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Abstract

Data-driven modeling and feedback control play a vital role in several application areas ranging
from robotics, control theory, manufacturing to management of assets, �nancial portfolios and
supply chains. Many such problems in one way or another are related to variational problems in
optimal control and machine learning.

The following work �rst presents, a generalized representer theorem for solving such variational
problems when closed, densely de�ned operators, like the di�erential operators, are involved. Fur-
thermore, loss functionals on in�nite dimensional Hilbert spaces are considered to allow for greater
freedom in problem formulations. The statement of the theorem presents a necessary and su�cient
condition for the existence of linear representer for optimal solutions of such problems. Finally,
examples, applying the theorem to neural networks, stochastic regression, and sparsity-inducing
regularization problems are presented.

The second part of the thesis deals with applications of variational optimization in control prob-
lems. Examples from optimal control and model predictive control are presented for applications
in the domain of autonomous vehicles and airborne wind energy systems. First, a combination of
manifold learning and model predictive control is presented for obstacle avoidance in autonomous
driving. Manifold learning is presented as a means to describe boundaries of star-shaped sets for
which a single inequality constraint is su�cient to check containment of a point in the set’s interior.
The approach presented, learns the largest star-shaped set within a circular range such that all
obstacle points remain outside the set. The inequality condition for checking containment in such
sets is incorporated into a multi-phase, free-end-time optimal control problem to plan trajectories
and control inputs moving the vehicle from one point to another while remaining within a given
collection of star-shaped sets. The multi-phase, free-end-time problem is adapted to a moving
horizon form to give a model predictive path following controller that avoids obstacles by virtue of
the manifold learning scheme. A real-time, dynamically updated manifold is learned using point
cloud data from a lidar-like sensor on the vehicle to avoid any apriori unknown or moving obsta-
cles. Convergence and recursive feasibility guarantees for the MPC scheme are provided under
mild assumptions on the behavior of the obstacles and dynamics of the vehicle. An automated
parking scenario in the presence of static and dynamic obstacles is demonstrated in simulation for
the complete process of optimal trajectory planning and path following.

Next, a continuous time, path following model predictive control scheme is shown for an Air-
borne Wind Energy (AWE) system. Here stability and convergence guarantees are provided by
combining the model predictive controller with terminal constraints inspired from a convergent
vector �eld design problem. A formal stability proof relying on Lyapunov stability arguments is
presented to show that for such a design of vector �eld terminal constraints the path following
controller converges to a zero tracking error on the desired path.

The last part of the thesis deals with uncertainty in AWE systems arising due to uncertain
wind conditions and unknown aerodynamic characteristics. Two di�erent methods are presented
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for controlling the system in such environments. First, a Gaussian process based, data-driven
approach is presented to optimize a closed-loop AWE system under unknown objective, constraint,
and dynamic functions. Transient measurements are used to learn surrogate models for these
quantities, and a safe online optimization scheme is presented to maximize the performance of an
underlying controller while satisfying the safety constraints.

The second approach presents a nonlinear adaptive control scheme for path following in AWE
systems in the presence of parametric uncertainties in the dynamics. Instead of using an approach
that learns such model parameters from data, a direct adaptive scheme is considered, where ob-
taining accurate parameter estimates is not the goal of the parameter update scheme, but rather
to cooperate with a nonlinear controller towards driving the path following error towards zero.
Approximate feedback linearization of the AWE system is presented, and online parameter update
laws are designed such that the path following error is driven into a small neighborhood of zero
and the parameter estimates are guaranteed to be bounded for all time.

Finally, the appendix of the thesis is used to present some mathematical preliminaries.



R�esum�e

Le contrôle et la mod�elisation �a partir des donn�ees jouent un rôle vital dans plusieurs do-
maines d’application comme par exemple la robotique, la th�eorie du contrôle, la fabrication �a la
gestion des actifs, les portefeuilles �nanciers et les châ�nes d’approvisionnement. Beaucoup de
ces probl�emes, d’une mani�ere ou d’une autre, sont li�es �a des probl�emes variationnels du contrôle
optimal et d’apprentissage.

Le travail suivant pr�esente d’abord, une approche bas�ee sur un th�eor�eme de repr�esentants
g�en�eralis�es pour r�esoudre des probl�emes variationnels ferm�es lorsque des op�erateurs dens�ement
d�e�nis comme par exemples des op�erateurs di��erentiels, sont impliqu�es. De plus, les fonctions de
perte sur des espaces de Hilbert de dimensions in�nies sont consid�er�ees pour permettre une plus
grande libert�e dans la formulation des probl�emes. L’�enonc�e du th�eor�eme pr�esente une condition
n�ecessaire et su�sante pour l’existence d’un repr�esentant lin�eaire pour des solutions optimales de
ces probl�emes. Finalement, des exemples d’application du th�eor�eme aux r�eseaux neuronaux, �a la
r�egression stochastique et aux probl�emes de r�egularisation impliquant la raret�e sont pr�esent�es.

