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Abstract

®

CrossMark

Ionization dynamics of resonantly excited helium nanodroplets have been studied by intense
XUV light. By doping the nanodroplets with atoms that either attach to the surface or submerge
into the center of the droplet, one can study the dynamics of excitation and ionization through the
droplet. When resonantly exciting the droplet, we observe a strong ionization enhancement for
atoms attached to the surface. On the other hand, atoms embedded inside the nanodroplet are less
efficiently ionized. We attribute this effect to an ultrafast energy transfer to the surface of the
droplet and subsequent Penning ionization of the surface-bound dopant.

Keywords: free electron laser, XUV laser spectroscopy, atomic, molecular, and cluster physics

(Some figures may appear in colour only in the online journal)

With the development of intense short wavelength sources,
such as free electron lasers (FELs) and high harmonic gen-
eration sources, one can investigate matter in an entirely new
regime and probe nonlinear effects including enhanced mul-
tiphoton absorption [1, 2], double core hole states [3, 4] in
atoms and molecules, and plasma creation in condensed
matter [5, 6]. In particular, clusters and nanodroplets offer a
unique intermediate state of matter where both atomic and
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condensed matter effects can be observed, such as higher
charge state creation compared to atomic states [7], multistep
ionization [8], and core state bleaching [9, 10].

Recently, we observed that by irradiating helium nano-
droplets with intense resonant XUV light, the ionization
rates were almost an order of magnitude larger than those of
direct ionization [11] which could not be explained by reso-
nance enhanced multiphoton ionization but rather by an
ultrafast interatomic coulombic decay (ICD) [12] leading to
a collective autoionization (CAI). From the photoelectron
spectra [13], we saw that nearly all excess electron energy

© 2015 IOP Publishing Ltd  Printed in the UK
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was deposited into the droplet leading to only low energy
electron emission and nanoplasma formation. For an over-
view of research in nanoplasma dynamics, please see the
following reviews [14, 15]. The ionization dynamics were
explained by the many excited states forming a network
where energy is exchanged through either (i) an ICD-type
energy exchange followed by inelastic collisions between the
ejected electrons and neighboring excited atoms or (ii) a non-
sequential process where excited neighbors are ionized by a
shake-off like process [13]. In both cases, all excess electron
energy is deposited in the droplet leading to the observed low
kinetic electron energies. In contrast to prior work on nano-
plasma formation (e.g. [7-9]) where the photon energy was
above the ionization threshold of the cluster, for CAI, the
clusters were first in an excited state and the nanoplasma
formed after an ultrafast energy transfer between the excited
constituents. As such, the mechanisms and ionization
dynamics are still relatively unknown requiring more work on
this novel system.

In the present work, we report the first results on the
ionization of dopant atoms in He nanodroplets by intense
resonant/nonresonant XUV light. We find that the ionization
of atoms attached to the surface exhibits a strong dependence
on whether the light is on or off resonance with respect to the
helium droplet’s electronic excitation, while atoms embedded
inside the droplet display no such dependence. This effect is
attributed to an ultrafast energy transfer towards the surface of
the droplet similar to what was observed with synchrotron
radiation [16]. However, in stark contrast to the previously
mentioned results where multiple excitations were vanish-
ingly rare in the droplet, here the droplets are highly excited
due to the much higher power density of the FEL. The decay
from this multiply excited state, although estimated to require
only a few fs [13], still exhibits a fast migration of excitation
to the surface of the droplet.

The experiment was performed at the low density matter
beamline [17, 18] at the seeded XUV-FEL, FERMI, which
offers wide tunability [19], narrow bandwidth (~10_3), and
high intensity (up to 10'* W cm™?) [20]. The photon energy
of the FEL was tuned via the seed laser, the undulator gaps,
and other machine parameters. The FEL pulse length was
estimated to be about 100 fs FWHM with a Gaussian spatial
profile of 75 ym diameter (FWHM) at the focus. The laser
pulse energy at the setup is calculated from the value mea-
sured upstream on a shot-by-shot basis by gas ionization,
taking into account the calculated nominal reflectivity of the
optical elements in the beam transport system [18]. The
helium droplet beam was produced by supersonic expansion
of helium at a backing pressure of 50 bar through a pulsed
50 um nozzle which was cryogenically cooled to the low
Kelvin range. From these expansion conditions and scaling
laws, the droplet size was determined [21], and was experi-
mentally confirmed by titration measurements [22]. The
nozzle temperature for this particular experiment was set to
12 K corresponding to an average droplet size of 26 000 He
atoms. The droplets were doped using the ‘pick-up’ process
[23] with either a gas doping cell (xenon) or an oven doping
cell (lithium). Xenon is known to be located in the bulk of the
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Figure 1. (a) Mass spectra of Li-doped He droplets at hiv = 21.4 eV
(red line) and hv = 19.9 eV (black line). The FEL power is

1.10"* W cm ™2 (b) The same mass spectra as (a) expanded around
the Li mass.

