test loss is (in blue) starts
to increase after about the 5th epochs, indicating the start of over�tting. Using single-class
NMF, we can detect the test loss turning point. We show the area under the curve (AuC)
computed with single-class NMF (in green), as discussed in section 3.5.2. Similarly, we show
the AuC for RA (in orange). (c) The NMF AuC curve and test loss curve consistently have near
extrema, as seen over several runs.
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almost precisely with the maximum NMF AuC. We show more examples of this behavior in
Figure 3.10 (c), where we compare the stopping times of NMF and RA against the best test loss
over 10 different runs.

3.5.4 Experiments on VGG-19 and ImageNet

We perform a case study of VGG-19 [87], trained on ImageNet [80], since it is known for its
good generalization ability and usefulness as a general feature extractor.

We apply NMF compression to the three deepest convolutional layers, for both single-class
batches and multi-class batches. We selected 50 random classes from ImageNet and gathered
batches of 50 training samples from each class.

In Figure 3.11 (a), accuracy of single-class batches under NMF (blue curve) exhibits a denoising
effect which improves over the baseline top-1 accuracy (dashed line). As the constraint on K is
relaxed, that accuracy drops back to the baseline level. This is in contrast to multi-class batches
(green curve), where we regain baseline accuracy only when K is large. In Figure 3.11 (b) we
see extreme sensitivity to single-class NMF ablations. Ablating multi-class NMF directions,
however, has an impact similar to (d) ablating random axis-aligned directions.

In Figure 3.11 (c) we show a signi�cant per-class correlation (Pearson r ˘ 0.78 ) between NMF
AuC and test accuracy as measured on batches from the ImageNet test set.

In the next chapter we will revisit VGG-19, and delve into the interesting properties of the NMF
factorization A …UV itself.

3.6 Conclusion

In this chapter we showed the relationship between compression through matrix factorization
and memorization both in theory and in practice.

By extending a probabilistic view of k-means to NMF, we derived a bound over a the mutual
information between speci�c input samples and their hidden activations. We proposed
another view of NMF as a measure of the non-linearity of ReLU activation matrices.

Extensive empirical experiments con�rmed that, indeed, NMF compression is effective at
distinguishing between NNs of different levels of memorization and generalization. Our
experiments suggest that this holds additionally during training and even per-class.

We conclude this chapter with a brief discussion of the computational overhead associated
with NMF. Applying NMF compression to large matrices naturally incurs certain overhead. Our
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Figure 3.11 � (a) Single-class batches are highly compressible in deep VGG layers, as indicated
by high accuracy for small values of K . Compression has a denoising effect, improving upon
the baseline accuracy of the batch (dashed line), dropping back as K grows and capture more
variation in the input. (b) Ablating single-class NMF directions causes a dramatic drop in
accuracy. Ablating multi-class NMF directions, however, has an impact similar to (d) ablating
random axis-aligned directions. (c) Per-class test set accuracy is signi�cantly correlated with
the area under the NMF K -vs.-accuracy curve (NMF AuC).
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Figure 3.12 � NMF runtime on a typical ImageNet batch. Thanks to GPU acceleration, NMF
with multiplicative updates can be run to convergence in reasonable time.

implementation of the NMF multiplicative update algorithm [60], however, runs in reasonable
time thanks to GPU acceleration.

A typical batch used for VGG-19, i.e., 100 samples of 224£224 color images, is transformed to
100 £ 14 £ 14 by layer conv5_4. The tensor �attens into a matrix of size 19600 £ 512. In Figure
3.12 we show the timing curve for this batch as we increase K , using an NVIDIA Titan X. As
can be seen, at K ˘ 500 processing of the batch to convergence requires 197 milliseconds on
average.

For a batch of 32x32 CIFAR-10 images, where the deep feature maps are, say, 8 £ 8, the batch
processing time drop to approximately 135 milliseconds for K ˘ 500. Sweeping over all values
of K with an interval of 20 therefore takes about 2 seconds.
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4 Semantic localization with matrix U

4.1 Introduction

In the previous chapter we established a relationship between non-negative matrix factoriza-
tion applied to ReLU activations and memorization. More speci�cally, we showed that varying
the factorization rank K affects classi�cation performance in a way that is indicative of the
level of memorization when compared across networks.

Recall that each application of NMF decomposes the activations as A …UV . In this and the
next chapter, we delve into the individual components U and V , and show they decompose
the semantics learned by the CNN in a useful and revealing way.

In this chapter we focus on the matrix U , which can be roughly interpreted as answering en-
coding �where�. In other words, the matrix U holds soft clustering assignments for every patch
given its representation in CNN feature space. The result is an unsupervised decomposition
into semantic parts.

As neural networks become ubiquitous, there is an increasing need to understand and inter-
pret their learned representations [65; 76]. In Section 4.2 the matrix U is shown to provide
an interpretable window into how a CNN encodes objects in its hidden layer, by means of
heatmaps showing which objects are considered similar and which are not.

Previous methods have been developed to explain CNN activations in terms of heatmaps [103;
83] (see Section 2.2.4). In these methods, heatmaps are derived by weighting the importance
of each feature maps with respect to a particular output unit. These methods can therefore be

Some of the work presented in this chapter �rst appeared in [22].
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seen as supervised, since the resulting heatmaps are associated with a designated output unit,
which corresponds to an object class from a prede�ned set.

With NMF, however, heatmaps are not associated with an output unit or object class. Instead,
they capture salient and common activation patterns in the input, as indicated by clusters in
a deep CNN layer. This enables us to localize objects never seen before by the CNN, and for
which there is no relevant output unit.

We evaluate NMF-based heatmaps on several tasks with subtle but important differences in
naming:

� Segmentation vs. Localization is the difference between predicting pixel-wise binary
masks and predicting bounding boxes, respectively.

� Segmentation vs. co-segmentation is the distinction between segmenting a single
image into regions and jointly segmenting multiple images, thereby producing a cor-
respondence between regions in different images (e.g., cats in all images belong to the
same segment).

� Object co-segmentation vs. Part co-segmentation. Given a set of images representing
a common object, the former performs binary background-foreground separation where
the foreground segment encompasses the entirety of the common object (e.g., cat). The
latter, however, produces K segments, each corresponding to a part of the common
object (e.g., cat head, cat legs, etc.).

In Section 4.3 we use NMF to perform co-segmentation of objects not in the original training
set, such as pyramid (Figure 1.2), or object-parts such as the head or torso of an animal (Figure
4.6), which emerge in spite of training the CNN only with image level labels.

We �nd that parts form a hierarchy in feature space, e.g., the activations cluster for the concept
body, which contains a sub-cluster for limbs, which in turn breaks down to arms and legs (see
Figure 4.7).

In Section 4.4 we further evaluate NMF heatmaps by performing co-localization on a challeng-
ing real-world dataset, with signi�cant clutter and object variation.

We validate our approach using several datasets and pre-trained CNNs, showing good perfor-
mance across a variety of settings. In fact, in spite of using a pre-trained CNN with no �ne
tuning, co-localization with NMF achieves results comparable with the state-of-the-art.
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4.2. NMF Heatmaps

Figure 4.1 � An illustration of the NMF heatmap extraction pipeline. We obtain features from
a deep CNN and view them as a matrix. We apply NMF to the feature matrix and reshape
the resulting K factors into K heatmaps. See section 4.2 for a detailed explanation. Shown:
VGG-19 heatmaps with K ˘ 3 on the Statue of Liberty subset from iCoseg with.

4.2 NMF Heatmaps

We review in detail the procedure by which the matrix U is obtained and its relation to the
input that generated it. Figure (4.1) gives an overview of the heatmap extraction pipeline.

4.2.1 CNN Feature maps

As before let an input image be a tensor of dimension I 2 RCI£HI£WI , where the �nal two
dimensions are the height and the width of the image, respectively, and the third dimension is
the number of channels, e.g., 3 for RGB images. The image I de�nes spatial grid, with the �rst
dimension being a CI-dimensional feature representation of a particular spatial position. For
an RGB image, this feature corresponds to color.