La deuxi�eme partie de la th�ese porte sur les applications de l’optimisation variationnelle dans
les probl�emes de contrôle. Des exemples de commande optimale et de commande pr�edictive sont
pr�esent�es pour des applications dans le domaine des v�ehicules autonomes et des syst�emes d’�energie
�eolienne a�eroport�es. Tout d’abord, une combinaison d’apprentissage multiple et de commande
pr�edictive est pr�esent�ee pour �eviter les obstacles en conduite autonome. L’apprentissage multiple
est pr�esent�e comme un moyen de d�ecrire les limites d’ensembles en forme d’�etoile pour lesquels
une seule contrainte d’in�egalit�e est su�sante pour v�eri�er le con�nement d’un point �a l’int�erieur
de l’ensemble. L’approche pr�esent�ee, apprend le plus grand ensemble en forme d’�etoile �a l’int�erieur
d’une plage circulaire de sorte que tous les points d’obstacle restent en dehors de l’ensemble. La
condition d’in�egalit�e pour la v�eri�cation du con�nement dans de tels ensembles est incorpor�ee
dans un probl�eme de contrôle optimal �a phases multiples et �a temps de �n libre pour plani�er les
trajectoires et les entr�ees de contrôle permettant de d�eplacer le v�ehicule d’un point �a un autre tout
en restant dans une collection donn�ee d’ensembles en �etoile. Le probl�eme �a phases multiples de
temps libre est adapt�e �a une forme d’horizon mobile pour donner un chemin pr�edictif de mod�ele
suivant un contrôleur qui �evite les obstacles en vertu du sch�ema d’apprentissage multiple. Pour
�eviter tout obstacle inconnu ou en mouvement, une vari�et�e mis �a jour dynamiquement en temps
r�eel est apprise �a l’aide d’un nuage de points provenant d’un capteur de type lidar mont�e sur le
v�ehicule. Les garanties de convergence et de faisabilit�e r�ecursive pour le sch�ema des PPM sont
fournies sous des hypoth�eses sur le comportement des obstacles et la dynamique du v�ehicule. Le
processus complet de plani�cation de trajectoire optimale et de suivi de trajectoire est d�emontr�e
en simulation pour un sc�enario de stationnement automatis�e en pr�esence d’obstacles statiques et
dynamiques.

Ensuite, un sch�ema de commande pr�edictive de temps et de trajet continu est montr�e pour un
syst�eme d’�energie �eolienne a�eroport�e (Airborne Wind Energy - AWE). Les garanties de stabilit�e et
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de convergence sont fournies en combinant le contrôleur pr�edictif avec des contraintes terminales
inspir�ees d’un probl�eme de conception d’un champ vectoriel convergent. Une preuve formelle de
stabilit�e s’appuyant sur les arguments de stabilit�e de Lyapunov est pr�esent�ee pour montrer que
pour une telle conception des contraintes terminales de champ vectoriel, le contrôleur de suivi de
trajectoire converge vers une erreur de suivi nulle sur la trajectoire souhait�ee.

La derni�ere partie de la th�ese traite de l’incertitude des syst�emes AWE due �a des conditions de
vent incertaines et �a des caract�eristiques a�erodynamiques inconnues. Deux m�ethodes di��erentes
sont pr�esent�ees pour contrôler le syst�eme dans de tels environnements. Tout d’abord, une ap-
proche gaussienne bas�ee sur les donn�ees est pr�esent�ee pour optimiser un syst�eme AWE en boucle
ferm�ee avec des contraintes, des objectifs et des fonctions dynamiques inconnus. Des mesures tran-
sitoires sont utilis�ees pour apprendre les mod�eles de substitution pour ces grandeurs, et un sch�ema
d’optimisation en ligne est pr�esent�e pour maximiser la performance d’un contrôleur sous-jacent
tout en satisfaisant les contraintes de s�ecurit�e.

La deuxi�eme approche pr�esente un sch�ema de contrôle adaptatif non lin�eaire pour le suivi de
trajectoire dans les syst�emes AWE en pr�esence d’incertitudes param�etriques dans la dynamique.
Au lieu d’utiliser une approche qui apprend de tels param�etres �a partir des donn�ees, on envisage
un sch�ema adaptatif direct, o�u l’obtention d’estimations pr�ecises des param�etres n’est pas le but
du sch�ema de mise �a jour des param�etres, mais plutôt de coop�erer avec un contrôleur non-lin�eaire
pour conduire l’erreur vers z�ero. L’approximation de la lin�earisation de r�etroaction du syst�eme
AWE est pr�esent�ee, et les lois de mise �a jour des param�etres sont con�cues de mani�ere �a ce que
l’erreur de suivi de trajectoire soit pouss�ee dans le voisinage de z�ero et que les estimations des
param�etres soient garanties born�ees dans le temps.