He droplet whereas lithium is attached to the surface of the
droplet [24, 25]. Thus the different dopants can be an ideal
monitor for identifying the role of energy transfer in the
ionization process. The lithium oven was set to 450 °C cor-
responding to an average of a single lithium atom being
attached to the surface of the droplet, while the partial pres-
sure of the gas pick-up cell was set to 2.5 x 10~ mbar
corresponding to an average of 16 Xe atoms embedded in the
nanodroplet. The cluster beam was perpendicularly crossed
by the FEL beam at the center of the first acceleration region
of a Wiley—McLaren style time-of-flight mass spectrometer
(TOF) [26].

Figure 1(a) shows the ion mass spectra for lithium-doped
helium nanodroplets irradiated by light of photon energy
hv = 21.4¢eV (red line) and hv = 19.9 eV (black line) with a
power density of 1 x 10'* W cm ™ for both photon energies.
For hv = 21.0-22.3 eV (with a maximum at hv = 21.4eV),
He nanodroplets exhibit a broad band structure in the
absorption spectrum initially observed in early synchrotron
radiation work [27]. The strongest band was assigned to the
droplet equivalent of the 1s2p atomic transition which was
considered broadened by the extended surface region of the
cluster and blueshifted due to the repulsive interaction
between the excited electron and the neighboring He envir-
onment. For energies below hv = 20.5eV, no additional
excitation levels were observed for He clusters, and the sys-
tem is therefore considered to be nonresonant.

Comparing resonant to nonresonant ionization, one
observes a strong enhancement of the helium oligomer mass
peaks due to CAI [11, 13]. Additionally, when resonantly
exciting the droplets, a peak appears at m/z = 7 due to the
ionization of lithium. Figure 1(b) shows the same mass
spectra expanded around the lithium peak. Here, one can
clearly see that the resonant light strongly enhances the
lithium signal as only a small peak is observed when
the photon energy is nonresonant for helium. In terms of the
enhancement, quantitatively, the lithium signal is about 37
times larger when the helium is resonantly excited compared
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Figure 2. (a) Mass spectra of Xe-doped He droplets at hiv = 21.4 eV
(red line) and hv = 19.6 eV (black line). The FEL power is

1.10"* W cm 2. (b) The same mass spectra as (a) expanded around
the Xe mass. Background-subtracted signal is shown in green

(hv = 21.4¢eV) and blue (hv = 19.6 eV).

to when the photon energy is off resonance at iv = 19.9¢eV .
The photoionization cross sections of lithium at hv = 19.9 eV
and 21.4eV are 0.51 and 0.45Mbarn [28], respectively.
Therefore, there should be little difference in the ionization
efficiency for the two photon energies if the lithium atoms
were directly ionized and the helium played no role in the
ionization process.

Figure 2(a) shows the ion mass spectra for xenon-doped
helium nanodroplets with similar experimental conditions to
those shown in figure 1 for hv = 21.4eV (red line) and
19.6 eV (black line). For hv = 21.4¢eV, the ion TOF elec-
trodes were pulsed using a high voltage switch (Behlke Power
Electronics GmbH) to eliminate the large helium monomer
signal. Besides that, the progression of helium oligomers is
identical to that which is shown in figure 1. The region of the
mass spectra from 120 to 160 amu, containing all of the
natural isotopes of Xe, is expanded in figure 2(b). The sharp
peaks observed in the spectra for both photon energies are due
to ionization of atomic xenon that is not attached to helium
droplets and reaches the interaction region effusively. The
signal from xenon embedded in the droplet (green line for
resonant excitation and blue line for nonresonant excitation in
figure 2(b)) shows a broad distribution in which the various
xenon isotopes are unresolved due to the Coulomb explosion
of Xe clusters, similar to previously reported results (e.g. [7]).
To distinguish the embedded and effusive Xe signal, a
spectrum of purely effusive Xe was taken which was then
subtracted from the spectra shown in figure 2(a). Addition-
ally, around mass 65, doubly ionized xenon is observed in the
mass spectra for effusive gas (not embedded in He droplets).
The strong enhancement of the Xe? " for hv = 21.4 eV can be
explained by the photon energy being above the second
ionization potential of Xe [29]. At this energy, double ioni-
zation of xenon is a sequential two photon process, whose
second step is resonantly assisted by excitation of the Xe™
ground state ion to the 'D, 6d state, followed by auto-
jonization to Xe*" [30]. That being said, no signal of doubly

ionized Xe embedded in the droplet was observed, most likely
due to charge transfer between the doubly ionized xenon and
the surrounding He atoms.

