A Novel CPG for Smooth and Bounded Trajectory Generation from Motion Library

Venus Pasandia,b, Aiko Dinae, Mehdi Keshmiria, Daniele Puccib
aIsfahan University of Technology, Isfahan, Iran
bIstituto Italiano di Tecnologia, Genoa, Italy
venus.pasandi@me.iut.ac.ir, aiko.dinale@iit.it, mehdik@cc.iut.ac.ir, daniele.pucci@iit.it

1 INTRODUCTION

Cyclic motions are still fundamental patterns of robot motion. To generate such motions autonomously and reactively, we need to endow the robot with an online trajectory planner guaranteeing (i) smooth transitions from the current state to the desired motion, (ii) smooth transitions from one motion to another, (iii) the physical limits of the robot, and (iv) the capability of integrating sensory feedback [1]. The central pattern generator (CPG) is an approach promising cyclic trajectories is given. Compared to the existing CPGs, the proposed one does not require parameter tuning and, also preserves the predefined limits both on the trajectory itself and its first time derivative. Experiments on the humanoid robot iCub, verified the soundness of the proposed CPG in generating synchronized trajectories.

2 CPG ARCHITECTURE

The proposed CPG architecture is based on a Data Driven Vector Field Oscillator (DVO). A DVO converges to any predetermined 1-dimensional non-self-intersecting periodic function in the state space while providing the possibility of generating a bounded output. In this section, first we explain the DVO dynamic structure. Then we propose an approach to provide phase synchronization of \(n \) DVOs to create a CPG generating a synchronized multi-dimensional bounded output.

2.1 Dynamic Structure of DVO

Given a predetermined \(T \)-periodic function \(f(t) : [0, \infty) \rightarrow \mathbb{R} \) depicting a non-self-intersecting curve in the plane \((f, \dot{f}) \), the differential equation of the DVO is

\[
\begin{align*}
\dot{s}_1 &= \frac{\delta \tanh(g_2)}{x_2^g} (g_\alpha(s) - \alpha (s_2 - g_\alpha(s))) - \beta (s_1 - g_\beta(s)), \\
\dot{s}_2 &= \frac{\delta \tanh(g_2)}{x_2^g} (g_\alpha(s) - \alpha (s_2 - g_\alpha(s))) - \beta (s_1 - g_\beta(s)).
\end{align*}
\]

where

- \(s = (s_1, s_2) \) are the states,
- \(J = \delta/(1 - \tanh^2(g_1)) \),
- \(g_\beta(s) = \tanh^{-1} ((f(s) - y_{avg})/\delta_1) \),
- \(g_\alpha(s) = \tanh^{-1} ((f(s) - \delta_1)/\delta_1) \),
- \(g_\alpha(s) = \delta/(1 - \tanh^2(g_1)) \),
- \(f(s) : [0, T] \rightarrow \mathbb{R} \) is a period of \(f(t) \),
- \(\alpha, \beta, \delta_1, \delta_2 \in \mathbb{R}^+ \) and \(y_{avg} \in \mathbb{R} \) are constant coefficients.

Superscripts \(\cdot \) and \(t \) denote the first derivative with respect to \(t \) and \(\phi \), respectively and \(\phi \) is the phase variable defined based on the states \(s \) as

\[
\phi(s) = \begin{cases}
\frac{g_\beta^{-1}(g_\alpha)}{2} & s_1 \leq \frac{g}{2} \\
\{\phi | g_\beta(s) = s_1, g_\alpha(s) \geq 0 \} & \frac{g}{2} \leq s_1 \leq \frac{g}{2} \\
\frac{g_\beta^{-1}(g_\alpha)}{2} & s_1 \geq \frac{g}{2}.
\end{cases}
\]

where \(g \) and \(\bar{g} \) are the lower and upper bounds of \(g_\beta \).

The output of \(DVO \) is defined as \(y = y_{avg} + \delta_1 \tanh(s_1) \).

Proposition 1. Given \(\alpha \) satisfying \((g_\alpha + \alpha g_\beta)_{s_2 = 0} \neq 0 \) and \(g_\alpha + \alpha g_\beta \geq 0 \), then \(g_\beta \) is the global stable limit cycle of the DVO. This implies that the output \(y \) tracks the trajectory \(f(\phi) \) while being bounded \((|y - y_{avg}| < \delta_1 \) and \(|\phi| < \delta_2 \).