L’annexe de la th�ese pr�esente des pr�eliminaires math�ematiques utilis�es lors de cette th�ese.
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Chapter 1

Introduction

Variational optimization problems in in�nite dimension Hilbert spaces are fairly common in ma-
chine learning and control algorithms. In learning problems these appear as an optimization over
a space of functions (denoted here as H) to minimize a loss functional given some training data
and a regularizer used to guide the optimal solution towards a certain bias. Given speci�c forms of
the loss functional and regularizers, kernel methods and representer theorems have a long history
[1, 2, 3, 4, 5] of being used to reformulate such problems to an equivalent optimization over �nite
dimensional spaces. The equivalent �nite dimensional solution to the in�nite dimensional problem
is referred to as a representer for the optimal solution. Generalized representer theorems [6, 7, 8, 9]
address the concern of when such an equivalent representer solution exists in a setting that is mostly
agnostic to the speci�c form of the loss function and regularizer. Instead, necessary and su�cient
conditions are given in terms of general properties required from the loss function and regularizer,
for such a representer to exists. [6, 7, 8, 9] present generalized representer theorems for problems
with a �nite collection of bounded linear functionals mapping the original Hilbert space H into an
euclidean space Rm and with loss functionals on such an Rm. Chapter 2 presents an extension of
this work to the case where we have possibly unbounded, closed, densely de�ned operators mapping
the Hilbert space H to another separable Hilbert space Z and for loss functionals de�ned on such a
Z. Thus, equivalently, we allow for an in�nite collection of linear functionals (possibly unbounded)
mapping H to Z with loss functionals on Z. Necessary and su�cient conditions for the existence
of linear representers is presented for this setting. The utility of such an extension is shown for the
case of learning stochastic processes where Z can in general be a space of measurable functions. A
technical assumption of \r-regularity" from the previous counter-part of the generalized theorem
[9] is dropped and its implications are shown with an example of ‘1�regularization in function
spaces. Also an application of the theorem is presented to the case of neural networks involving
closed, densely de�ned operators.

In the second part of the thesis, variational problems for optimal control and model predictive
control (MPC) schemes are presented. Here �nite dimensional approximations for the problems
are considered through a sampled time approach, discretizing the time horizon for the controller
into �nitely many time periods. Integrator approximations are used to solve the continuous time
ordinary di�erential equations governing the dynamics for a system and the initial and end states of
the these discrete time segments are treated as decision variables in a �nite dimensional optimiza-
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tion problem. The optimal control approaches are presented as their continuous time formulation
for the theoretical results, while the discrete time approximation is used for numerical results.

Chapter 3 presents a combination of manifold learning with optimal control for obstacle avoid-
ance in autonomous driving vehicles. The manifold learning algorithm is used to learn star shaped
sets in the environment within which the vehicle can move without encountering any obstacles. A
single inequality constraint can be used to check the containment of any point within a star shaped
set and thus including such a constraint in the optimal control problems allows for planning and
control of the vehicle within a collection of star shaped sets, thereby avoiding any obstacles. A mul-
tiphase free-end-time optimal control formulation is presented for planning trajectories within such
sets and a moving horizon version of the multiphase free-end-time problem is used to formulate a
path following MPC controller capable of controlling the vehicle in presence of dynamic obstacles.
Under mild assumptions on vehicle dynamics and obstacle movement, convergence and recursive
feasibility guarantees are provided for the MPC formulation. Numerical studies for the trajectory
planning and MPC control scheme are presented in presence of static and dynamic obstacles.

Chapter 4 presents a path following MPC formulation for an Airborne wind energy system. A
di�erent, �xed-end-time formulation for path following is presented compared to the one used in
Chapter 3 to allow for faster control computation. A terminal constraint, inspired by a convergent
vector �eld design problem, is incorporated in the MPC scheme to ensure stability and convergence
of the controller to a zero tracking error along the reference path. Proof for recursive feasibility
is presented, under a reachability assumption for the designed vector �eld constraint. Finally,
numerical results for the approach are presented under nominal and perturbed simulation settings
for the AWE system. The path following controller shows robust convergence to the desired path
under perturbed conditions and model mismatch, and the vector �eld based terminal constraints
included in the problem, show an improved convergence rate for the error, while providing formal
guarantees for the convergence.

The �nal part of the thesis, presents solutions for optimization and control in an AWE system
in presence of uncertain wind conditions and unknown aerodynamic characteristics for the vehicle.
Chapter 5 presents a data based optimization scheme for a closed-loop AWE system. Given a simple
low-level controller for the system, the functions mapping the set-points of the controller to the
closed-loop performance for a given objective, constraint and dynamics are unknown. Gaussian
process (GP) surrogate models are used to represent the unknown mappings and a Gaussian
process optimization scheme is presented to select the candidate points at which the performance
is expected to improve while satisfying the unknown constraints with high con�dence. Surrogate
GP models for the closed-loop dynamics are included in the optimization scheme to allow for faster
learning and optimization in the system with transient measurements. The approach is compared
to a GP optimization scheme without the dynamics, using only steady state measurements and the
inclusion of the transient measurements and dynamics, is shown to result in more robust solutions
under varying wind conditions and in faster convergence to the optimal performance.