As the image gets processed layer by layer, the hidden activation at the i th layer of the CNN is
the tensor Ai 2 RCA i £HA i £WA i . For ease of notation, we drop the subscript i and Ai if there is
no ambiguity. In most cases H ˙ HI , W ˙ WI due to pooling operations commonly used in
CNN pipelines. The number of channels C is user-de�ned as part of the network architecture,
and in deep layers is usually between 256 and 1024.

Like the original image I, the tensor A has a spatial interpretation as a feature map. The �nal
two dimensions represent a spatial grid, where each position now corresponds to a patch of
pixels in I, and the �rst dimension forms a CA -dimensional representation of the patch.

A feature map represents multiple patches (depending on the size of image I), and we view
each one as a point inhabiting a single C -dimensional space, which we refer to as the CNN
feature space.
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Chapter 4. Semantic localization with matrix U

4.2.2 NMF on feature maps

Feature space in deep layers is known to encode a high degree of semantic information, which
can be distilled by applying NMF to a matrix of samples from that space.

As before, to apply matrix factorization we partially �atten A into a matrix:

A 2 R(H ¢W )£C (4.1)

Note that the matrix A is effectively a �bag of features� in the sense that the spatial arrangement
has been lost. The rows of Ai

I can be permuted without affecting the result of factorization.
We can naturally extend factorization to a set of N images, by vertically concatenating their
patch features together:

A ˘

2

6
6
6
4

A(I1)

...

A(IN )

3

7
7
7
5

2 RP£C (4.2)

where we use the superscript to indicate the image for which activations were produced and
P ˘

P N
i HA (i ) ¢ HA (i ) . For ease of notation, we assume all images are of the same size, in which

case P ˘ (N ¢ H ¢W ).

Having obtained A we proceed to factorize the matrix with a prede�ned rank K . In addition to
NMF, we consider PCA as well.

After factorization we obtain A … UV . The kth factor (1 • k • K ) is represented by the pair
(U¢k ,Vk¢).

While Vk¢ is a C -dimensional vector with some meaning in the CNN feature space, the matrix
U , of size (N ¢ H ¢W ) £ K , has as many rows as the activation matrix A, one corresponding to
every patch in every image.

Consequently, a single column Uk (1 • k • k) can be reshaped into N £ H £W , and be viewed
as a set of N heatmaps, each of dimension H £W . These spatial dimensions are those of Ai ,
and as such are often subsampled compared to the input images, e.g., by a factor of 16. We
match the size of the heatmaps with that of the input images using bilinear interpolation. The
N heatmaps can now be overlaid on top of their respective input images.

Repeating this procedure for each column of U creates K sets of N heatmaps, i.e., the tensor
U 2 RN£K £HI£WI

¯ . By giving each of the K sets a different color, we can overlay U with the
original images all at once, as shown in Figure 1.2.
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4.2. NMF Heatmaps

We note here that in early experiments with NMF we observed that some of the resulting
factors would localize most strongly along the borders of the image. This predominantly
occurred when batch normalization [46] was applied after zero-padded convolutions, as in
ResNet-50. This combination ampli�es edge artifacts present around the border. To resolve
this problem and obtain clean heatmaps even in this case, we replaced all zero-padding with
re�ection-padding.

4.2.3 PCA heatmaps

It is interesting to compare the heatmaps generated by NMF to those generated by PCA. In
Figures 4.2-4.5 we show NMF and PCA heatmaps for four categories from ImageNet. Since
PCA coef�cients can be negative, we do not overlay multiple heatmaps and instead show each
of the K ˘ 3 sets of maps in a different row.

A close inspection of PCA heatmap reveals they too hold a degree of semantics. Echoing back
to the dif�culty of interpreting PCA factors in pixel space as in Figure 2.13, in this case too it is
not obvious how to handle the negative values. Flipping the sign of a column-row pair in the
PCA U and V matrices, respectively, is also a solution to the PCA objective, and so the sign of
any given solution is arbitrary.

While some processing heuristics might be applied, such as thresholding each PCA map into
two positive maps, we do not pursue that direction in this thesis.
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NMF

PCA

Figure 4.2 � An example of NMF and PCA heatmaps with K ˘ 3 (one factors per row) derived
from VGG-19 conv5_4. While NMF factors can be directly interpreted as saliency maps, prin-
cipal components are less straightforward to interpret, and require additional post-processing.
Here shown are images from ImageNet class 497, church building.
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4.2. NMF Heatmaps

NMF

PCA

Figure 4.3 � An example of NMF and PCA heatmaps with K ˘ 3 (one factors per row) derived
from VGG-19 conv5_4. While NMF factors can be directly interpreted as saliency maps, prin-
cipal components are less straightforward to interpret, and require additional post-processing.
Here shown are images from ImageNet class 323, monarch butter�y.
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NMF

PCA

Figure 4.4 � An example of NMF and PCA heatmaps with K ˘ 3 (one factors per row) derived
from VGG-19 conv5_4. While NMF factors can be directly interpreted as saliency maps, prin-
cipal components are less straightforward to interpret, and require additional post-processing.
Here shown are images from ImageNet class 889, violin, �ddle.

66



4.2. NMF Heatmaps

NMF

PCA

Figure 4.5 � An example of NMF and PCA heatmaps with K ˘ 3 (one factors per row) derived
from VGG-19 conv5_4. While NMF factors can be directly interpreted as saliency maps, prin-
cipal components are less straightforward to interpret, and require additional post-processing.
Here shown are images from ImageNet class 294, brown bear.
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4.3 Experiments on iCoseg

The iCoseg dataset [9] is a popular benchmark for co-segmentation methods. It consists of 38
image sets, where each image is annotated with a pixel-wise mask encompassing the main
object common to the set. Images within a set are uniform in that they were all taken on a
single occasion, depicting the same object(s). The challenging aspect of this dataset lies in the
signi�cant variation of viewpoint, illumination, and object deformation.

We chose �ve sets and further labeled them with pixel-wise object-part masks, namely the
categories Elephants, Taj Mahal, Pyramid, Gymanstics1, Statue of Liberty. This process involved
splitting the given ground truth whole-object masks into individual parts. We also annotated
common background objects, e.g., animal in the Pyramids set (see Figure 1.2). The number of
images in these sets ranges from as few as 5 up to 41. When comparing against [94] and [78] in
Table 4.2, we used the subset of iCoseg used in those papers.

4.3.1 Qualitative investigation

For each set in iCoseg, we obtained activations from two CNNs. For VGG-19 we used the
deepest convolutional layer, conv5_4, and for ResNet-50 we used the last layer of the third
convolutional block. We then applied NMF to these activations with increasing values of K .

VGG-19 In Figures 4.6 and 4.7 we present VGG-19 results for two image sets, Elephants
and Gymanstics1, respectively. We see a clear correspondence between NMF factors and
coherent object-parts, however, the heatmaps are coarse. Due to the low resolution of deep
CNN activations, and hence of the heatmap, we get blobs that do not perfectly align with the
underlying region of interest.

We notice that when K ˘ 1, the single NMF factor corresponds to a whole object, encompassing
multiple object-parts. This, however, is not guaranteed, since it is possible that for a set of
images, setting K ˘ 1 will highlight some background element rather than the foreground.
Nonetheless, as we increase K , we get a decomposition of the object or scene into individual
parts. This behavior reveals a hierarchical structure in the clusters formed in CNN feature
space.

For instance, in Figure 4.7, we can see that K ˘ 1 encompasses most of gymnast’s body, K ˘ 2
distinguished her midsection from her limbs, K ˘ 3 adds a �ner distinctions between arms and
legs, and �nally K ˘ 4 adds a new component that localizes the beam. This observation also
indicates the CNN has learned representation that ‘explains’ these concepts with invariance to
pose, e.g., leg positions in the 2nd, 3rd, and 4th columns.
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Figure 4.6 � NMF with incremental K on the Elephants subset from iCoseg with VGG-19. Each
row shows a separate factorization where only K is changed. Different colors correspond to
the heatmaps of the K different factors. NMF factors correspond well to distinct object parts.
This Figure visualizes the data in Table 4.1, where heatmap color corresponds with row color.
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VGG-19 heatmaps for Gymnastics1

Figure 4.7 � NMF with incremental K on the Gymnastics1 subset from iCoseg with VGG-19.
Each row shows a separate factorization where only K is changed. Different colors correspond
to the heatmaps of the K different factors. NMF factors correspond well to distinct object parts.
This Figure visualizes the data in Table 4.1, where heatmap color corresponds with row color.
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A similar decomposition into legs, torso, back, and head can be seen for the elephants in
Figure 4.6. This shows that we can localize different objects and parts even when they are all
common across the image set.

