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Abstract
We develop a predictive theory applicable to the scrape-off layer (SOL) of inner-wall limited plasmas. Using the non-linear
flattening of the pressure profile as a saturation mechanism for resistive ballooning modes, we are able to demonstrate and
quantify the increase of the SOL width with plasma size, connection length, plasma β, and collisionality. Individual aspects of
the theory, such as saturation physics, parallel dynamics, and system size scaling, are tested and verified using non-linear, 3D
flux-driven SOL turbulence simulations. Altogether, very good agreement between theory and simulation is found.

Keywords: SOL width, turbulence, tokamak, ballooning modes, limited plasmas
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1. Introduction

While determining the scrape-off layer (SOL) width and
understanding the transport mechanisms involved in SOL
profile formation are crucial issues for ITER and all future
tokamak devices, a complete understanding of the subject is
still needed. In recent years, for instance, it was discovered that
the L-mode scaling used to calculate the ITER heat-flux width
and design the inner wall [1] did not apply to the start-up phase
of the discharge, when the plasma is wall-limited. Many inner-
wall limited experiments were then carried out to understand
how the SOL width varies with the plasma parameters [2–8].

The goal of the present paper is to address the turbulent
dynamics of circular, inner-wall limited SOL plasmas, such as
the proposed ITER start-up scenario, and establish a theory-
based predictive capability in this simplest configuration.
Our investigations concentrate on the characteristic pressure
gradient length Lp = −p/∇p, which regulates the
steady-state heat load on the wall. Building on recent
theoretical investigations [9, 10], and complementing the
initial comparison with experimental data presented in a recent
letter [11], we provide a generalized analytical framework that
allows us to understand the scaling of the SOL width as a
function of its operational parameters. The predictions of our
model are in remarkable agreement with a large simulation
scan, presented here, covering a wide range of SOL parameters.

The SOL width (i.e. Lp) results from a competition
between plasma outflow from the core, perpendicular transport
driven by turbulent structures, and parallel losses at the end of
the magnetic field lines that are determined by sheath physics.
In order to address these effects, we use a global, drift-reduced
Braginskii fluid model [12] in combination with a proper set of

boundary conditions at the magnetic pre-sheath entrance [13].
We carry out flux-driven, global 3D simulations in circular
geometry with a toroidal limiter on the equatorial plane at the
high-field side. The quasi-steady-state profiles result from
turbulence driven by flute-like, large amplitude meso-scale
structures such as those experimentally observed.

Our main results can be summarized as follows. The
saturation model proposed, in combination with a linear
stability code, yields Lp within 10% of the fully non-linear
computation using the SOL operational parameters only as
an input. Noticing that the resistive ballooning mode (RBM)
is the instability driving turbulence in the simulations, it
is shown that the steady state Lp (normalized by ρs =
cs/ωci = √

Te/mi/(eB/mi)) can be estimated using the
following scaling:

Lp = [
2πρ�αd(1 − α)1/2/q

]−1/2
, (1)

for α below the ideal ballooning threshold. The dimensionless
parameters regulating the SOL width are the safety factor
q = (r/R)(Bφ/Bθ); the collisional parameter αd =
2−7/4ν−1/2(ρ�L

−1/4
p )/(πq); the ideal ballooning stability

parameter α = q2βR/Lp; and the normalized ion-sound
gyroradius ρ� = ρs/R. (r and R are the tokamak minor and
major radii, ν = e2nR/(micsσ‖) is the normalized Spitzer
resistivity, β = 2µ0p/B2 is the ratio of kinetic to magnetic
pressure, and σ‖ is the Spitzer conductivity. Also, note that
the typical definition of ρ� uses the minor radius a instead
of R.) Our analysis of the simulation data reveals very good
agreement with our analytical theory. At fixed ρ�, it is shown
that the variation of the SOL width is determined by the
dimensionless parameters αd/q and α. We also analyse in
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detail the SOL width dependence on ρ�, discussing deviations
from the RBM estimate. Finally, it is remarked that, while
there have been previous attempts at understanding the SOL
width scaling using 2D models [14–17], our results reveal
the importance of 3D effects such as parallel resistivity and
electromagnetic fluctuations in determining Lp in the SOL.

This paper is organized as follows. In section 2, the
physical model used to study SOL turbulence is discussed.
Then, in section 3, a theory predicting the SOL width as a
function of the dimensionless parameters is derived. Section 4
describes the results of SOL non-linear turbulence simulations,
which serve as a verification of our theory. We discuss and
disentangle, in particular, saturation physics and the effects
of parallel dynamics and system size. Section 5 presents a
summary of the findings of this work.

2. Model

In the tokamak SOL, it is of particular interest to understand
temperature and density profile formation, which occurs as a
power balance between particle and heat injection from the
plasma core, perpendicular transport driven by turbulence,
and parallel losses at the sheaths where the magnetic field
lines intersect the vacuum vessel. The excitation of turbulent
modes can result from a combination of unfavourable magnetic
field curvature, pressure gradients, and electron adiabaticity
breaking either by resistivity or electron inertia effects,
which can be enhanced by electromagnetic effects. The
resulting turbulent dynamics is characterized by the presence
of meso-scale structures, i.e. large amplitude structures with a
significant radial extension.

