Networks on Chips: from Research to Products

Giovanni De Micheli
Ciprian Seiculescu
Srinivasan Murali
Luca Benini
Federico Angiolini
Antonio Pullini
Relentless Growth in System Performance

Moore's Law - 2005

Source: Intel
Increasing On-Chip Parallelism
Intel’s Products for Servers

Nehalem (45nm)

Westmere (32nm)
How Did Interconnects Evolve?

- Evolution to more bandwidth, more usable bandwidth
- Natural evolutionary trajectory
Interconnection Issues Today

- Timing Closure
- Routing
- Propagation Delays
- Heterogeneity
- Scalability
- Power
- (Performance) Verification
Evolving to Network-on-Chips (NoCs)
Why NoCs?

- Next step in on-going evolution

- Advantages as seen in large-area networks:
 - Scalable to many actors
 - Scalable to comparatively long distances
 - Suitable for homogeneous and heterogeneous systems
 - Well-understood theory and implementation

- Key principles:
 - Separate computation and communication concerns
 - Packet-based communication
 - Adjusted to on-chip medium peculiarities (area, power, bandwidth, latency)
The Birth of the NoC Idea

- **Architecture:**
 - Dally et al.
 - Parallel computing and wormhole routing
 - Greiner et al.
 - SPIN, the first NoC realization
 - Agarwal et al.
 - RAW architecture

- **Design Automation:**
 - Benini et al.
 - The NoC Manifesto and the first NoC synthesis tool
 - Carloni et al.
 - Separating computation and communication with latency-insensitive design
 - Goossens et al.
 - Æthereal: Support of QoS in NoCs
NoC-Based Chip Implementations

KAIST 03-08

CEA-LETI 07-10

Giovanni De Micheli – DAC 2010 – Anaheim, CA
From Research to Products

- **Intel Polaris**
 - 2007, 80-core
 - 8x10 mesh NoC, ~365 GB/s aggr. @ 5.7 GHz
 - RESEARCH

- **Intel Single-Chip Cloud Computer**
 - 2009, 48-core, x86
 - 6x4 mesh NoC, 256 GB/s bisection
 - RESEARCH

- **Intel “Knights Corner”**
 - 2011, 50-core, x86
 - PRODUCT
Industry Traction

- Large semiconductor vendors
 - Intel: multicore x86
 - STMicro: STNoC for SoCs
 - NXP: Æthereal (now w/Virage/Synopsys)
 - Research efforts by many other players

- IP vendors
 - ARM’s AMBA 3 and 4
 - Sonics
 - Arteris
 - Silistix
 - NoCs in use today in products by TI, Toshiba, …

- Specialized product vendors
 - Tilera, Recore, …
The NoC Framework

- Software Services
 - Mapping, QoS, middleware...

- Architecture / IP
 - Packetizing, buffering, flow control...

- Physical Implementation
 - Synchronization, wires, power...

EDA Tools

Giovanni De Micheli – DAC 2010 – Anaheim, CA
Software Services

- NoC monitoring
 - Performance
 - Faults
 - Thermal management
 - Debug traces (Goossens 08-10)

- NoC configuration
 - Performance
 - Power management
 - Security (Fiorin 08)
 - Fault management

- NoC kernel driver / middleware (Coppola)
Architecture / IP

- Basic library of NoC RTL
 - Switches (routers)
 - Network Interfaces
 - Links
- More advanced functionality available
 - Firewalls
 - Frequency converters
 - Width converters
 - Memory schedulers
 - Off-chip interfaces
 - Debugging/verification probes
Network Interfaces

- Interface core protocol with NoC
- Packeting/unpacketting
- Programmability
- Control-intensive
Switches

- Routing
- Buffering
- QoS / prioritization
- Mostly datapath
Links

- Wire segmentation by **topology design**
 - Put more switches, closer
 - Adds a lot of overhead

- Wire segmentation by **repeater insertion**
 - Flops/relay stations to break links - cheaper
 - However, repeaters still impact performance
A Complete NoC Instantiation
Physical Implementation

- Timing
 - Synchronous – multi clock
 - Mesochronous
 - Asynchronous
 - GALS

- Link design
 - LVDS, repeaters

- Fault tolerance
 - Coding
 - Redundancy
 - Retransmission

- Variability tolerance
EDA Tools

- Need for cohesive EDA flow
- Objectives:
 - Faster design time
 - Better Quality of Results
NoC Synthesis Flow

(c) Giovanni De Micheli
New Frontiers

- NoCs for 3D chips
- Optical NoCs
Summary

- NoCs: from an idea to presence in products
 - Evolution of bus-based architectures
 - Streamlined, effective means of communication

- NoCs address some of the hard problems in very large chip design (Both ASIC and FPGAs)
 - Fewer design starts for large ASICs
 - Growing market of complex FPGA implementations

- NoC design is complex
 - NoC design must be supported by IP, tools and flows
 - Evolving market for EDA and key opportunity
Everything is connected!

Thank you