Interestingly, the decompositions shown in the introductory Figure 1.2 exhibit similar high se-
mantic quality in spite of their dissimilarity to the ImageNet training data, as neither pyramids
nor the Taj Mahal are included as class labels in that dataset.

We also note that as some of the given sets contain as few as 5 images (Figure 1.2b comprises
the whole set), our method does not require many images to �nd meaningful factors.

ResNet-50 In Figures 4.8 and 4.9 we show similar heatmaps, extracted using ResNet-50.
Compared to VGG-19 heatmaps, these heatmaps are considerably more dense.

To explain this difference be examined the VGG-19 and ResNet-50 feature maps themselves. A
likely cause for this reason is the fact that VGG-19 and VGG-16 deep activations are 92% sparse
on iCoseg, whereas with ResNet-50 activations are only 71% sparse for the same data.

The main differences between the two architectures is ResNet’s use of batch-normalization
and residual layers. We tested whether the former is the trigger for the denser activation
by examining the activations of VGG-16 BN and VGG-19 BN, i.e., versions of the basic VGG
architecture with added batch-normalization. In this case too, however, VGG-16 BN and
VGG-19 BN activation proved about 90% sparse. We conclude therefore that the difference is a
characteristic of the residual architecture itself.

With K ˘ 1, ResNet-50 produces a heatmap which encompasses the whole image, as opposed
to VGG-19 which preferred the salient object. In both Figures 4.8 and 4.9, K ˘ 2 results in
clear foreground-background separation, with one of the components singling out the salient
object. This too, however, is not guaranteed, since setting K ˘ 2 could result in a separation
between background elements.

As we increase K , we �nd that factors are indeed allocated to describing variations in the
background. For instance, in Figure 4.8, the sky and the ground are each assigned a factor.
Increasing to, e.g., K ˘ 7 (not shown) gives a factor that isolated the dark green trees in the
background.

As a result it is only with relatively high factorization ranks, relative to VGG-19, that ResNet
heatmaps contain parts of the same ‘resolution’ as VGG-19.
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ResNet-50 heatmaps for Elephants

Figure 4.8 � NMF with incremental K on the Elephants subset from iCoseg with ResNet-50.
Compared to Figure 4.6, ResNet produces heatmaps with considerably more dense background
activation. Increasing K is as likely to distinguish between background elements (e.g. ground
vs sky vs tree) as between parts of the foreground object.
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ResNet-50 heatmaps for Gymnastics1

Figure 4.9 � NMF with incremental K on the Gymnastics1 subset from iCoseg with ResNet-50.
Compared to Figure 4.7, ResNet produces heatmaps with considerably more dense background
activation. Increasing K is as likely to distinguish between background elements as between
parts of the foreground object.
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4.3.2 Object and part co-segmentation

Given the heatmaps U 2 RN£K £H£W
¯ and ground truth part segmentations masks G{0,1}N£T £H£W ,

we would like to quantify the correspondence of NMF heatmaps to those parts. A high score
indicating a match attests to the semantic meaning of the NMF factors.

Since NMF factors are unsupervised, a single factor may correspond not to a single part, but to
a composition of several parts, e.g. limbs, as observed in the examples of the previous section.
Conversely, a single part might correspond to a composition of several factors (e.g., the wheels
in Figure 4.11c).

We must therefore associate groups of factors with groups of parts. This can be done with
respect to two different objectives. The �rst objective is exploratory, meaning we have com-
plete access to ground truth data. We can then estimate the semantics of a factor vs. part
combination simply by evaluating all ground truth data.

This is the strategy used in [10], with the crucial difference being that they consider each indi-
vidual CNN feature map, of which there are typically hundreds or even thousands, whereas we
consider only K NMF heatmaps, where K is usually small. In addition, each NMF heatmap is a
combination of all CNN heatmaps, which allows for correlations not present when considering
individual feature maps.

The second objective is predictive, i.e., we produce an association between factors and parts
using none or only a fraction of ground truth data, and evaluate the match on the remainder
of the ground truth.

For instance, for object co-segmentation we need to produce a single heatmap encompassing
the object of interest. Based on the examples shown in Figures 4.6 and 4.7, a viable strategy
for VGG-19 is to simply set K ˘ 1. This will produce a heatmap likely to surround the salient
object.

Similarly, inspired by Figures 4.8 and 4.9, a strategy for ResNet-50 can be to set K ˘ 2 and select
the foreground factor. This can be done with a simple heuristic: if factor a has less activation
on the 1-pixel-wide border of the heatmap than factor b, then factor a is the foreground.

Finally, a more robust solution is to use a small subset of ground truth, e.g., a single ground
truth mask, to associate factors and parts. We can then test the quality of the match on the
remaining images in the set.

Our matching and evaluation proceeds as follows. We �rst binarize the NMF heatmaps U,
producing B. We then augment the collections of factor and part heatmaps by merging
certain subsets. Finally, we measure the match between (sets of) factors and parts using the
intersection-over-union (IoU) measure, also known as Jaccard similarity. We review these
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steps below, describing the merging procedure last.

Extracting B Recall that the tensor U is reshaped from the NMF matrix U . As such, its scale
is arbitrary. We therefore divide each set U¢k¢¢, 1 • k • K by the maximal number in that set.

This simple heuristic approximates the probabilistic interpretation of NMF presented in the
previous chapter, with the assumptions that there is at least one point per factor that is highly
probable with respect to that factor, which we set to 1.

To binarize the normalized maps, we can use a simple threshold, e.g. B ˘ normalize(U) ‚
¿binarize. We experimentally set ¿binarize ˘ 0.75.

Measuring IoU We compute the IoU as follows:

B ˘ �atten(B), G ˘ �atten(G) (4.3)

IoUk,t ˘
B>

k Gt
P

Bk ¯
P

Gt ¡B>
k Gt

(4.4)

The IoU is also the probability of a pixel i being 1 in both masks, given that it is 1 in one of
them. It therefore equals 1 when overlap between the masks is exact, and is 0 when they are
mutually exclusive.

The computation above results in a K £ T matrix of IoU scores. We consider a factor k and a
part t as matching only when IoUk,t ¨ IoUk 0,t ^ I oUk,t ¨ IoUk,t 0 8 1 • k 0 • K , 1 • t 0 • T .

Merging factors and parts We propose to look at the two quantities related to the IoU, and
use them to augment B or G.

The �rst term, intersection-over-parts, is the probability of part t being entirely contained in
factor k:

IoFk,t ˘
B>

k Gt
P

Bk
(4.5)

This information is used only to create new ground truth targets, and so the evaluated NMF
heatmaps are independent of the ground truth data. In other words, this type of augmentation
is possible even in the unsupervised case.
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The second term, intersection-over-factors, is the probability of factor k being entirely con-
tained in a part t :

IoPk,t ˘
B (n)>

k G (1)
t

P
G (n)

t

(4.6)

This information is used to create new NMF heatmaps which are not independent of the
ground truth data. This means that factor augmentation is not possible in the unsupervised
case. In the partial data case, n ˙ N is the number of images whose ground truth contributes
to augmentation, e.g. n ˘ 1 for �one-shot� prediction, and �nally n ˘ N in the fully exploratory
setting.

Finally, let ¿merge be a set threshold, we augment the set of binary factors B by concatenating
up to T composite factors:

B0
t ˘

X ©
Bk jIoFt ,k ‚ ¿merge

ª
(4.7)

B ˆ

"
B

©
B0

t
¯
¯jB0

t j ‚ 2
ª

#

(4.8)

And similarly by concatenating up to K merged parts:

G0
k ˘

X ©
Gt jIoPt ,k ‚ ¿merge

ª
(4.9)

G ˆ

"
G

©
G0

k

¯
¯jG0

k j ‚ 2
ª

#

(4.10)

In all our experiments we empirically set ¿mer g e ˘ 0.2. Given these augmented sets, we obtain
IoU results as described above.