SOL turbulence investigations must therefore be global,
and flux driven; both micro (up to ρs) and macroscopic (Lp)
length scales must be resolved, and the turbulent fluctuations
cannot be formally separated from the background. Particle
trapping is negligible since ν� � 1 in the SOL of limited
plasmas, while finite Larmor radius effects are small since
kθρs ∼ 0.1 for the typical dominant modes in the non-linear
stage. Since the plasma is relatively cold, a fluid model can
capture the essential physical ingredients of this system.

For the present study, we use a cold-ion drift-reduced
model [12], which can be derived from the Braginskii two-
fluid equations [18] by imposing the orderings d/dt � ωci,
k⊥ � k‖, and Ti � Te. The drift-reduced equations, in
normalized units, read as follows:

∂tn = −ρ−1
� [φ, n] − ∇‖

(
nv‖e

)
+ 2

[
Ĉ (pe) − nĈ (φ)

]
+Dn∇2

⊥n + Sn (2)

∂tω = −ρ−1
� [φ, ω] − v‖i∇‖ω +

2

n
Ĉ (pe) +

1

n
∇‖j‖

+
Ĉ (Gi)

3n
+ Dω∇2

⊥ω (3)

∂tχ = −ρ−1
�

[
φ, v‖e

] − v‖e∇‖v‖e + Dv‖e∇2
⊥v‖e

+
mi

me

(
ν
j‖
n

+ ∇‖φ − 1

n
∇‖pe − 0.71n∇‖Te − 2

3n
∇‖Ge

)
(4)

∂tv‖i = −ρ−1
�

[
φ, v‖i

] − v‖i∇‖v‖i − 1

n
∇‖pe − 2

3n
∇‖Gi

+Dv‖i∇2
⊥v‖i (5)

∂tTe = −ρ−1
� [φ, Te] − v‖e∇‖Te

+
4

3
Te

[
7

2
Ĉ (Te) +

Te

n
Ĉ (n) − Ĉ (φ)

]

+
2

3
Te

(
0.71

n
∇‖j‖ − ∇‖v‖e

)
+ DTe∇2

⊥Te + STe , (6)

where ω = ∇2
⊥φ is the vorticity and equation (3)

has been simplified using the Boussinesq approximation
∇ · (ndt∇⊥φ) ≈ ndt∇2

⊥φ. The quantity χ = [v‖e +
miβ0ψ/(2me)] represents a combination of inertial and
induction effects in the Ohm’s law, j‖ = n(v‖i − v‖e) is the
parallel current, ν = e2nR/(miσ‖c̄s) is the normalized Spitzer
resistivity, and β0 = 2µ0n̄T̄e/B

2
0 is the reference beta (n̄

and T̄e are, respectively, the reference electron density and
temperature, and c̄s =

√
T̄e/mi). Here, ψ = −b0 · A1 is the

parallel component of the magnetic vector potential given by
∇ × A1 = B1. The unit equilibrium magnetic field vector
is b0 = B0/B0 (subscripts ‘0’ and ‘1’ indicate equilibrium
and perturbed quantities, respectively). The parallel current
and the poloidal flux function are related through Ampère’s
equation, ∇2

⊥ψ = j‖.
The following normalizations are used in the drift-reduced

equations: t = t̃/(R/c̄s), ∇⊥ = ρ̄s∇̃⊥, ∇‖ = R∇̃‖, v‖ =
ṽ‖/c̄s, n = ñ/n̄, Te = T̃e/T̄e, φ = eφ̃/T̄e, and, ψ =
ψ̃/[2c̄smi/(eβ0)]. Here, the tildes denote quantities in MKS
physical units, and the bars denote reference quantities defined
in terms of the normalized density n̄ and temperature T̄e.
All variables are expressed in their adimensional form unless
specified otherwise.

Plasma outflow from the closed flux-surface region is
mimicked using density and temperature sources, respectively,
Sn and STe . The Ge and Gi terms represent the gyroviscous
part of the pressure tensor (see [12]). Small perpendicular
diffusion terms of the form Df ∇2

⊥f are added mostly to
allow the numerical solution of the system. In addition,
[f, g] = b0 · (∇f × ∇g) is the Poisson bracket, while
Ĉ(f ) = (B0/2)[∇ × (b0/B0)] · ∇f is the curvature operator.
The parallel gradient includes the effect of perpendicular
electromagnetic perturbations, and is defined as ∇‖f = b̂0 ·
∇f + β0ρ

−1
� [ψ, f ]/2.