Chapter 6 presents a nonlinear direct adaptive control approach for path following in AWE
systems under parametric uncertainties in the open loop dynamics for the system. The wind
and aerodynamic characteristics are shown to be representable as unknown, a�ne parameters
in a nonlinear dynamical system. A nonlinear controller is designed for approximate feedback
linearization of the system, assuming the parameters as known quantities. The e�ects due to the
unknown a�ne parameters are canceled out by the design of an augmented dynamical system,
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updating parameter estimates in such a way that the feedback linearization controller using these
parameter estimates in place of the real, unknown parameters results in an asymptotically stable
controller. The tracking error for the path following problem is shown with a Lyapunov function
based argument to converge to a small neighborhood of zero and the parameter dynamics are
shown to result in bounded estimates for the parameters.

The Appendix is used to present some mathematical preliminaries used for results in Chapter
2 and useful for further extensions to the work.



Part I

Representer theorems for variational
problems in learning and control





Chapter 2

Generalized Representer Theorems

The necessary and su�cient conditions for existence of a generalized representer theorem are
presented for learning Hilbert space - valued functions. Representer theorems involving explicit
basis functions and Reproducing Kernels are a common occurrence in various machine learning
algorithms like generalized least squares, support vector machines, Gaussian process regression,
and kernel-based deep neural networks to name a few. Due to the more general structure of the
underlying variational problems, the theory is also relevant to other application areas like optimal
control, signal processing and decision making. The following presents a generalized representer
theorem using the theory of closed, densely de�ned linear operators and subspace valued maps as
a means to address variational optimization problems in learning and control. The implications of
the theorem are presented with examples of multi-input - multi-output problems from kernel-based
deep neural networks, stochastic regression and sparsity learning problems.

2.1 Introduction

The development of kernel-based methods for regression and machine learning has a long history
with several algorithms basing themselves on the Reproducing Kernel Hilbert Space (RKHS) the-
ory. Some of the early works in the �eld include [1, 4, 2], which looked at problems of spline
interpolation and smoothing in the RKHS setting. Several practical learning algorithms like linear
regression, support vector machines, Bayesian regression were also developed in their kernel forms
to allow more complex nonlinear representations of data (see [10] for some examples). Kernel-based
stochastic models are also popular in the form of Gaussian Process models (see [11]). Kernel based
neural networks are investigated in [12, 13, 14, 15, 16].

Most such problems (see example 2.6) from learning and control in their general form can be
written as a variational optimization problem of the following form,

fopt = arg min
f2H

C(Lf) + 
(f) (2.1)

where H and Z are some separable Hilbert spaces (possibly in�nite dimensional, e.g. spaces
of square integrable functions), L : H ! Z is a closed, densely de�ned linear operators, and
C : Z ! R [ f+1g and 
 : H ! R [ f+1g are general nonlinear functionals encoding the



2.1 Introduction 7

cost functions, regularizers and constraints in the problem. The functionals C and 
 are written
separately as di�erent properties are assumed to hold for the two functionals (see Section 2.3). We
also hide the fact (in the notation of C : Z ! R[f+1g) that the functional can be dependent on
additional inputs like the data set used for learning which are �xed during the optimization and
thus not explicitly shown in the notation.

Let V(H) denote the collection of all closed vector subspaces in H and S : H ! V(H) denote
a map from a vector in H to a closed subspace of H. Also let S have a subspace valued extension
S : V(H) ! V(H) given by the union operation, i.e, for any A 2 V(H), S(A) = [a2AS(a), must
belong to V(H). Let L� : Z ! H, de�ned on a dense subset dom(L�) � Z, denote the adjoint
operator to the closed, densely de�ned operator L : H ! Z. Let range(L�) denote the range of
the operator L� given by the set fL�(z) : z 2 dom(L�)g. The generalized representer theorem
(Theorem 2.3) then states under certain assumptions on C;
 and S, that an optimal solution for
(2.1) can be found in a subspace of H (often �nite dimensional) given by S(range(L?)), i.e.,

fopt 2 S(range(L�)) (2.2)

Representer theorems thus provide a means to reduce in�nite dimensional optimization problems
for learning in the Hilbert space H to an equivalent and often tractable �nite dimensional opti-
mization in Z of the form,

fopt = L�zopt
zopt = arg min

f2S(range(L�))
C � Lf + 
(f) (2.3)

If Z and S(range(L�)) are �nite dimensional then (2.3) is a �nite dimensional optimization.
A key underlying tool in the use of RKHS methods is the Riesz Representer Theorem [17,

Theorem 3.3.1] and the existence and uniqueness of adjoint operators for bounded linear operators
given by [17, Theorem 5.4.2]. The above two theorems combined with restrictions on the forms
of the objective and constraint functionals in learning problems have led to several variants of
representer theorems. Early variants of representer theorems are presented in [2] for variational
problems in learning real valued functions with least squares regularization. Representer theorems
for kernel versions of di�erent learning algorithms like SVM, PCA, CCA, ICA can be found in [3].
Works like [18, 19, 20] present representer theorems for kernel based learning methods for vector
valued functions in Hilbert spaces. While these works cover a large set of learning algorithms, the
representer theorem needed to be proven individually for each problem. This has prompted inves-
tigation into unifying representer theorems into a single generalized theorem and characterizing
the class of problems for which a representer theorem can be guaranteed to exist.