Results

For VGG-19, Table 4.1 shows the matching parts and IoU scores for factors extracted from the
�ve image sets of iCoseg that we have annotated. We used all the ground truth to associate
factors and parts. In this case, no factor merging was needed, but part merging is common.

These scores correspond to the visualizations of Figures 1.2, 4.6 and 4.7, con�rming what
we observe qualitatively. As can be seen, although the factors align well visually with their
respective parts, the IoU can still low due to the low-resolution of the original heatmaps.

In Table 4.2 report results for object co-segmentation, i.e., T ˘ 1 and the set G contains a single
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ground truth ’part’, corresponding to the whole object.

We use VGG-19 with the K ˘ 1 heuristic and ResNet-50 with the K ˘ 2 heuristic described
above. We also considered �one-shot� co-segmentation, where we used a single ground truth
instance to determine which factors belong in the foreground. In that case we used heatmaps
from several application of NMF, with K ˘ {2,4,6,8}.

We include results of several state-of-the-art co-segmentation methods for comparison. The
supervised method of Vicente et al. [94] chooses among multiple segmentation proposals
per image by learning a regressor to predict, for pairs of images, the overlap between their
proposals and the ground truth. Input to the regressor included per-image features, as well as
pairwise features.

The methods Rubio et al. [78] and Rubinstein et al. [77] are unsupervised and rely on a Markov
random �eld formulation, where the unary features are based on surface image features
and various saliency heuristics. For pairwise terms, the former method uses a per-image
segmentation into regions, followed by region-matching across images. The latter approach
uses a dense pairwise correspondence term between images based on local image gradients.

These methods employ heavy use of surface features, e.g., edges and colors in pixel space, to
obtain a pixel-accurate segmentation, and as a result, they achieve high intersection-over-
union scores.

The objective of our experiments, however, is to asses the semantics of learned CNN features,
not maximize the segmentation accuracy. As a result, we do not apply heavy post processing
to our heatmaps. Nonetheless, in spite of being based on low-resolution heatmaps, NMF
heatmaps compare favorably against these domain-speci�c methods, even outperforming
them in some cases.

We can see that in most of these cases, the K ˘ 1 and K ˘ 2 heuristics work well for VGG-19 and
ResNet-50, respectively, where the category Pyramids is an exception for both. Shown in Figure
1.2, the salient region in this image set does, in fact, include more than the eponymous object
of interest. The one-shot methods overcome this issue since we essentially over-segment the
image set by setting a large K , and use the single ground truth sample to aggregate the relevant
segments. In all cases, however, ResNet-50 produces better results than any VGG network.

77



Chapter 4. Semantic localization with matrix U

Elephants Taj Mahal Pyramids Gymnastics1 Statue of Liberty

torso/back/head 59 dome 33 animal 36 torso/waist 35 torso 36
VGG-19, K =2

torso/leg 35 tower/building 46 pyramid 56 arm/leg/head 20 torch/base/head 28

back/head 46 building 45 background 27 torso/waist 38 base 14

torso 25 dome 40 pyramid 55 arm/head 22 torso 39VGG-19, K =3

leg 21 tower 13 animal 36 leg 33 torch/head 23

torso/back/head 58 building 72 background 27 torso/waist 40 torso 39

head 36 dome 43 pyramid 52 torso/arm/head 33 background 44

torso 20 background 08 animal 37 leg 37 torch/head 26
VGG-19 , K =4

leg 16 tower 16 person 12 background 14 base 40

Table 4.1 � Object and part co-segmentation on �ve iCoseg image sets using VGG-19. Part-
labels are automatically assigned to NMF factors using all available ground truth, and are
shown with their corresponding IoU-scores. These results show that clusters in CNN feature
space correspond to coherent parts. More so, the results indicate the presence of a cluster
hierarchy in CNN feature space, where part-clusters can be seen as sub-clusters within object-
clusters (See Figures 1.2, 4.1, 4.6 and 4.7 for visual comparison. Cell color corresponds with
heatmap color).

Method Supervision Elephants Taj Mahal Pyramids Gymnastics1 Statue of Liberty
Vicente [94] Supervised 43 91 - - 94
Rubio [78] Unsup. 75 89 - - 92
Rubinstein [77] Unsup. 63 48 57 94 70
VGG-19, K =1 Unsup. 65 41 49 43 49
ResNet-50, K =2 Unsup. 77 63 30 44 81
VGG-16 One-shot 68 51 31 46 32
VGG-16 BN One-shot 60 60 44 43 50
VGG-19 One-shot 62 48 57 46 36
VGG-19 BN One-shot 62 54 43 50 59
ResNet-50 One-shot 77 73 74 66 88

Table 4.2 � Object co-segmentation on �ve iCoseg image sets. We compare results across
different levels of supervision. The colored cells of the unsupervised NMF approaches refer
to the similarly colored factors shown in Figures 4.6, 4.7 (VGG-19) and 4.8, 4.9 (ResNet-50).
Here, �Unsup.� is unsupervised and �One-shot� refers to the use of a single ground truth
instance, which we use to associate NMF factors with ground truth parts. In the one-shot
case we consider factors from multiple factorizations, with K ˘ {2,4,6,8}. Co-segmentation
with NMF compares favorably against state-of-the-art methods, in spite of being based on
low-resolution activations of a pre-trained network.
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4.4. Experiments on PASCAL VOC

4.3.3 Layer depth

The NMF heatmaps considered so far have all been derived from activations of deep layers.
In this section we study earlier layer in VGG-19 to evaluate the how much of the semantic
information present in conv5_4 is unique to that layer.

We can characterize the quality of whole factorization as the average IoU of its matching
factors and parts (not including background). In Figure 4.10 we show the average IoU for
different layers of VGG-19 on iCoseg with increasing K . The variance shown is due to repeated
trials with different NMF initializations. There is a clear gap between convolutional blocks.
Performance within a block, however, does not strictly follow the linear order of layers.

We also see that the optimal value for K is between 3 and 5. This is a result of not using factor
merging in this experiment, which means factors must math the resolution of the part ground
truth. As K increases, NMF heatmaps become more localized, highlighting regions that are
beyond the granularity of the ground truth annotation, e.g., a pair of factors that separate leg
into ankle and thigh.

Av
g.

Io
U

K

Figure 4.10 � Average IoU score for NMF with different layers of VGG-19 on iCoseg. As expected,
earlier convolutional blocks match up signi�cantly less to semantic parts.

4.4 Experiments on PASCAL VOC

PASCAL VOC has been commonly used to evaluate object co-localization methods. Images
in this dataset often comprise several objects of multiple classes from various viewpoints,
making it a challenging benchmark.

As in previous work [57; 19; 49], we use the trainval set for evaluation and �lter out images
that only contain objects which are marked as dif�cult or truncated. As we use PASCAL VOC
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2007 speci�cally, the �nal set has 20 image sets (one per class), with 69 to 2008 images each.

For part co-segmentation, we use the PASCAL-Part dataset [18]. An extension of PASCAL VOC
2010 [32], this dataset has been further annotated with part-level segmentation masks and
bounding boxes. The dataset decomposes 16 object classes into �ne grained parts, such as
bird-beak and bird-tail etc.1 After �ltering out images containing objects marked as dif�cult
and truncated, the �nal set consists of 16 image sets with 104 to 675 images each.

4.4.1 Object co-localization

The task of co-localization involves �tting a bounding box around the common object in a
set of image. As before, with VGG-19 we set K ˘ 1 to retrieve a heatmap which localizes that
salient object across an image set.

After binarizing the single heatmap, as described in the previous section, we follow [83] and
extract a single bounding box per heatmap. This is done by �tting a box around the largest
connected component in the binary map.

We report the standard CorLoc score [25] of our localization. The CorLoc score is de�ned as
the percentage of predicted bounding boxes for which there exists a matching ground truth
bounding box. Two bounding boxes are deemed matching if their IoU score exceeds 0.5.

The results of our method are shown in Table 4.3. We compare against several state-of-the-art
object co-localization methods. These methods operate by ranking set of object proposals,
produced by a region-proposal CNN [62] or an object-saliency heuristic [19; 49]. They then
choose the highest ranked region as a bounding box.