We consider a SOL model in circular geometry with a
toroidal limiter set at the high-field-side equatorial mid-plane.
The coordinate system used is (θ, r, ϕ), right-handed—r is the
radial coordinate, with r = 0 set at the last closed flux surface,
θ is the poloidal angle, and ϕ is the toroidal angle. Under
these assumptions, the curvature operator reduces to Ĉ(f ) =
(sin θ)∂xf + (cos θ + ŝθ sin θ)∂θf and the Poisson bracket is
defined as [f, g] = a−1(∂θf ∂xg − ∂xf ∂θg) (ŝ = (a + r)q ′/q
is the magnetic shear).

The plasma interfaces with the vacuum vessel through
a magnetized pre-sheath where the fluid drift approximation
breaks down. The validity of the drift-reduced model,
therefore, formally extends until the magnetic pre-sheath
entrance, where we apply an appropriate set of boundary
conditions [13]:

v‖i = ±cs (7)

v‖e = ±cs exp (� − φ/Te) (8)

ω = − cos2

(
r

qR

) [(
∂v‖i

∂θ

)2

± cs
∂2v‖i

∂θ2

]
a−2 (9)

2
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ψ = 0 (10)

∂n

∂θ
= ∓ n

cs

∂v‖i

∂θ
(11)

∂φ

∂θ
= ∓cs

∂v‖i

∂θ
(12)

∂Te

∂θ
= 0, (13)

where � ≈ 3.
Since our study discusses plasma size and quantities such

as ν, q and β, which determine parallel dynamics, it is
useful to discuss how these parameters enter the drift-reduced
Braginskii model. The simulated plasma size is incorporated
into the equations through the E × B flow advective terms
arising from the total time derivative, which are varied through
the dimensionless parameter ρ�. In our simulations, decreasing
ρ� is equivalent to increasing the toroidal magnetic field,
decreasing the temperature, or increasing the machine size.
In addition, the plasma size enters the equations through the
normalization of the collisionality ν.

Parallel dynamics involve, on one hand, sonic flows that
carry the plasma towards the plasma sheaths, and, on the other,
a coupling between the vorticity equation ∇ ·j = 0 and Ohm’s
law (equations (3) and (4)). The parallel flows affect mainly the
bulk of the plasma and carry bulk density and heat towards the
limiter where the magnetic field lines terminate (equations (2)
and (6)). Since the major radius is used to normalize the
parallel scale length, its value does not appear explicitly in
the parallel loss terms ∼ ∇‖(pv‖e).

The parallel electron motion, which is coupled to the
vorticity equation, is responsible for adiabaticity breaking,
allowing different instabilities to grow. The effects included
in the Ohm’s law are the plasma resistivity, electron inertia,
electromagnetic induction, and diamagnetic stabilization. This
leads to our model being able to describe the resistive and
inertial branches of drift waves and ballooning modes, and,
in addition, the ideal ballooning mode. In the regime of
interest for typical limited discharges (β ∼ 10−5, 0 � ŝ � 2,
ν ≈ 0.005–0.05, 3 < q < 10), resistivity is the most
important destabilization mechanism and mode growth is fed
by unfavourable curvature [19].

The plasma size and parallel dynamics are instrumental in
understanding the SOL width, since they affect the amplitude
and dominant wavelength of the turbulent modes in the non-
linear quasi-steady-state phase. Our theoretical understanding
of these effects is developed below in section 3, and a large set
of non-linear simulation results testing our theory are presented
in section 4.

3. Theory of the SOL width

In a recent study [9], it has been shown that the magnitude of the
turbulent fluxes in the SOL can be predicted using the gradient-
removal mechanism, i.e. the local non-linear flattening of
the pressure profile caused by the turbulent structures. The
gradient-removal model has been used to explain experimental
observations of Lp in a number of tokamaks [11], the transition
between different unstable modes depending on the plasma
parameters [19], the effects of finite aspect ratio [20], and the
transition between the electrostatic and the ideal ballooning

unstable regimes [10]. A short summary of the model follows
below.

In our non-linear, flux-driven simulations, it is observed
that sheared flows are unable to significantly affect the
turbulence levels. Turbulent saturation, in fact, occurs when
the linear drive from the background gradient is locally
exhausted by the pressure non-linearity. Starting from this
hypothesis, it follows that the amplitude of the turbulence
can be estimated as p1/p0 ∼ σr/Lp. The radial extension
of the mode, σr ≈ √

Lp/kθ , is obtained from a non-local
linear theory [21, 22]. Then, the leading order contribution
of a continuity equation leads to an estimate of the turbulent
E ×B flux, � = p0γ /kθ , where γ is the linear growth rate of
the instability that dominates the non-linear dynamics. Power
balance between perpendicular turbulent transport, ∂x� ∼
�/Lp ∼ p0γ /(kθLp), and the parallel losses at the sheath,
∇‖(pv‖e) ∼ p0cs0/q, results in an estimate of the profile length

Lp ∼ q

cs0

(
γ

kθ

)
max

. (14)

In the following, we will assume cs0 = 1, which corresponds
to normalizing Te to its background value. Furthermore, it is
assumed that the flux is driven by a single mode that maximizes
γ /kθ , i.e. we assume that the non-linear phase is dominated
by the poloidal mode that leads to the flattest pressure profile.