Xenon shows the opposite trend in comparison to lithium
in that when the photon energy corresponds to the helium
resonance a reduction of the overall signal is observed. In
quantitative terms, the integrated signal of xenon embedded
in the nanodroplet is 4.5 times smaller for hv = 21.4eV
compared to hv = 19.6eV. The photoionization cross
sections of xenon at v = 19.6eV and 21.4 eV are 38.1 and
29.6 Mbarn [31], respectively. Although the cross-section of
xenon at hv = 21.4eV is significantly larger than that of
lithium in this photon range, the observed Li signal is actually
much larger than the Xe signal, signifying that the He
environment is instrumental in the ionization process.

To shed light on the present results, one can look at
complementary studies using synchrotron radiation to excite/
ionize He nanodroplets where a rich spectrum of relaxation
processes was observed (e.g. autoionization, emission of slow
electrons, charge/excitation migration) [32-34]. In particular,
Buchta e al [16] observed that when the droplet was elec-
tronically excited, the dominating ionization mechanism of
surface-bound alkali dopants was a Penning-type ionization
while dopants embedded in the center of the droplet showed
little to no effect due to helium excitation. On the other hand,
when scanning the photon energy, a marked increase in the
ion yield was observed for embedded dopants at the ioniza-
tion threshold of helium. These results were interpreted as due
to a charge transfer process between the He ion and the
dopant, indicating fast exciton as well as positive hole
migration in the droplet [35].

Here, we propose a simple model to explain the observed
phenomena, which is schematically shown in figures 3 and 4.
Figure 3 shows the case where the radiation is off resonance
with respect to the nanodroplet for (a) Li-doped droplets
(hv = 19.9eV) and (b) Xe-doped droplets. For each case, the
ionization of the He environment must proceed through a two
photon ionization process or second harmonic FEL radiation
leading to only a few ionized atoms due to the small ioni-
zation cross section. For lithium (figure 3(a)), direct ionization
is not likely due to the low ionization cross section (0.51
Mbarn) at high photon energies. Furthermore, since the
probability of He ionization is also weak, we do not expect
substantial signal of Li* ions by charge transfer ionization.
Therefore, there is relatively little Li* observed in the mass
spectra shown in figure 1. For xenon (figure 3(b)), the helium
droplet remains relatively unaffected by the FEL radiation
similar to the case of Li. In contrast to Li-doped droplets,
xenon has a high ionization cross section (36.1 Mbarn) and
therefore can be directly ionized leading to the larger Xe
signal observed in the mass spectra in figure 2.

Figure 4 shows the case where the radiation is on reso-
nance with respect to the nanodroplet (hv = 21.4eV) for (a)
Li-doped droplets and (b) Xe-doped droplets. In this case,
when the doped droplets are irradiated by resonant light
(hv = 21.4eV), the situation is completely different. Within
the first 50 fs of the FEL pulse, about 50% of the droplet is
excited, schematically shown as the red double-lobe
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Figure 3. Schematic representation of the dopant ionization process
when the He droplet is not resonantly excited (hv = 19.9 eV for a)
Li and hv = 19.6 eV for (b) Xe). (I) The helium droplet is weakly
ionized by a two photon processes leading to (II) expansion and
fragmentation. Due to the low cross section, Li is unlikely to be
directly ionized whereas the large cross section for Xe makes direct
ionization more likely.

a)

Penning
lonization

b)

A I -

ICD/CAI ICD/CAI

I U
N 4

Recombi- \

nation ~
A g
o N\ ®

11
! /

Figure 4. Schematic representation of the dopant ionization process
when the He droplet is resonantly excited (hv = 21.4 eV) for (a) Li
and (b) Xe. (I) The droplet is excited leading to collective
autoionization and Penning ionization for the attached Li (I a). (I) A
nanoplasma is formed leading to Coulomb explosion while the Xe™
recombines with electrons in the formed nanoplasma (II b).
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distribution in figure 4. As previously reported [11, 13], such
an environment leads to a CAI process followed by nano-
plasma formation in the droplet.