The authors of [57] present a method for unsupervised object co-localization that, like ours,
also makes use of CNN activations. Their approach is to apply K -means clustering to glob-
ally max-pooled activations, with the intent of clustering all highly active CNN �lters to-
gether. Their method therefore produces a single heatmap, which is appropriate for object
co-localization, but cannot be extended to part co-localization.

Our method compares favorably to these previous approaches. For instance, we improve
co-localization for the class dog by 16% higher CorLoc and achieve better co-localization on
average, in spite of our approach being simpler and more general.

4.4.2 Part co-segmentation

In Table 4.4 we give IoU results for VGG-19 on �ve classes from PASCAL-Parts, which have
been automatically matched to parts using all available ground truth data, as in section 4.3.1.
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4.4. Experiments on PASCAL VOC

(a) Aeroplane

(b) Car

(c) Motorbike

Figure 4.11 � Example NMF heatmaps for three vehicle classes from PASCAL-Part with K ˘ 3.
We show four successful decompositions per-class and a failure case on the right-most column.
NMF manages to retrieve interpretable decompositions in spite of great variation in the data.
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(a) Bird

(b) Cow

(c) Cat

Figure 4.12 � Example NMF heatmaps for three animal classes from PASCAL-Part with K ˘ 3.
We show four successful decompositions per-class and a failure case on the right-most column.
NMF manages to retrieve interpretable decompositions in spite of great variation in the data.
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Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Mean
Joulin [49] 33 17 21 18 5 27 33 41 6 29 35 32 26 40 18 12 25 28 36 12 25.60
Cho [19] 50 43 30 19 4 62 65 43 9 49 12 44 64 57 15 9 31 34 62 32 36.60
Li [62] 73 45 43 28 7 53 58 45 6 48 14 47 69 67 24 13 52 26 65 17 40.00
Le (A) [57] 70 52 44 30 5 56 60 59 6 49 16 51 59 67 23 12 47 27 59 16 40.36
Le (V) [57] 72 62 48 28 12 64 59 72 6 37 12 45 67 72 19 11 37 29 67 23 41.97
VGG-19 63 49 54 20 10 62 51 79 4 51 32 67 67 73 19 15 43 35 66 24 44.20
ResNet-50 72 45 60 42 11 53 57 78 9 60 36 66 68 74 26 18 46 55 65 16 47.98

Table 4.3 � Co-localization results for PASCAL VOC 2007. Numbers indicate CorLoc scores. Us-
ing NMF with K ˘ 1 applied to VGG-19 activations, we exceed the state-of-the-art approaches,
though using a much simpler method.

In Figures 4.11 and 4.12 we visualize some of the corresponding K ˘ 3 NMF heatmaps.

When comparing the heatmaps against their corresponding IoU-scores, several interesting
observations arise. For instance, in the case of motorbike, the �rst and third factors for K ˘ 3
in Table 4.4 both seems to correspond with wheel. The visualization in Figure 4.11b reveals
that these factors in fact sub-segment the wheel into top and bottom, which is beyond the
resolution of the ground truth data. The fact this distinction arises already with K ˘ 3 indicates
its importance in feature space, yet it is not an intuitively human distinction.

Returning to Table 4.4, when K ˘ 4, a factor emerges that localizes instances of the class person,
which occur in 60% of motorbike images. This again shows that while most co-localization
methods only describe objects that are common across the image set, the NMF approach �nds
�ne distinctions within the set of common objects.

Note that while the �rst factor of the class aeroplane (Figure 4.11a) consistently localizes
airplane wheels, it does not to achieve high IoU due to the coarseness of the heatmap and
�neness of the part.

In our �nal experiment, we use NMF heatmaps derived from both VGG-19 and ResNet-50
to segment the two classes, cow and horse. Since we have not come across examples of part
co-segmentation in the literature, we compare against a method for supervised part segmen-
tation, namely Wang and Yuille [96]. Their method relies on a compositional model with
strong explicit priors w.r.t to part size, hierarchy and symmetry. We also show results for two
baseline methods described in [96]: PartBB+ObjSeg where segmentation masks are produced
by intersecting part-bounding-boxes [18] with whole-object segmentation masks [42]. The
method PartMask+ObjSeg is similar, but here bounding-boxes are replaced with the best of 10
pre-learned part masks.

In spite of the highly domain-speci�c nature of their approach, we show in Table 4.5 that NMF
nonetheless compares favorably to their results and even surpasses them in most cases using
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4.5. Conclusion

Method
cow horse

head neck+torso leg head neck+torso leg
PartBB+ObjSeg 26.77 53.79 11.18 37.32 60.35 27.47
PartMask+ObjSeg 33.19 56.69 11.31 41.84 63.31 21.38
Compositional model [96] 41.55 60.98 30.98 47.21 66.74 38.18
VGG-19 40.53 59.48 21.57 20.21 54.77 28.94
ResNet-50 42.34 63.36 36.45 34.31 64.49 40.72

Table 4.5 � Avg. IoU(%) for three fully supervised methods reported in [96] and for our NMF
approach. Despite not using hand-crafted features, NMF compares favorably to these ap-
proaches, and is not speci�c to these two image classes. We manually matched NMF factors
with their appropriate part labels by visually examining the heatmaps of only �ve images, out
of approximately 140 images. This illustrates the usefulness of NMF co-segmentation for fast
semi-automatic labeling. See visualization for cow heatmaps in Figure 4.12.

ResNet-50. This is in spite of not using any hand-crafted features or supervised training.

We note that for this experiment, our strategy for mapping NMF factors to their appropriate
part labels was manual, in order to showcase the prospect of using NMF for semi-automatic
labeling. We examined the heatmaps of �ve images, out of approximately 140 images, and
manually assigned factors as corresponding to head, tors+neck or leg.

4.5 Conclusion

Following the result that well-generalizing CNNs are robust to NMF compression applied
to their activations A … UV , in this chapter we studied the properties of the U matrix. By
visualization U as a set of heatmaps, we could qualitatively see why this is the case: NMF
factors correspond to semantic parts.

We evaluated the semantic quality of the resulting factors quantitatively with a series of co-
segmentation and co-localization tasks, at the resolution of whole objects as well as �ner parts.
We found that in spite of their low resolution, the heatmaps derived from NMF factors match
ground truth segmentation masks to high extent, with ResNet-50 showing better performance
than some domain-speci�c over-engineered segmentation methods.

Based on these observation we hypothesize that CNNs learn clusters in feature space which
correspond to a �natural� decomposition of the data into constituent parts. In a similar way
to how Gabor-like edge detectors are optimal for sparse coding of images [71], and naturally
emerges in both statistical models and the visual cortex, we propose that a decomposition of
the kind detected by NMF is is optimal for the image-level classi�cation task, and therefore
naturally emerges in deep layers.
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5 Semantic retrieval with matrix V

5.1 Introduction

In this chapter we continue our examination of the NMF factors, A … UV , focusing on the
matrix V . Recall that when A 2 R(N ¢H ¢W )£C

¯ is a CNN activation matrix, each row represents an
image patch embedding in C -dimensional feature space. This space is a latent space, and as
such it has no known a-priori interpretation. Its analysis and interpretation is the premise of
our study of network interpretability.

The matrix Vk,¢ represents a point or direction in the C -dimensional feature space. In the
previous chapter we inferred the semantic meaning of Vk,¢ via the spatial distribution of its
corresponding U¢,k . Under a clustering interpretation of NMF, each Ui ,k serves as a weight
associating a datapoint Ai ,¢ with a cluster centroid Vk,¢, as shown in Figure 5.1. Heatmap
locations were considered matching when they showed strong weights with respect to the
same centroid. For this reason, we think of the matrix U as encoding �where�, and the matrix
V as encoding �what�, with the latter being represented in C -dimensional feature space.

We begin our study in Section 5.2 with a qualitative analysis, where we use gradient ascent
to generate inputs that maximize activation in a direction Vk,¢. While these visualizations are
certainly interesting, we �nd they are not always relatable to the heatmaps derived from U .