The steady state Lp can be predicted provided that the
linear growth rate of the transport-driving mode is known.
SOL turbulence in limited plasmas has been addressed with
3D electromagnetic simulations, finding that RBMs dominate
the plasma dynamics [10, 23]. In the absence of poloidal
periodicity, RBMs are dominant over non-linearly driven drift
waves [23], and linearly unstable drift waves are damped by
the magnetic shear [24]. Moreover, it is possible to estimate
the non-linear regime instability using linear calculations and
an estimate of the radial flux driven by each instability [19].
This calculation confirms the importance of RBMs in the SOL
of limited plasmas.

We henceforth concentrate on the dynamics of RBMs
and how they affect the SOL width. Using equations (2)–(6)
together with equation (14), it is possible to show that the
dimensionless parameters regulating the SOL width are q, ρ�,
α = q2βR/Lp, and αd = 2−7/4ν−1/2(ρ�L

−1/4
p )/(πq). The

computation yields a dimensionless scaling, which predicts
fully non-linear simulation results reasonably well. In order
to obtain this result, we first simplify the two-fluid system
(equations (2)–(6)) considerably. These simplifications are
supported a posteriori by the fact that the simple model
captures the principal ingredients of the non-linear steady-
state. Starting from equations (2)–(6), we neglect: the ion
parallel motion equation; compressibility effects and parallel
couplings in the density and temperature equations; electron
inertia and diamagnetic effects in Ohm’s law; all diffusion and
gyroviscous terms; and, finally, electromagnetic perturbations
are ignored everywhere except for the left-hand-side of Ohm’s
law. The density and temperature equations are added to obtain
an equation for the total pressure. The resulting system of
equations is, essentially, a reduced MHD model describing
resistive and ideal ballooning modes:

∂p

∂t
= −ρ−1

� [φ, p] (15)

3
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∂ω

∂t
= 2Ĉ(p) + ∇‖j‖ (16)

β0

2

∂ψ

∂t
= ∇‖φ + νj‖. (17)

The linear dispersion relation resulting from this model reads

(
γ 2 − γ 2

b

)
k2
θ = − γ

νq2

[
1 − α

(
1 − γ 2

γ 2
b

)]
, (18)

where the term on the right-hand side represents the parallel
dynamics obtained from equation (17) and γb = √

2/(ρ�Lp) is
the reference RBM growth rate. In deriving equation (18) we
have assumed k‖ ∼ 1/q, k⊥ ∼ kθ , and the curvature operator
is assumed to take the simple form Ĉ(f ) = ∂θf . Magnetic
shear effects are neglected, since they have a weak influence
on the RBM growth rate in the regime of interest [24].

Assumingα < 1 (the ideal ballooning branch is neglected)
and γ 2 � γ 2

b , the gradient-removal flux estimate, � =
(γ /kθ )max, can be obtained analytically. This is equivalent to
a low β, low-frequency regime for RBMs. We start by solving
the equation ∂kθ

(γ /kθ ) = 0, which yields k2
θ = 31/4k2

b/
√

2 ≈
0.93k2

b , with k2
b = (1 − α)ν−1q−2γ −1

b ∝ (1 − α)α2
d/γ

2
b .

Note that the modes dominating the non-linear state have a
wavelength that is intermediate between marginal stability
and the strongly unstable regime. Therefore, it appears that
it is not possible to simplify equation (18) using kθ as an
expansion parameter. The saturated growth rate is obtained by
substituting kθ into the solution of equation (18), which gives
γ = γb/

√
3 ≈ 0.57γb. To obtain Lp, we use equation (14)

together with the estimates γ = γb and kθ = kb, which yields
a dimensionless scaling:

Lp = [
2πρ�αd(1 − α)1/2/q

]−1/2
. (19)

Equation (19) clearly identifies the dimensionless parameters
describing the scaling of Lp: ρ�, which describes the system
size scaling; αd/q, which includes collisional effects and the
connection length; and α, which is due to electromagnetic
effects. The parameters act as follows: ρ� modifies the linear
drive through γb; increasing αd/q is equivalent to increasing
the conductivity or decreasing the connection length, which
inhibits mode growth at low kθ ; while α enhances the non-
adiabatic electron response and has a destabilizing effect on
the electrostatic resistive branch.

This expression for Lp is equivalent to the dimensionless
scaling derived in [11] (with ρ� being equivalent to the
parameter R̃−1 introduced therein). Additionally, note that
both αd and α include factors of Lp—therefore, equation (19)
is an implicit scaling. In the low beta case, α � 1, it is
possible to obtain an explicit scaling as a function of the GBS
input parameters ρ�, q and ν. The expression for the SOL
width is

Lp = 23/7ρ−3/7
� q8/7ν2/7. (20)

This simple theory of the SOL width, which is applicable in
inner-wall limited discharges, has been fully verified against
non-linear simulations describing SOL profile formation.
More specifically, we have explored the effects of changing
plasma size, resistivity, plasma β, and connection length
separately. The non-linear simulation results are described
below.

