

PII: S0309-1708(08)00086-9
DOI: 10.1016/j.advwatres.2008.05.008
Reference: ADWR 1281

To appear in: Advances in Water Resources

Received Date: 8 May 2008
Accepted Date: 9 May 2008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

J. Mortensen, A.S. Telyakovskiy
Department of Mathematics and Statistics,
University of Nevada, Reno, NV 89557, USA
L. Li, D.A. Lockington
School of Engineering, The University of Queensland, Brisbane 4072, Australia
M.B. Parlange
Ecole Polytechnique Fédéral de Lausanne (EPFL),
School of Architecture, Civil and Environmental Engineering,
Lausanne CH-1015, Switzerland
F. Stagnitti
School of Ecology and Environment, Deakin University,
P.O. Box 423, Warrnambool, Vic. 3280, Australia
D.-S. Jeng
Division of Civil Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
J.S. Selker
Bioengineering Department, Oregon State University, Corvallis, OR 13906, USA
D.A. Barry
Ecole Polytechnique Fédéral de Lausanne (EPFL),
School of Architecture, Civil and Environmental Engineering,
Lausanne CH-1015, Switzerland
J.-Y. Parlange
Department of Biological and Environmental Engineering,
Cornell University, Ithaca, NY 14853, USA

May 7, 2008

Incorrect results were provided in Table 1 for Eqs. (27) and (28) and for the evaluation of the integral based on the iterated solution of \(f \). The main difference between the two tables is that Eq. (27) is far more accurate than originally suggested, it has about the same accuracy as Eq. (28). With the exception of the last column, numbers in the new table tend to be slightly closer to the numerical results. Note that in the last column the iterated values are above the numerical results by 8 and 9 respectively on the 4th decimal place, whereas the original table suggested they were 8 and 2 less
Table 1: Calculated values of $\frac{\int f \, dy^2}{\alpha + 1}$ using different methods

<table>
<thead>
<tr>
<th></th>
<th>$\alpha = 0.5$</th>
<th>$\alpha = 1$</th>
<th>$\alpha = 1.5$</th>
<th>$\alpha = 2$</th>
<th>$\alpha = 5$</th>
<th>$\alpha \to \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq. (27)</td>
<td>0.0809</td>
<td>0.0891</td>
<td>0.0939</td>
<td>0.0971</td>
<td>0.1050</td>
<td>0.1127</td>
</tr>
<tr>
<td>Eq. (28)</td>
<td>0.0809</td>
<td>0.0892</td>
<td>0.0941</td>
<td>0.0973</td>
<td>0.1051</td>
<td>0.1129</td>
</tr>
<tr>
<td>Evaluation of the integral based on the iterated solution of f, i.e., Eq. (32) with $m = 3$, in which Eq. (27) is used as a first approximation</td>
<td>0.0807</td>
<td>0.0892</td>
<td>0.0942</td>
<td>0.0975</td>
<td>0.1055</td>
<td>0.1134</td>
</tr>
<tr>
<td>Evaluation of the integral based on the iterated solution of f, i.e., Eq. (32) with $m = 3$, in which Eq. (28) is used as a first approximation</td>
<td>0.0807</td>
<td>0.0892</td>
<td>0.0942</td>
<td>0.0975</td>
<td>0.1055</td>
<td>0.1135</td>
</tr>
<tr>
<td>Numerical solution</td>
<td>0.0810</td>
<td>0.0894</td>
<td>0.0942</td>
<td>0.0973</td>
<td>0.1051</td>
<td>0.1126</td>
</tr>
</tbody>
</table>

than the numerical results. These corrections do not change the conclusions of that paper.

References