The matrix V is interesting because it represents the K most important non-negative directions
in CNN feature space, with respect to reconstructing network activations. We can therefore
think of V as a set of K attributes, indicating the presence of important semantic concepts
within an image.

Some of the work presented in this chapter �rst appeared in [21].
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Figure 5.1 � Non-negative matrix factorization can be seen as forming a bipartite graph, where
each data point Ai is associated with a component Vk by a weight Ui ,k .

It therefore gives us a means by which to compare different images without having to jointly
factorize them. That is, instead of concatenating several images together, A ˘

£
A(a) A(b)¤, and

factorizing against a single V , we can factorize each image individually to obtain V (a) and V (b).
If the rows of V (a) and V (b) are �similar�, we can conclude the images are semantically related.

Based on this view, we quantify how well the rows of V describe the contents of individual
images by performing content-based image retrieval. The goal of image retrieval in general is
to correctly rank images from a large collection according to their relevance with respect to an
input query. Content-based retrieval speci�cally means that the query itself is also an image.

Like in many other vision-related tasks, CNN-based methods currently hold the state of the
art for content-based image retrieval. With deep CNN layers, moderately low-dimensional
descriptors can be derived that encode global image semantics both succinctly and discrim-
inatively. This allows for ef�cient content-based search, where a query image is matched
against a large collection of images by a simple operation, e.g., cosine similarity.

Some of the best performing global descriptors are derived by aggregating several local descrip-
tors. Selecting the appropriate local regions, however, is not straight forward. Methods have
been proposed that simply consider the whole image as single region [4; 5]. Others impose a
simple grid over the feature maps [91] and some even randomly sample regions [85]. In our
case, viewing V as a set of local descriptor sets their corresponding regions to nothing else but
the heatmaps encoded in U .

Most CNN-based methods for image retrieval focus speci�cally on instance-based image
retrieval, where the goal is to retrieve images that contain the same object instance as the
query image. For example, given an image of a building, we aim to highly rank other images of
that speci�c building, and not images of similar buildings.
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5.2. Gradient ascent visualization

A related task is that of semantic image retrieval [38] where given a query image, e.g., of a dog,
we aim to rank highly all images in our collection that portray any dog. This task introduces
much greater variability into the set of relevant images, and limits an algorithm’s reliance on
surface features such as texture and color.

In Sections 5.3 and 5.4 we tackle these two tasks. Interestingly, while we show in Section 5.3
that a descriptor based purely on V excels at semantic image retrieval, it is insuf�cient for
instance-based image retrieval. Instead, the information required to accomplish the latter task
is distributed across both U and V . As we show in Section 5.3, when both are combined, our
algorithm yields state-of-the-art results also for instance-based image retrieval.

5.2 Gradient ascent visualization

As described in Section 2.2.4, several methods have been proposed that directly visualize
directions in CNN feature space. This is accomplished by generating an input image that
maximizes activation in that direction. Since a row Vk,¢ inhabits this space, it is interesting to
see if these visualization agree with our interpretation via the heatmaps derived from U¢,k .

We used to the method of Olah et al. [70], where we optimized:

Ik ˘ argmax
I

X

i , j
cos

¡
A¢,i , j ,Vk,¢

¢
(5.1)

where A 2 RC£H£W
¯ is the deep layer activation in response to input Ik . In their method,

the image Ik is parameterized by its Fourier coef�cients. This parameterization guides the
optimization with gradient ascent towards qualitatively more pleasing visualizations.

In Figures 5.2 and 5.3 we show gradient ascent visualization obtained for the V derived from
activation of VGG-19 on the iCoseg dataset. Speci�cally, we return to the examples of Figures
4.6 and 4.7, where we applied NMF with increasing rank K to the activations of two image sets,
Elephants and Gymnastics1. Whereas in Figures 4.6 and 4.7 we visualized the NMF U matrix as
heatmaps, here we visualize the V matrix as described above. The colored frames in Figures
5.2 and 5.3 correspond to the similarly colored heatmap derived from U .

We created visualization with ResNet-50 as well, shown in Figures 5.4 and 5.5. These differ
substantially from those of VGG-19, and are dominated by color and texture. With the excep-
tion of some background components resembling trees, these visualization do not suggest any
coherent structures or objects.

As can be seen, the quality of the visualization differs signi�cantly between examples. While in
Figure 5.2 one can readily discern elephant-like parts re�ected in the visualization, Figure 5.5
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Figure 5.2 � Gradient ascent visualization of the NMF basis vectors derived from VGG-16
on the Elephants subset from iCoseg. These visualizations of the rows of V correspond to
the heatmaps derived from the columns of U shown in Figure 4.6 using the same color en-
coding, i.e., the blue framed visualizations above correspond to the blue heatmaps in each
corresponding row.
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Figure 5.3 � Gradient ascent visualization of the NMF basis vectors derived from VGG-16
on the Gymnastics1 subset from iCoseg. These visualizations of the rows of V correspond
to the heatmaps derived from the columns of U shown in Figure 4.7 using the same color
encoding, i.e., the blue framed visualizations above correspond to the blue heatmaps in each
corresponding row.
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Figure 5.4 � Gradient ascent visualization of NMF basis derived from ResNet-50 on Elephants
subset from iCoseg. These visualizations of the rows of V correspond to the heatmap visual-
izations of the columns of U shown in Figure 4.8 using the same color encoding, i.e., the blue
framed visualizations above correspond to the blue heatmaps in each corresponding row.
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Figure 5.5 � Gradient ascent visualization of NMF basis derived from ResNet-50 on Gymnas-
tics1 subset from iCoseg. These visualizations of the rows of V correspond to the heatmap
visualizations of the columns of U shown in Figure 4.9 using the same color encoding, i.e., the
blue framed visualizations above correspond to the blue heatmaps in each corresponding row.
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is quite more abstract and not easy to interpret.

5.3 Experiments on Oxford and Paris buildings

We evaluate NMF for image retrieval using two standard datasets, Oxford Buildings [72] and
Paris Buildings [73]. These datasets consist of 5,063 and 6,392 images, respectively, and each
includes 55 query images with a bounding box annotation and a list of corresponding relevant
matches. We process images by scaling their smaller side to 512 pixels, and perform pixel-wise
normalization to achieve zero mean and unit variance. In Figures 5.6 and 5.7 we show two
example subsets from Paris Buildings overlaid with NMF heatmaps.

Given the activation tensor for a single image A 2 R¯(N ¢ H ¢W ) £C , our goal is to obtain for
each image a C -dimensional vector. We call this vector the global NMF descriptor of the image,
and denote it as v .

After we obtain v , we score the match between query and target descriptors using cosine
similarity. The ranking of the returned images is evaluated using mean average precision
(mAP), de�ned as follows. First we de�ne the precision at ranking position n:

P@n ˘
r
n

(5.2)

where r is the number of relevant images in the top n results.

Now let 1n be an indicator function which is 1 one the nth result is relevant. Furthermore let
our image collection consist of N images, of which R are relevant and for the current query.
We de�ne:

AP ˘
P M

n 1nP@n
R

(5.3)

the mean average precision is computed by averaging the average precision over all queries in
the query set.

5.3.1 Instance-based retrieval

We now describe how we derive v from A. An overview of all steps is shown in Figure 5.8.

Before applying NMF, we adopt a method proposed by [50], known as CroW. This method
weighs each channel 1 • c • C with a weight Wc . This weight decreases inversely with the
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Figure 5.6 � Three queries of the Notre-Dame subset of Paris Buildings, shown here with NMF
heatmaps (matrix U ) derived using VGG-19.
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Figure 5.7 � Three queries of the Louvre subset of Paris Buildings, shown here with NMF
heatmaps (matrix U ) derived using ResNet-50.
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ratio of positive channel activations, Qc :

Qc ˘
P

w,h 1
£
Ac,w,h ¨ 0

¤

H ¢W
(5.4)

Wc ˘ log

ÃP C
c 0 Qc 0

Qc

!

where again 1[¢] is an indicator function that equals 1 when its condition evaluates to true.

As a result, in A0 ˘ A¢W, the contribution of channels that are relatively less active is increased.
That reasoning behind this procedure is analogous to that of tf-idf (term frequency�inverse
document frequency) often used in the context of document retrieval. This weighing ampli�es
rare features, since these are more likely to be discriminative than features that are very
common.