4. Non-linear simulations

We have carried out an extensive simulation campaign aiming
to understand saturation physics, parallel dynamics, and
plasma size effects in inner-wall limited plasmas. Global,
flux-driven, non-linear simulations of the SOL dynamics are
carried out with GBS [12], a numerical implementation of the
global drift-reduced Braginskii model (equations (2)–(6) with
boundary conditions (7)–(13)). GBS was originally developed
to study turbulence in basic plasma physics experiments, and
is fully validated against TORPEX probe measurements (e.g.
[22, 25–28]). Since 2011, GBS is also capable of carrying
out flux-driven simulations of the tokamak SOL in limited
configuration. The plasma dynamics are evolved within an
annulus in the open magnetic field line region of the plasma
vessel. Entire flux surfaces, up to the limiter, are included in
the simulation domain. We use a simple circular geometry
with a toroidal limiter on the high-field side mid-plane, with
constant q and constant ŝ.

In the simulated SOL dynamics, there is no separation
between fluctuations and background profiles, and no length
scale separation is imposed. Plasma sources, which mimic the
plasma outflow from the core, increase the pressure gradient
until linearly unstable modes appear, driving turbulence that
leads to perpendicular transport. Over a longer period, a non-
linear quasi-steady turbulent state is naturally achieved as a
power balance between plasma injection, turbulent transport,
and parallel losses at the plasma sheaths.

We simulate SOL plasmas where RBMs are expected to
dominate transport, and we attempt to maximize the range
of the dimensionless parameter space probed. We use q =
{3, 4, 6}, ν = {0.01, 0.1, 1}, mi/me = 200 and β0 = 0–
3 × 10−3. The normalized plasma sizes used were ρ� =
{500, 1000, 2000}−1, with an aspect ratio R/a = 4. In
the plasma size scan we used ŝ = 0, 1. Note that, since
GBS simulations are global, the simulation domain size must
be increased with ρ−1

� , resulting in significant use of high-
performance computing resources. The pressure profiles
observed in the turbulent steady-state typically have the form
p ∼ exp(−r/Lp) with Lp ranging from 25 to 150.

In the subsections below we deal specifically with the
different aspects of our SOL width theory (section 3). The
saturation model is investigated in the context of non-linear
simulations in section 4.1. Then, in section 4.2, the theory-
based scaling is directly compared against a scaling obtained
from the simulation results. The parallel dynamics effects (q,
α, and αd) and the system size scaling effects (ρ�) are studied
in sections 4.3 and 4.4, respectively.

4.1. Saturation mechanism

Here, we present a verification of the gradient-removal model
using the simulation database described above. To that effect,
we implement an iterative scheme to solve equation (14). With
the SOL dimensionless operational parameters ρ�, q, ν, βe,
and ŝ fixed, the linear growth rate γ is computed using a
drift-Braginskii linear solver [24] and Lp is varied iteratively
until equation (14) is satisfied. It is remarked that γ is a
function of the plasma parameters Lp, kθ , ρ�, q, ν, β0, ŝ, while
the obtained result is Lp as a function of ρ�, q, ν, β0, and ŝ.

4
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Figure 1. The gradient-removal estimate for Lp is compared against
GBS non-linear simulations of SOL turbulence. The coefficient of
determination given by gradient-removal theory is R2 ≈ 0.93.

The result of the computation is the value of Lp that satisfies
the power balance between perpendicular transport and parallel
losses at the field line ends, for a set of SOL operational
parameters.

This procedure was carried out for all the simulations
described in this paper. The results of the verification
exercise are shown in figure 1. The abscissa shows the
theoretical prediction provided by equation (14) while the
ordinate shows the GBS fully non-linear result. Overall,
very good agreement is found throughout the entire parameter
range, with a coefficient of determination R2 ≈ 0.93. By
providing an explanation of the power balance, gradient-
removal theory gives an interpretation for the different physical
effects involved in setting the SOL width.

The saturation mechanism, when applied to the RBM,
yields the dimensionless scaling given by equation (19). We
have verified this scaling against non-linear simulations with
α � 0.5, which is necessary in order to avoid ideal instability.
This low β regime is, in fact, the experimentally relevant
scenario for inner-wall limited discharges. The results of the
comparison are shown in figure 2, where the abscissa provides
the analytical scaling estimate, while the ordinate provides
the fully non-linear Lp. There is relatively good agreement
between theory and simulations for a large range of parameters,
with a coefficient of determination for the fit of R2 ≈ 0.72.

Finally, since the gradient-removal computation also
yields the expected non-linear value of kθ , it is worth
commenting on this issue. We have found that the peak kθ of
the non-linear simulations increases with αd and decreases with
γb ∼ ρ

−1/2
� . This is exactly what is expected from the RBM

theory, since kb ∝ αd/γb. However, the non-linear turbulent
spectra are rather wide, with a full-width half-maximum
�kθ ∼ kθ . Therefore, a detailed quantitative comparison
between theory and simulations (e.g. such as figure 1) is not
possible.