The �rst such results appear to have come from [6], where the problem is addressed for learning
real valued functions with functionals of the form (2.4).

fopt = arg min
f2H

C(f(x1); : : : ; f(xm)) + 
(jjf jjH) (2.4)

whereH is a reproducing kernel Hilbert space of R-valued functions with kernelK, f(x1); : : : ; f(xm)
are function evaluations for f at given points x1; : : : ; xm. The functional C is of the form, C :
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Rm ! R [ f+1g, and 
 : [0;1)! R is a strictly monotonically increasing function. The strictly
increasing monotonic property of 
 was shown to be a su�cient condition for the existence of a
representer such that,

fopt 2

( mX

i=1

ciK(�; xi) : ci 2 R

)

(2.5)

The regularizers (written as a function of the norm of f) showed how kernel versions of the least
squares algorithms in linear regression, SVMs and others are covered by a single generalized theo-
rem.

[8] relaxed the restriction on the regularizer further and provided necessary and su�cient con-
ditions for the existence of representer theorems. [8] considers problems of the form

fopt = arg min
f2H

C(hw1; fiH; : : : ; hwm; fiH) + 
(f) (2.6)

where H is a separable Hilbert space, w1; : : : ; wm 2 H are given vectors corresponding to
bounded functionals on H and functionals C : Rm ! R [ f+1g and 
 : H ! R [ f+1g
are lower semi-continuous functionals. If for all orthogonal vectors f; g 2 H (hf; giH = 0),

(f + g) � maxf
(f);
(g)g, the functional 
 is called \orthomonotone". It was also shown
that this orthomonotone property is necessary and su�cient for the existence of a representer in
the form,

fopt 2

( mX

i=1

ciwi : ci 2 R

)

(2.7)

[6, 8] restricted the scope of their theorem to learning R-valued functions. The generalized
theorem was extended to learning multi-output functions in [9] with the help of subspace valued
maps S : H ! V(H). [9] considers problems of the form,

fopt = arg min
f2H

C(hw1; fiH; : : : ; hwm; fiH) + 
(f) (2.8)

whereH; w1; : : : ; wm, C : Rm ! R[f+1g and 
 : H ! R[f+1g are as before from [8]. However,

 satis�es the orthomonotone property with respect to a subspace valued map S : H ! V(H),
de�ned as, for any f 2 H and g 2 S(f)?, 
(f +g) � 
(f). The representer theorem then provides
that,

fopt 2
mX

i=1

S(wi) (2.9)

(the summation over sets S(wi) + S(wj) being considered as the pairwise addition a + b of all
possible pairs (a; b) 2 S(wi)� S(wj)).

The results from [6, 8] can be viewed under this framework as 
 being orthomonotone with
respect to a trivial map SR(wi) = f�wi : � 2 Rg. The inclusion of orthomonotonicity with respect
to non trivial subspace valued maps allows the consideration of a larger class of regularizers for 

including regularizers like the ‘1-norm, Frobenius norm, trace norm and general spectral norms in
matrix learning problems [7]. For learning a matrix f 2 H = Rm�n, with 
 being a monotonically
increasing penalty on fT f , [9, Example 4.2] shows the representer is of the form

Pm
i=1 S(wi) with
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S(wi) = fwici : ci 2 Rn�ng for given wi 2 H = Rm�n, thus showing the role of S in extending the
result from [8] to a multi-output scenario.

[9] however makes an assumption of \r-regularity" (see appendix for de�nition) on the allowed
subspace valued map S : H ! V(H), which requires for all w 2 H, the dimension of S(w) � r
for some �nite r � m. We show in Section 2.4.3 that for ‘1-regularization on function spaces the
functional 
 is orthomonotone with respect to a non r-regular subspace valued map S, i.e. no such
�nite r exists for all w 2 H. Theorem 2.3 eliminates the r-regularity assumption and enables the
generalized representer theorem to be applied to such problems.

The prior counter parts of Theorem 2.3 [6, 7, 8, 9] also consider functionals C : Rm ! R[f+1g
de�ned on Rm instead of an arbitrary separable Hilbert space Z. In Section 2.4.2, we show with an
example of stochastic process regression the utility of considering loss functionals C : Z ! R[f1g
over an in�nite dimensional Hilbert space Z. The learning problems for stochastic processes require
loss functionals to be de�ned over a Hilbert space of measurable functions (not isomorphic to Rm)
and were thus outside the scope of previous generalized representer theorems from [6, 7, 8, 9].

We thus present here an extension for the generalized representer theorem where the functional
C : Z ! R [ f+1g is a lower semi-continuous non-linear functional over an arbitrary Hilbert
space Z, in terms of non r-regular subspace valued maps and adjoints of closed, densely de�ned
linear operators.