Next, we obtain the NMF matrices U and V . At this point of the pipeline we have the option to
incorporate spatial information from U , in addition to the semantic information in V . This
will be discussed later on, but for now we proceed considering only the matrix V .

Viewing the rows of V as local descriptors, we follow a pipeline that has become standard
practice in image retrieval pipelines. Namely, we normalize each local descriptor, perform
PCA-whitening, followed by row-wise summation and a �nal l 2-normalization. The resulting
vector is v 2 RC , the global NMF image descriptor.

At search time, a query image is given along with a bounding box indicating the region of
interest. In this case, we follow a similar procedure but include an additional step to �lter
out rows of V that represent irrelevant concepts. In particular, since each row of V has a
corresponding heatmap, we use the provided bounding box to select a subset V f 2 RK 0£c

¯ of
K 0 factors, whose heatmaps allocate more than 75% of their activation within the box. This
is reminiscent of our �one-shot� co-segmentation procedure in Section 4.3.1. Note that this
use of the query bounding box is different from how other approaches to image retrieval use
it, where the box is typically used to crop the query image. The matrix V f replaces V in the
remainder of the NMF descriptor extraction pipeline as described thus far.

The results of this pipeline are given in Table 5.1 as NMF V , since we only used V to derive
the NMF descriptor. We compare our results against several baseline and state-of-the-art
methods.

Namely, R-MAC [91] (Regional Maximum Activation of Convolutions) proceeds by sliding
several max-pooling kernels over the A, each with a different scale and aspect ratio. At every
spatial position max-pooling generates a C -dimensional vector, which is stored. The result is a
matrix with a number of rows which depends on the size of A and C columns. The rows are
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Chapter 5. Semantic retrieval with matrix V

then identically as V in the pipeline we have described for NMF.

More recently, [47] proposed image descriptors derived using class-activation maps (CAM)
[103] (see Section 2.2.4). Similarly to NMF heatmaps, CAM maps de�ne a soft spatial weighting
over the feature map, dividing it into several semantically meaningful regions. There are,
however, two downsides to CAM in this context. First, CAM requires a specialized CNN
architecture, and is not compatible with just any off-the-shelf pre-trained CNN. Second, CAM
depends on last layer outputs, and thereby on the set of output labels used for CNN training.
NMF is on the other hand is compatible with any ReLU CNN, and is not bound to any label set.

Returning to Table 5.1, while performance with VGG-16 is improved compared to competing
methods, and overall performance with NMF is superior to retrieval with CAM, on ResNet-50
our method does not do as well as R-MAC. The same is true also when we perform query
expansion, i.e., we aggregate the descriptors of the top-5 matching results together with the
original query descriptor, re-normalize, and repeat the search.

To understand where our method fails, consider Figure 5.9 where we show a query from Oxford
Buildings along with its top �ve matches, two of which are in fact irrelevant. The query image is
marked by an orange frame, and green and red frames indicate relevant and irrelevant matches
respectively. To better understand how NMF sees these images, we separately factorized each
image with K ˘ 4, as also shown in 5.9, where we aligned similar factors in the same row for
easier inspection. When examining the false positives, it is dif�cult to �nd a clear fault in the
heatmap correspondence. Components such as window and other architectural components
are indeed shared between the query image and the false positives. The difference lies not in
their presence or absence, but in their spatial arrangement.

To account for this, we return to the matrix U and incorporate it into the NMF descriptor in
the following way, First, we reshape U into a tensor U 2 RK £H£W , and compute:

UG ˘ matrix(U⁄G) (5.5)

U 0
¢, j ˘

[UG ]¢, j

k[UG ]¢, j k2
(5.6)

V 0 ˘U 0>U 0V (5.7)

where G is a 2D Gaussian �lter, convolved against each of K heatmaps in U. The matrix U 0>U 0

is a K £ K matrix capturing spatial interactions between concepts. Multiplication against this
matrix informs the resulting V 0 of which concepts are adjacent to which. We empirically set
the Gaussian �lter G to have a kernel size of 13 £ 13 pixels and a variance of 2.

With the rest of the pipeline unaltered, we repeat the experiment and report the results in 5.1
as NMF V ¯U . As can be seen, with this additional information, NMF descriptors signi�cantly
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Chapter 5. Semantic retrieval with matrix V

Figure 5.9 � An example of incorrect ranking with using NMF V for instance-based retrieval.
The query image is on the left surrounded by a yellow frame. To its right, a green frame signi�es
a relevant image and a ref frame signi�es an irrelevant image. While all top scoring matches
with NMF V do in fact share common elements with the query image, they do not depict the
same instance.

outperform all other methods.

5.3.2 Localization

Given the set of top matching images with respect to some query, it is straight forward to
localize the relevant image regions by applying NMF jointly, as in Chapter 4. This generates
corresponding heatmaps extending both the query and its matches. As before, we keep only
those heatmaps that are suf�ciently contained within the query bounding box.

Two examples are shown in Figure 5.10, where we re-scaled images to be 224 pixels on the
smaller side, followed by NMF and a bounding box prediction. The predicted bounding
box (shown in red) is obtained in three steps. First, the �ltering step discards NMF maps
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5.3. Experiments on Oxford and Paris buildings

Oxford5k Paris6k
VGG ResNet VGG ResNet

MAC [4] 55.7 57.2 68 69.9
R-MAC [91] 67.8 71 77.4 81.4
CroW [50] 65.4 63.3 74.3 71.7
CAM* [47] 71.2 69.9 80.5 80.4
NMF V 71.9 67.7 81.3 77.5
NMF V ¯U 73.4 74.8 83 83.2

(a)

Oxford5k Paris6k
VGG ResNet VGG ResNet

MAC [4] 60.2 66.5 77.6 81.2
R-MAC [91] 72.1 77.5 82.4 85.5
CroW [50] 68.5 68 77.1 76.4
CAM* [47] 73 - 83.6 80.4
NMF V 73.8 69.2 82.3 81.4
NMF V ¯U 74.2 78.8 83.8 86.2

(b)

Table 5.1 � Instance-based retrieval mAP results for various state-of-the-art methods and
our NMF approach. In (a) we show single-pass retrieval results and in (b) after top-5 query
expansion *To enable CAM, the authors used a fully-convolutional variant of VGG-16 was used
instead of the standard VGG-16 architecture.

which allocate less than 75% of their activation within the query bounding box. Next, the
remaining heatmaps are averaged to form a single map, which is binarized by setting the top
30% activations to one, and the rest to zero. Finally, a bounding box is placed around the
largest connected component.

In [91] localization is performed using R-MAC, i.e. using region max-pooling. First, the query
image is cropped according to its bounding box, and its MAC descriptor is obtained. Then
the query descriptor is scored with a similarly extracted local descriptor computed for every
window in each of the target images. A more ef�cient approximate method, AML, is also
proposed. We compare their reported localization results on Oxford buildings and Paris
Buildings to ours in Table 5.2.

Our evaluation follows the same protocol of [91], cross matching the �ve query images that are
given per building. A single image is used as a query (orange box), and the resulting predictions
(red boxes) are evaluated on the other four (green boxes). This is repeated using each of the
�ve images as a query. Bounding box overlap is measured with intersection over union (IoU).

NMF achieves better localization results, and again we �nd ResNet-50 outperforming VGG-16.
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Chapter 5. Semantic retrieval with matrix V

(a) VGG-16 localization (b) ResNet-50 localization

Figure 5.10 � NMF heatmaps localize objects within retrieved images, as shown in the two
examples above. In each example, we apply NMF to the image set and obtain K factors. The
ground truth bounding boxes for the region of interest are shown in orange and green. In each
row, using only the orange bounding box, we �lter out factors whose heatmap is not localized
within the box. The remaining K 0 heatmaps are averaged to form a single heatmap per image,
shown above. The bounding boxes shown in red are predicted by binarizing the averaged
heatmap, and surrounding the largest connected component. When compared to ground
truth boxes not used for �ltering, i.e., only those shown in green, our predictions overlap
substantially. See Table 5.2 for quantitative results. Best viewed on a color display.
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5.4. Semantic image retrieval on PASCAL VOC

Method Oxford5k Paris6k
AML [91] 51.3 51.4
Exhaustive R-MAC [91] 52.6 52.9
NMF VGG-16 49.3 67.6
NMF ResNet-50 53.2 68.7

Table 5.2 � Bounding box IoU for NMF on query images. As shown in Figure 5.10, we can apply
NMF to a query and its matches to retrieve semantically corresponding regions across the
image set. By using the bounding box of the query image, we select only the regions relevant to
the query. We surround the relevant factors in the remainder of the image set with a predicted
bounding box.