4.2. Comparison with non-linear regression analysis of
simulation data

In addition to the theoretical scaling, equation (19), it is also
possible to obtain a dimensionless SOL width scaling by
carrying out a least-squares fit on the simulation data. We have
carried out this exercise, which also serves as a verification of
our theory. All simulations in the scan are included, provided
that they reside below the ideal stability threshold.

0 30 60 90 120 150 180
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150

180

Figure 2. GBS turbulence simulation results are compared with the
analytical scaling of the SOL width (equation (19)) as a function of
the dimensionless parameters ρ�, α and αd/q. The coefficient of
determination for the fit is R2 ≈ 0.72.

The least-squares fit based on the dimensionless
parameters q, ρ�, αd, and α gives

Lp = 0.42 q0.55ρ−0.53
� α−0.32

d (1 − α)−0.24 . (21)

The coefficient of determination resulting from this fit is
R2 ≈ 0.94. Note that the exponents and even the numerical
constant of equation (21) are very similar to the ones found
in equation (19). With the exception of the αd (collisional)
dependence, all exponents are within 10% of the theoretical
results.

On the other hand, the fit based on the GBS parameters q,
ρ�, ν and β0 is

Lp = 1.00 q0.98ρ−0.46
� ν0.17β0

0 , (22)

which then leads to an MKSA scaling of the form

Lp ∼ q0.98R0.63B−0.56, (23)

with weak dependences on density and temperature, i.e.
essentially the same scaling found in our recent letter [11] and
reported in equation (20) using only theoretical arguments.

We have investigated the difference between the
collisionality dependences found in the theory (Lp ∼ ν2/7) and
in the simulations. We employ the quasi-linear, self-consistent
computation of Lp described in section 4.1 at fixed R = 500,
q = 4, and varying ν. The result is that the ν exponent is
affected (a) by the use of an increased electron mass in the GBS
simulations and (b) by the assumption of full non-adiabaticity
in equation (17). Therefore, the assumptions used to deduce
the RBM scaling are not fully satisfied in our simulations.

4.3. Parallel dynamics

Here, we investigate the effects of the dimensionless
parameters describing the SOL parallel dynamics. Our
objective is to build a SOL dimensionless parameter space
describing collisional and finite β effects, verifying that α, and
αd/q are indeed the relevant dimensionless parameters. The
SOL width Lp and the dimensionless parameters suggested
by equation (19), αd and α, are computed using equation
(14) together with the linear growth rate provided by the
drift-Braginskii linear solver [24]. The following parameter
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Figure 3. Gradient length is shown as a function of α and αd for
q = 3, 4 and 6. The coloured contours indicate Lp predicted by
equation (14), while each symbol represents a non-linear simulation.
Triangles represent simulations with q = 3, squares simulations
with q = 4, and diamonds simulations with q = 6.

space was explored: ρ� = 500−1, ŝ = 0, q = 3, 4, 6,
ν = 0.01–1, β0 < 10−2. The resulting dimensionless
parameter spaces for q = 3, 4, and 6 are displayed in figure 3,
where we show contours of equalLp with non-linear simulation
results superimposed showing good agreement. It is observed
that the dimensionless parameter space covered is different
in each case, as both α and αd depend on q. High q

values naturally result in a wider SOL through a combination
of increased resistive (αd) and electromagnetic (α) effects.
The calculation confirms the interpretation obtained starting
from equation (18), i.e. Lp increases in the regime where
we predicted destabilization of resistive modes from low αd

(a combination of high resistivity and long connection length),
and increasing α (increased non-adiabatic electron response
through electromagnetic perturbations).

Based on these results, and provided that the SOL
dynamics are given by gradient-removal saturated RBMs, we
now establish a unified dimensionless parameter space that
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Figure 4. Unified dimensionless electromagnetic parameter space
built using gradient-removal theory in combination with the fluid
linear system. Here Lp is shown as a function of α and αd/q. The
coloured contours indicate Lp predicted by equation (14), while
each symbol represents a non-linear simulation. Triangles represent
simulations with q = 3, squares simulations with q = 4, and
diamonds simulations with q = 6.

is valid for any value of q. Equation (19) suggests that the
dimensionless parameter space is given by α and αd/q. In
figure 4, we plot the Lp contours for q = 4 as a function of these
two parameters. We have superimposed the GBS simulation
data obtained for all the simulations with ρ−1

� = 500, for all of
the q values. The theoretical model yields a good prediction
of the values of Lp obtained in non-linear simulations, with
Lp often being predicted within 5ρs. Note that the relevant
dimensionless parameter describing resistive and connection
length effects is therefore αd/q and not αd itself.