The chapter is structured as follows. Section 2.2 presents some preliminary de�nitions and
results of existing notions required to establish the generalized representer theorem. Section 2.2.1
presents some background material on linear operators and their adjoints. Section 2.2.2 presents
the notion of a subspace valued map and Section 2.2.3 presents the notion of orthomonotone
functionals with respect to a subspace valued map. The generalized representer theorem giving
necessary and su�cient conditions for the existence of a representer is then presented in Section
2.3. Section 2.4 presents examples of some simple learning problems to highlight extensions made
by the representer theorem. The appendix provides proofs for some lemmas and discussion with
regards to the subspace valued maps considered in the chapter and their relation to properties of
quasilinear, idempotent and r-regular subspace valued maps used in previous works.

2.2 Preliminaries

The notions of adjoints and closed operators are known to be crucial in determining solutions to
linear inverse problem of the form Lx = y (�nd x given y) [21]. It is thus natural for them to be
important in the theory for a generalized representer theorem (which cover problems of the form
Lx = y as a special case). Section 2.2.1 presents some preliminary, well known results that will be
useful in proving the generalized representer theorem.

2.2.1 Closed linear operators and adjoint operators

Let H and Z be two arbitrary separable Hilbert spaces. Let h�; �iH, h�; �iZ be the inner products
de�ned on H and Z respectively. A closed linear operator from H to Z is de�ned as follows.

De�nition 2.1. (Closed linear operator)
Let H;Z be two separable Hilbert spaces. Let dom(L) � H be the domain for a linear operator
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L : dom(L)! Z. L is called a closed operator if the graph of the operator, graph(L) = f(x; Lx) :
x 2 dom(L)g is a closed subset of H�Z.

An operator L is called closable if there exists an extension to L that is closed.
A linear operator (not necessarily closed) is said to be densely de�ned on H if dom(L) is a

dense subset of H. Let L : dom(L) ! Z be a linear operator, densely de�ned on H. Then an
adjoint operator can be de�ned as follows,

De�nition 2.2. (Adjoint for densely de�ned operators)
Let dom(L) be a dense subset of H and L : dom(L) ! Z be a densely de�ned op-
erator (also denoted as L : H ! Z). Let dom(L�) := fz 2 Z : f(h) =
hLh; ziZ is bounded linear functional on dom(L)g. The adjoint L� : dom(L�) ! H is de�ned
as the operator mapping z 2 dom(L�) to a dual in H such that,

8f 2 dom(L); z 2 dom(L�) hLf; ziZ = hf; L�ziH (2.10)

By [22, Chapter 10, Proposition 1.6], if the operator L : dom(L) ! Z is closable and densely
de�ned then the adjoint L� is a closed, densely de�ned operator, i.e., dom(L�) is a dense subset
of Z. For a closed densely de�ned operator L : H ! Z, L�L : dom(L�L) � H ! H and
LL� : dom(LL�) � Z ! Z are closed, densely de�ned, self-adjoint operators [23]. Also, for a closed
and bounded operator L : dom(L) � H ! Z the domain is the entire space, i.e. dom(L) = H and
the adjoint L� is also closed and bounded.

Further, by Banach’s closed range theorem [24, Chapter 7.5], the null space of a densely de�ned,
closed linear operatorNL = ff 2 dom(L) : Lf = 0g is a closed subset inH and can be characterized
in terms of the orthogonal complementary space N?L and the adjoint operator L� : dom(L�)! H
as follows,

Lemma 2.1. Let NL be the null space of a closed, densely de�ned operator L : dom(L)! Z and
N?L be its orthogonal complementary space, then,

N?L = range(L�) = fL�z : z 2 dom(L�)g

The above lemma is a direct result of the closed range theorem and we refer the reader to [24,
Chapter 7.5] for the proof.

Corollary 2.1. For some �nite m 2 N, let fLi : dom(Li) ! Zi : i = 1; : : : ;mg be a set of
closed, densely de�ned operators with Zi being separable Hilbert spaces and dom(Li) � H for
some separable Hilbert space H. Let \mi=1 dom(Li) be a dense subset of H. The joint null space is
NL1;:::;Lm = NL1 \ � � � \ NLm and N?L1;:::;Lm = N?L1

+ � � �+N?Lm = f
Pm

i=1 L
�
i zi : zi 2 dom(L�i )g.