For Li-doped droplets, shown in figure 4(a), a clear
enhancement is observed due to resonant excitation of the He
environment. The question which immediately arises is which
process is responsible for this effect. As mentioned, the
excited He atoms can Penning ionize the attached atom(s)
[16]. Furthermore, from merged beam experiments, it was
shown that the Penning ionization cross section for
He*(1s2s)-He*(1s2s) and He*(1s2s)-Li were quantitatively
equivalent [36]. In the present case, one would therefore
expect that Penning ionization of the attached lithium atom
would be as likely as CAI when an excited helium is nearby.
Additionally, the ionization process is considered to be
ultrafast with a lifetime in the range of tens to hundreds of fs
[12]. After CAI, a nanoplasma is formed opening additional
ionization pathways such as electron impact and field ioni-
zation [37]. As Penning ionization preceeds nanoplasma
formation, it is the most likely ionization mechanism while
the droplet is in the excited state, however, ionization in the
nanoplasma cannot be neglected. As such, one can make
some simple estimates of the probability of electron impact
ionization and surface field ionization [15] assuming a
Gaussian FEL beam for the experimental parameters given
above. For 50% of the droplets which absorbed a minimum of
one photon, field ionization of lithium is possible while the
average probability for electron impact ionization of Li
is 3.2%.

The interpretation of the ultrafast surface migration is
additionally supported by pump—probe results for singly-
excited nanodroplets [38] where high lying Rydberg states
were shown to relax energetically within a few hundred fs.
Kornilov et al [38] used a simple model which gave good
agreement with experimental data to explain these effects by
treating the excitation as localized at a single atom within the
droplet which is then perturbed by the mean field of the
surrounding He atoms. The excited atom moves to the surface
due to the change in density of the surrounding He environ-
ment. Recently, similar results were observed for excitation of
the 2p band in He droplets where surface migration was
observed to occur within 400 fs [39].

In contrast to lithium, when the droplet is resonantly
excited, the Xe signal shown in figure 1 decreases compared
to the nonresonant case. The ionization mechanism explain-
ing the lower signal is shown in figure 4(b). Initially, the Xe
atom(s) are directly ionized along with the He environment
which is collectively excited. The excited helium then
undergoes CAI leading to nanoplasma formation on the sur-
face of the droplet. Additionally, after CAI, charge transfer
ionization of Xe is also possible [16]. The resulting shell of
ions then undergoes Coulomb explosion/hydrodynamic
expansion while excess electrons can recombine with ions in
the center of the droplet. In comparison to IR-induced
nanoplasma formation of Xe-doped nanodroplets [40-42]
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Figure 5. Ratio of dopant ions for on and off resonant droplet
excitation as a function of the FEL power for lithium (top) and xenon
(bottom).

where the Xe atoms trigger the nanoplasma formation and the
dynamics are mediated by the strong coupling between the
radiation and electrons from ionized xenon, here, the excited
He atoms form a nanoplasma while the Xe atoms essentially
play the role of a spectator in the process.

Figure 5 shows the ratio of dopant ions measured for on
and off resonant droplet excitation as a function of the FEL
intensity for lithium (top) and xenon (bottom). The nozzle
temperature and number of attached atoms are the same as
described in figures 1 and 2. For both cases, the on/off
resonance ratio remains relatively unchanged over the entire
measured FEL power range.

For the case of xenon, the results are not surprising and
fit our proposed model. For both photon energies, the
embedded xenon atoms are directly ionized by a single
photon and, therefore, both power dependencies should be
linear. Therefore, their ratio should remain unchanged with
respect to the laser power. A ratio less than one is explained
by the process described in figure 4(b) where the excess
electrons created during the nanoplasma formation recombine
with the Xe ions resulting in a lower measured Xe signal.

For Li-doped droplets, at hv = 19.9eV, the attached
lithium atoms are directly, though weakly, ionized by a single
photon while, at hv = 21.4 eV, ionization primarily occurs
through a Penning process with an excited He atom. As He
excitation is also a single photon process, the resonant/non-
resonant ratio remains constant with respect to laser power. A
ratio much greater than one is understood by the high effi-
ciency of Penning ionization compared to direct ionization of
lithium.

In conclusion, a strong enhancement in the ionization of Li
atoms attached to the surface of He droplets was observed
when the He environment was resonantly excited by intense
FEL radiation. In contrast, a decrease in the ionization of Xe
atoms embedded in the center of droplets was observed for the
same conditions. The process is explained by the excited He
atoms migrating to the surface of the droplet where Li is

ionized in a Penning process while the Xe ions recombine with
the excess electrons created during nanoplasma formation.
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