These dimensionless parameters, which we propose for
the SOL of limited discharges, may not apply to the SOL
of diverted discharges. In Alcator C-Mod, for example, it
has been shown that the relevant dimensionless parameters
for the near SOL are αd and α [29, 30]. In particular, it
was demonstrated that Lp decreases with decreasing αd and,
furthermore, it was observed that αd and α both decrease as
the Greenwald density limit is approached.

4.4. Plasma size scaling

The variation of Lp with system size is one of the greatest
uncertainties that must be resolved as we approach the era
of ITER (ρ� ∼ 10−4, which is impractical to simulate at the
present time). We have carried out a set of simulations that
address the system size scaling of the SOL width in limited
plasmas such as the proposed ITER start-up scenario. In order
to understand ρ� effects, we have chosen to decrease ρ� while
leaving the normalized collisionality ν and the injected power
per unit volume unchanged. This is equivalent to increasing the
strength of the magnetic field at fixed temperature and system
size.

We start with the parameters ρ� = 500−1, q = 4,
ν = 0.01, 0.1, 1, ŝ = 0, 1, 2, and increase the plasma
size to ρ� = 1000−1 and ρ� = 2000−1. We consider the
electrostatic limit, β � 1. The smallest simulated plasma
size (ρ� = 500−1) was used above to explore the parallel
dynamics effects; the second size, ρ� = 1000−1, is roughly
equivalent to the CASTOR tokamak [31]; while ρ� = 2000−1

has similar physical parameters as the SOL of TCV in limited
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Figure 5. Poloidal cross sections of p are shown for GBS
simulations with q = 4, ŝ = 0 and ν = 0.01 as the dimensionless
plasma size is increased, ρ� = {500, 1000, 2000}−1. Note how Lp,
indicated as a black line on the low-field-side equatorial mid-plane,
increases as ρ� decreases. The red bar on the high-field-side
mid-plane represents the limiter. The largest case shown here has
physical parameters equivalent to the TCV SOL, R = 0.85 m,
a = 0.2 m, B = 1.4 T, T̄e = 15 eV.

configuration [32]. In fact, for TCV (R = 0.88 m, B = 1.4 T,
T̄e ≈ 15 eV, n̄ ≈ 3 × 1018 m−3) we obtain ρ� ≈ 2000−1,
ν ≈ 0.01, αd ≈ 0.5, β ≈ 10−5, while q = 3–6 and ŝ ≈ 2.
The SOL of limited discharges has an experimental width of a
few centimetres, Lp ∼ 100, R/Lp ≈ 20.

As an example, the quasi-steady state poloidal cross
sections of the pressure for these simulations are shown in
figure 5. The high-field side toroidal limiter is denoted by
a red bar on the equatorial mid-plane. The profile lengths
increase noticeably as ρ� decreases (Lp = 30, 40, 72 for
ρ� = {500, 1000, 2000}−1 respectively, and ν = 0.01),
in accordance to the prediction of the analytical model
(equation (19)). It has also been checked that the effect of
varying ŝ from 0 to 2 at ρ� = 2000−1 does not change
Lp significantly, in agreement with a quasi-linear analysis
assuming gradient-removal saturated turbulence [19].

It is interesting to investigate the nature of the turbulent
structures in experimentally relevant parameters. We have
computed the phase between the electrostatic potential and the
pressure fluctuations as a function of the poloidal wavenumber
kθ . In addition, we have calculated the cross-coherence
function between potential and pressure fluctuations. The
results of these diagnostics are shown in figure 6 for simulations
with ρ−1

� = 2000, ν = 0.01, ŝ = 0, 1, 2 (top, centre,
and bottom rows, respectively). Our diagnostic shows that
the turbulent modes peak roughly at kθ ≈ 0.1 for all
the plasma sizes studied. Using the physical parameters
corresponding to the TCV SOL, this is equivalent to a half-
centimetre poloidal wavelength. The phase difference between
φ and pe is significant in all cases, but slightly smaller
than the π/2 phase expected from the reduced MHD model

leading to equation (18). The cross-coherence function
shows some correlation between potential and pressure
fluctuations, which decreases as ŝ increases. The decreased
phase lag and the correlation observed between φ and pe

perturbations are a consequence of the adiabatic electron
pressure response in the Ohm’s law. This effect is not taken
into account in equation (18). Altogether, the mode appears
to be of the ballooning kind with the resistivity providing
the destabilization mechanism. We therefore confirm the
importance of RBMs in limited SOL plasmas at experimentally
relevant parameters. It is noted, however, that diamagnetic
effects do play a role in the dynamics, in particular by
weakening the non-adiabatic parallel electron response.