Proof: Consider the Hilbert space Z given as the direct sum of Zi, i = 1; : : : ;m, i.e. Z = Z1�� � ��
Zm. The inner product on Z is given by h(z1; : : : ; zm); (y1; : : : ; ym)iZ =

Pm
i=1hzi; yiiZi . Consider

then the linear operator L : \mi=1 dom(Li) ! Z given as Lf = (L1f; : : : ; Lmf). By assumption,
\mi=1 dom(Li) is a dense subset of H and thus L is a densely de�ned operator. Further graph(L) =
f(x; Lx) : x 2 dom(L)g is a closed subset since for every converging sequence xn 2 dom(L),
Lxn = (L1xn; : : : ; Lmxn) converges to a point (L1x; : : : ; Lmx) with (x; Lix) 2 graph(Li) (since Li
is a closed operator). Thus L is a closed, densely de�ned operator with dom(L) = \mi=1 dom(Li).
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Clearly NL = NL1;:::;Lm = \mi=1NLi . The adjoint domain dom(L�) = f(z1; : : : ; zm) 2 Z :
f(h) =

Pm
i=1hLif; ziiZi is boundedg = dom(L�1)�� � ��dom(L�m). The adjoint L� : dom(L�)! H,

is such that, for all f 2 dom(L) and z = (z1; : : : ; zm) 2 dom(L�), hL�z; fiH = hz; LfiZ =Pm
i=1hzi; LifiZi = h

Pm
i=1 L

�
i zi; fiH. Thus L�z =

Pm
i=1 L

�
i zi. Then by Lemma 2.1, N?L =

range(L�) = f
Pm

i=1 L
�
i zi : zi 2 dom(Li)g. �

When rewriting functionals of the form C(L1f; : : : ; Lmf) as C(Lf), Corollary 2.1 gives the
required characterization of the orthogonal null space. Thus the adjoint operator plays a key role
in characterizing the null space of an operator NL and its orthogonal complementary space N?L .

Closed range characterization for bounded linear operators in terms of the operator spectrum
are given in [21, Theorem 2.5] or equivalently by [17, Lemma 5.6.13]. Characterization of closed,
densely de�ned operators is given by [25, Theorem 3.3].

By [17, Proposition 5.6.13], a bounded adjoint T � : Z ! H is a closed range if and only if

inffjjL�zjjH : jjzjjZ = 1g > 0 (2.11)

or equivalently
inffhz; LL�ziZ : jjzjjZ = 1g > 0 (2.12)

By [25, Theorem 3.3] a densely de�ned operator is closed if and only if, there exists a  > 0
such that the spectrum �(L�L) � f0g [ [;1).

Adjoint for operators of common interest

Below we show a few examples of adjoint operator for densely de�ned, closed linear operators
commonly seen in learning and control algorithms.

Example 2.1. (Evaluation Operators)
Let Z be a separable Hilbert space and Cb(X ;Z) be the separable Banach space of Z-valued
continuous and bounded functions with a domain set X . Let H be a reproducing kernel Hilbert
space with kernel K : X � X ! LZ;Z induced by a Gaussian measure on Cb(X ;Z). A parametric
linear evaluation operator Lx : H ! Z, given by Lx(f) = f(x) for some �xed parameter x 2 X
is then a bounded linear operator (see Theorem C.9) and H is a dense subset in Cb(X ;Z) [26,
Theorem 3.9.5]. The operator commonly occurs in machine learning and data �tting problems
where x is the training input data and f(x) gives a predicted value for the output in Z. The
adjoint L�x : Z ! H can be found as follows.

Note that by de�nition of Lx and its adjoint L�x, 8g 2 H; z 2 Z, hL�xz; giH = hLxg; ziZ , i.e.,
hL�xz; giH = hg(x); ziZ . When H is a reproducing kernel Hilbert space with kernel K, L�x is well
de�ned and coincides with the de�nition of the RKHS kernel (see [18, De�nition 2.1] or Theorem
C.9). Thus RKHS spaces provide a case where the adjoint operator for evaluation operators is well
de�ned and L�x = K(�; x), i.e. we have dom(Lx) = H and dom(L�x) = Z.

The closed range property for L�x thus corresponds to the closed range property of the kernel.
Using (2.12), this corresponds to checking inffhz;K(x; x)ziZ : jjzjjZ = 1g > 0. For a positive
de�nite kernel K, this is automatically satis�ed and the adjoint is a closed range, bounded linear
operator.
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Example 2.2. (Linear Transformations of an explicit basis �)
Let H;Y;Z be arbitrary Hilbert spaces. Let LY;Z be the space of bounded, closed range op-
erators from Y to Z. Let � : X ! Y be some given Y-valued function and x 2 X be an
evaluation point such that jj�(x)jjY < 1. Let ‘ : H ! LY;Z be a bounded linear map from
H to LY;Z such that there exists a �‘ 2 [0;1) satisfying, for all W 2 H, jj‘(W )jjLY;Z �
�‘jjW jjH. Then we can de�ne a bounded, closed range linear operator Lx;� : H ! Z given as
Lx;�(W ) := ‘(W )�(x) for any W 2 H. The boundedness for the operator follows from the fact
that jjLx;�(W )jjZ = jj‘(W )�(x)jjZ � jj‘(W )jjLY;Z jj�(x)jjY � �‘jj�(x)jjY jjW jjH. The adjoint op-
erator satis�es hL�x;�z;W iH = h‘(W )�(x); ziZ and its form depends on further speci�cation of
‘.

The operator Lx;� is closed range, if inffhLx;�L�x;�z; ziZ : jjzjjZ = 1g > 0, i.e.,
inffh‘(L�x;�z)�(x); ziZ : jjzjjZ = 1g > 0.