Remark. A DVO can also converge to constant functions besides periodic ones.

2.2 Phase Synchronization of Multiple DVOs

The DVO dynamics can be written in a compact form as \(\dot{s} = F(s) \). Assuming \(n \) DVOs with different stable limit cycles \(g_{pi}, i = 1, \ldots, n \), the coupled dynamics that comprises phase regulation is as

\[
\dot{s}_i = \frac{F(s_i)}{\lambda(e_{\phi_i})},
\]

where \(\lambda(e_{\phi_i}) \) is a multiplier function defined as

\[
\lambda(e_{\phi_i}) = 1 + k_2 \tanh(k_2 e_{\phi_i}) - k_1, k_1, k_2 \in \mathbb{R}^+
\]

and \(e_{\phi_i} = \phi_i - \phi \) is the error between \(\phi_i \) which is the phase of the \(i^{th} \) DVO, and the average phase \(\bar{\phi} = \sum_{i=1}^{n} \phi_i/n \). Let us define \(\phi_i(t) \) as \(\phi_i(s_t) \) that increases monotonically as the states move along the limit cycle, i.e., \(\dot{\phi}_i = kT + \phi_i \) where
\(k \in \mathbb{R}^+ \) is the number of times that the oscillator’s states move along the limit cycle. Consequently, \(\dot{\phi}_i = \phi_i \) and the time derivative of (2) gives the phase dynamics

\[
\dot{\phi}_i = \begin{cases}
(1 - \tanh^2(g_{\phi_i})) \tanh(s_{i_1}) & \text{if } g_{\phi_i} > 1 \\
\tanh(g_{\phi_i}) \lambda(\varepsilon_{\phi_i}) (1 - \tanh^2(s_{i_2})) & \text{if } g_{\phi_i} < s_{i_2} < g_{\phi_i} \\
0 & \text{otherwise.}
\end{cases}
\]

(5)

Hence, one can measure the oscillator’s phase instantaneously by evolving the states.

Proposition 2. Given the coupled dynamical system (3) satisfying the following assumptions,

(A1) For \(i = 1, \ldots, n \), the periodic function \(g_{\phi_i}(\phi_i) \) is the stable limit cycle of the uncoupled \(\dot{\phi}_i \) DVO.

(A2) The coefficients \(k_1 \) and \(k_2 \) are positive constants.

Then, for \(i = 1, \ldots, n \), we have:

- \(g_{\phi_i} \) is the stable limit cycle of the \(\dot{\phi}_i \) DVO in Eq. (3).
- the phase error \(e_{\phi_i} \) converges to zero.

Roughly speaking, the multiplier function affects the time evolution of DVOs. All DVOs with \(\dot{\phi}_i < \phi \) speed up while the DVOs with \(\dot{\phi}_i > \phi \) slow down. The amount of speed variation is directly related to the absolute value of the phase error. Whereas, the sign of the phase error specifies which oscillator must speeds up or slows down.

3 EXPERIMENTS AND RESULTS

The effectiveness of the proposed CPG has been validated through experiments on the humanoid robot iCub [3]. Given a motion library composed by three periodic motions with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods, the proposed CPG takes one of these motions as input and generates the corresponding output with different periods.

Figure 1: Position and velocity trajectories, motions in state space and joint space, and phase error, while controlling the iCub’s right arm through the proposed DVO-based CPG.

4 CONCLUSION

We proposed the DVO, a dynamical system that (i) tracks any periodic function depicting a non-self-intersecting curve in the state space, and (ii) preserves predefined limits on the output and its first time derivative. Then, we presented an approach to synchronize multiple DVOs, which can be also used for synchronizing other kind of oscillators. Finally, we created a novel CPG made of synchronized DVOs that is specifically designed for robotic applications where motion modulation is required. The proposed CPG generates smooth, synchronized and bounded reference trajectory tracking the desired one, without having to tune the parameters for the desired motion. The desired trajectory is a multi-dimensional function whose components are either non-self-intersecting periodic functions or constants. In a typical control architecture for robotic systems, the desired trajectory planner is immediately followed by the controller. However, inserting a CPG in between these two elements of the architecture is going to provide features prominent in the animal motions (e.g. limit cycle tracking, as the result of oscillatory essence of CPG, and adaptation, enabled through integration with sensory feedback.)

References