Finally, we estimate how Lp scales with ρ� at fixed
normalized collisionality ν. Figure 7 shows Lp from GBS
simulations as a function of ρ�. The gradient-removal
estimates of Lp, obtained by solving equation (14) as a function
of the SOL parameters, are superimposed as lines. Once again,
the saturation theory provides a reasonably good prediction of
the non-linear quasi-steady-state Lp. The gradient-removal
estimate for ν = 0.01 follows the size scaling Lp ∼ ρ−0.57

� ,
while our analytical theory gives a slightly different scaling,
Lp ∼ ρ

−3/7
� ≈ ρ−0.43

� . A more detailed quasi-linear analysis
has revealed that the difference between the scalings originates
from a combination of effects. On the one hand, the use of
mi/me = 200 slightly exaggerates the ρ� dependence in the
gradient-removal solution. On the other hand, the neglect of
compressibility terms and (especially) the adiabatic electron
response in the Ohm’s law in deriving equation (18) weakens
the ρ� dependence with respect to the full model. This finding
supports our statement that the dominant non-linear modes
are RBMs with the resistive response slightly weakened by
diamagnetic effects.

5. Summary and conclusions

In conclusion, we have developed and verified a theory for the
SOL width of inner-wall limited plasmas. The dimensionless
parameters regulating the SOL width have been identified and
the effects of parallel dynamics and plasma size have been
explored with the aid of large scale numerical simulations.
The GBS code was used to explore a large portion of
the dimensionless parameter space, including experimentally
relevant physical parameters.

First, we studied the mechanism responsible for setting the
amplitude of the turbulent structures. It was found that sheared
flows are rather weak in our simulations. Consequently, the
turbulent amplitude is limited by the local non-linear flattening
of the pressure profile. From the pressure continuity equation
(a power-balance relation), we can compute the expected Lp

as a function of the SOL operational parameters only. Overall,
excellent agreement between theory and simulation is observed
for all the simulations in our large database.

Second, we have clarified the importance of parallel
dynamics in setting the SOL width. Assuming that RBMs
drive the perpendicular transport, and applying the gradient-
removal theory, it was shown that, in limited plasmas, Lp is
governed by the parameters αd/q and α, in good agreement
with GBS simulation results. These dimensionless parameters
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Figure 6. Phase difference (left) and cross-correlation (right) between φ and pe perturbations are shown for GBS simulations with q = 4,
ν = 0.01, ρ� = 2000−1, ŝ = 0, 1, 2 (top, centre, and bottom rows, respectively). The phase diagram has been renormalized using the power
spectrum of the φ fluctuations. The cross-correlation diagram involves the distribution functions of the perturbations rescaled using their
standard deviation (σ ).
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Figure 7. The pressure gradient length Lp calculated from GBS
simulations with q = 4, ŝ and ρ−1

� = 500, 1000, 2000 are shown as
triangles (ν = 0.01), circles (ν = 0.1) and squares (ν = 1). We
superimpose the predictions of the gradient-removal theory, shown
as lines. The profile length at ν = 0.01 scales like Lp ∼ ρ−0.57

� ,
while the analytical theory (equation (19)) predicted Lp ∼ ρ−0.43

� .

can be used to express the SOL width in dimensionless units:

Lp = [
2πρ�αd (1 − α)1/2 /q

]−1/2
(24)

We note that the electromagnetic parameter space found (e.g.
figure 4) is different respect to what has been observed for
diverted L-mode discharges in C-Mod. In this configuration,
LaBombard et al [29, 30] found that the relevant dimensionless
parameters are αd and α. It is conjectured that a different
saturation mechanism could be at play in diverted shots. In

particular, the connection length (the safety factor q) becomes
very large near the X-point, and in such cases we expect
Kelvin–Helmholtz modes to become important in the turbulent
saturation process [9].

We also explored the effects of increasing the ‘plasma
size’, more specifically, decreasing ρ� towards experimentally
relevant levels. Strictly speaking, the scan carried out in
this paper is equivalent to keeping the physical plasma size,
temperature, and normalized collisionality constant, while
varying the toroidal magnetic field. The GBS simulations have
parameters equivalent to the TCV SOL at one-quarter, one-
half, and full toroidal magnetic field strength. The pressure
gradient length found in the GBS simulations was found to
approximately scale with size like ρ−0.57

� , while our analytical
theory predicted a slightly weaker scaling Lp ∼ ρ

−3/7
� . The

difference in exponents is due to a combination of effects
(compressibility effects and adiabatic electron response) which
are neglected in the derivation of equation (18). We have also
confirmed that RBMs are relevant in the non-linear turbulent
state at realistic SOL parameters. Our scaling, as shown in our
recent letter [11], predicts Lp ≈ 6–10 cm with q = 6–8 during
the start-up phase of ITER.

Finally, it is suggested that, in order to reproduce our αd

scaling using 2D turbulence simulations of SOL transport,
the closure of the parallel current in the vorticity equation
could be modified to include a resistive damping term. Using
such approach, however, it may be very challenging to
model electromagnetic effects—this is particularly true in
diverted configurations, where electromagnetic fluctuations
are expected to be important [29, 30]. Overall, our study
once again remarks the importance of retaining 3D effects, a
global domain, and a full power-balance in understanding SOL
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profile formation—the properties of the turbulent structures,
and consequently the resulting profiles, are strongly affected
by the parallel dynamics, with the result that the SOL width
scales favourably with plasma size.
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