5.4 Semantic image retrieval on PASCAL VOC

In the previous section we found that an image descriptor derived solely based on V was sub-
optimal for instance-based image retrieval. We explained this with V indicating the presence
or absence of certain semantic concepts, it lacked information about the spatial relationship
between them, which is needed to discriminate between instances of the same category. If
true, however, then this makes a descriptor extracted based solely on V highly suitable the
related task of semantic image retrieval, where the objective is to retrieve all instances of the
class.

In this section we verify this hypothesis by evaluating NMF, and other methods introduced in
the previous section, on retrieval with PASCAL VOC 2010 [32]. Like other version of PASCAL
VOC, the 2010 version consists of 20 classes, mostly of animals, vehicles and furniture. We
�ltered out images whose main object was labeled dif�cult or truncated, which left us with a
total of 5,455 images, ranging from 86 (dining table) to 980 (person).

We then manually selected �ve query images from each category for a total of 100 queries. The
set of relevant images consisted of all images containing the main object in the query. To stay
consistent with the retrieval methodology above, we needed to supply a bounding box sur-
rounding the main query object. Since images in PASCAL VOC can contain multiple instances
of the same category, we selected a single bounding box by �rst merging any overlapping
bounding boxes and then choosing the single largest box.

We evaluated that quality of the retrieved ranking with mean average precision at 30 (mAP@30):

AP@30 ˘
P 30

n 1nP@n
30

(5.8)

This choice avoids issues due to class imbalance present in this dataset, and also re�ects the
fact that users, in general, do not care about the long tail of search results, but rather focus on
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5.5. Conclusion

the top few. The descriptor extraction pipeline is identical to that of the previous section, for
all methods.

We report results in Table 5.3. As expected, the descriptors based on NMF V outperform
both R-MAC and NMF V ¯U . Also notable is the excellent performance of VGG-16 compared
to ResNet-50. These results, along with other empirical results presented throughout this
thesis, suggest that ResNet-50 features hold a larger degree of low-level information, e.g.,
about texture and color. While this is conducive for precise localization, these features are less
invariant to nuisance variables, and evidently perform worse on the task of semantic image
retrieval.

5.5 Conclusion

Just as the columns of U represent semantic concepts by virtue of their spatial distribution,
the rows of V represent those same concepts in CNN feature space.

In this chapter we leveraged this property to derive �xed-size global image descriptors that at
once characterize the potentially many concepts present within an image, while remaining
discriminative with respect to them.

We again evoked the over-simpli�ed, yet useful, view of the NMF factors representing �where�
and �what�, which led to two �avors of image descriptors, which are useful in different in
contexts.

Relevant to our discussion of future work in the next section, we brie�y mention here that
image retrieval can be further improved with end-to-end CNN training [39; 75]. We limited
ourselves to the setting of using a pre-trained network, since our goal was to study the networks
and their NMF decomposition. Nonetheless, the NMF descriptors we derived outperformed
all other methods in this category.
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6 Conclusion

6.1 Thesis summary

We started this thesis with the goal of understanding what distinguishes neural networks
that learn from those that simply memorize their training set. In Chapter 2 we formulated
memorization as the information I(i,Z) that an intermediate NN representation Z holds about
a speci�c input, index by i. We showed that this quantity is upper bounded by the non-negative
rank of a matrix, A, in which the i th row contains the intermediate NN representation, i.e., A
is the activation matrix.

Since the non-negative rank is NP-hard to compute, we derived a related quantity, computable
in reasonable time, that allowed us to compare the amount of memorization across different
networks, as well as predict which one will generalize better to new data. Speci�cally, using
approximate NMF, A …UV , with different rank constraints K , we showed that the area under
the K vs. classi�cation accuracy curve serves as a good proxy to the non-negative rank.

Using NMF as well as other matrix factorization methods, we found that NNs that memorize
less are more robust to compression applied to their activations, indicating the underlying
data manifold is intrinsically lower-dimensional, compared to NNs that memorize more. Con-
versely, we showed that networks that memorize less are more vulnerable to their activations
being ablated in the directions found by by NMF. During NN training, we demonstrated that
NMF can guess when to early stop quite precisely, sparing the use of a validation set.

In Chapter 4 we examined the matrix U generated by NMF when applied to deep CNN acti-
vations, and saw that it provided a rare and interpretable view into the emergent semantics
encoded in deep CNN layers. The fact that we sought a means to evaluate memorization and
generalization and found that it provides a useful tool for network interpretability outlines
that generalization and interpretability are in fact related, as we alluded to in the introduction.
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Chapter 6. Conclusion

Consider the following quote, famously (but falsely) attributed to Albert Einstein:

�If you can’t explain it to a six year old, you don’t understand it yourself.�

� Not Albert Einstein

If a network generalizes well, i.e., understands the data well, then it successfully �lters away
much irrelevant information, and the remaining signal should be low-dimensional enough for
humans to make sense of. NMF successfully extracts that signal from high-dimensional NN
activations.

The heatmaps derived from U suggested CNNs form a cluster hierarchy in deep feature space,
with clusters representing objects that decompose into parts and further into sub-parts. In
most cases, these hierarchies re�ected human intuition, e.g., person!limbs!arms, but not
always, e.g., car!wheels!bottom of wheels. We quanti�ed the semantics contained in the
heatmaps by performing a series co-localization and co-segmentation experiments applied
to objects and object parts, and found the heatmaps compare favorably in their localization
quality even when compared to more elaborate methods.

In Chapter 5 we exploited the NMF matrices to derive a global image descriptor used for
content-based image search, i.e., where both the query and the results to be returned are
images. Using the matrix V we performed semantic image search, successfully retrieving
images on other instances belonging to the same semantic category. By combining information
from both V and U , we conducted instance-based image search, where the retrieved images
depicted the same object instance. For the latter, we once more observed state-of-the-art
retrieval performance for methods using a pre-trained CNN.

6.2 Future work

Having shown that the non-negative rank of activation matrices upper bounds the amount of
memorization, a natural step is to minimize it as a form of regularization. There are, however,
a number of obstacles to overcome.

First, as the non-negative rank is NP-hard to compute, so is its gradient. Minimizing it directly
is therefore not possible. The proxy measure we derive using approximate NMF over a grid of
different rank values K is not directly usable for this end. Although the computational pipeline
that is de�ned by NMF with multiplicative updates is differentiable, its gradient properties are
poor. Due to repeated matrix multiplication operations, the gradient tends to vanish.

One possibility is to instead incorporate NMF perturbations, i.e., A ¯ [UV ¡ A]noise, as a non-
differentiable noise term. This form of regularization would be to NMF what the random
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6.2. Future work

ablations method (Section 2.3.4) is to dropout [89]. However, since the noise is not indepen-
dent of the data it is not clear what effect this would have.

Additionally, computing the approximate measure does entail certain overhead, which if
incurred at every training iteration can substantially slow down training. A strategy that
selectively applies NMF regularization, at certain iterations with certain values of K , could
alleviate this problem but would involve more hyper-parameters and tuning.

The decomposition into the matrices U and V has potentially many uses that rely on image
co-segmentation. One example is style transfer [35], where the NMF decomposition could
be used to match different styles to different parts in a semantically-aware way. Applications
could be based on applying NMF to consecutive frames of a video, for instance for object
tracking.

Finally, the emergence of a distinct part through NMF does not necessarily mean its presence
promotes correct classi�cation. Similar to the study of adversarial examples [90], it is interest-
ing to see how ablating or perturbing speci�c column-row pairs from U and V , respectively,
promotes, hurts or has no effect on the correctness of network predictions.
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