We look at two examples below giving ‘ explicitly and making the adjoint and closed range
characterization for the given cases.

Example 2.2(a). Finite dimensional Z example
Let Y = Rn, Z = Rk, H = Rn�k and � : X ! Y is a given basis function and x 2 X with
jj�(x)jjY <1. Let ‘(W ) := W T be the bounded operator from H to LY;Z . Then for any W 2 H,
Lx;�(W ) = W T�(x) and Lx;� is a bounded operator. Such an operator is common when W
represent weights or coe�cients to be learned and � is a given vector of basis functions.

Let the inner product on H be the Frobenius inner product of matrices, i.e, hw1; w2iH =
trace(wT1 w2). Let inner product on Z be hz1; z2iZ = zT1 z2. Then for the adjoint operator
hL�x;�z;W iH = hW T�(x); ziZ , 8z 2 Z implying trace(W TL�x;�z) = �(x)TWz. Noting then
that �(x)TWz = trace(�(x)TWz) = trace(zTW T�(x)) = trace(W T�(x)zT ), we can de�ne
L�x;�z := �(x)zT with dom(Lx;�) = H and dom(L?x;�) = Z.

The operator Lx;� is closed range if inff�(x)T�(x)zT z : jjzjjZ = 1g = �(x)T�(x) > 0.

Example 2.2(b). In�nite dimensional Z example
Let X = Rn, U = Rm and H = Rm�N . Let fYi : i = 1; : : : ; Ng be a collection of RKHS spaces of

functions f : X ! U with kernels K1; : : : ;KN . Let Y = Y1 � � � � � YN and �(x) =

0

BBB@

K1(�; x)
K2(�; x)

...
KN (�; x)

1

CCCA

and let Z be some in�nite dimensional Hilbert space of functions g : X ! U with inner product
hg1; g2iZ =

R
X hg1(x); g2(x)iUdx. Then we can de�ne a continuous linear operator Lx;� : H ! Z

for any W 2 H as Lx;�(W ) :=
PN

i=1Ki(�; x)Wi, with Wi denoting the ith column of W . Using the
Frobenius inner product on H, hL�x;�g;W iH = hLx;�(W ); giZ =

PN
i=1
R
X hKi(y; x)Wi; g(y)iUdy =

PN
i=1
R
X W

T
i Ki(x; y)g(y)dy. Also note that hL�x;�g;W iH = trace(W TL�x;�g) =

PN
i=1W

T
i [L�x;�g]i.

Thus [L�x;�g]i =
R
X Ki(x; y)g(y)dy gives the adjoint.

The operator Lx;� is closed range, if inffhL�x;�(Lx;�W );W iH : jjW jjH = 1g =
inffhL�x;�W;L

�
x;�W iZ : jjW jjH = 1g = inff

PN
i=1
PN

j=1(
R
X W

T
i Ki(x; y)TKj(x; y)Wjdy) : jjW jjH =

1g > 0.
Such an operator can be used to pose an optimization for learning with weighted kernels.
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Example 2.3. (Derivative operator in Sobolov Hilbert spaces)
Let 
 � Rn be a open subset of Rn with a smooth boundary @
. Let � = (�1; : : : ; �n) 2 Nn be a
multi-index and @�f = @�1

x1 ; : : : ; @
�n
xn f . Let L2(
;R; �) be the space of R-valued functions, square

integrable on 
 with respect to a non-negative measure � and Hk(
;R; �) be the Sobolov Hilbert
space such that @�f 2 L2(
; �) for all multi-index � 2 Nn such that j�j � k. The inner product
on Hk(
;R; �) is given by hf; giHk(�) =

Pk
i=1
P

�:j�j�kh@
�f; @�giL2(
;�). It is also known that

Hk(
;R; �) � L2(
;R; �) is a dense subset of L2(
;R; �) [27, Prop. 3.10]. Thus any di�erential
operator D : Hk(
;R; �) ! L2(
;R; �) de�ned on Hk(
;R; �) is densely de�ned on L2(
;R; �)
with dom(D) = Hk(
;R; �). Consider then a di�erential operator Df = �(�)Trf+�f for a given
smooth function � 2 C1(Rn;Rn), r and � are the gradient and Laplace operators respectively.
Such an operator D is closable [24, Page 78]. Thus we have D as a closable, densely de�ned
operator on L2(
;R; �), implying the adjoint D� is closed and densely de�ned on L2(
;R; �). For
any g with di�erentiability upto order two and f 2 dom(D) we have, using integration by parts,

hDf; giL2(
;R;�) =
Z



(�(x)Trf(x) + �f(x))g(x)d�(x) (2.13)

=
Z



f(x)(�r � (g�)(x) + �g(x))d�(x) (2.14)

+
Z

@

(�fg + grf � frg) � dS (2.15)

Then for the boundary conditions g(x) = 0 and rg(x) = 0 for all x 2 @
, and de�ning

D�g = �r � (g�)(x) + �g(x)

we have the integral terms over the boundary going to zero and,

hDf; giL2(
;R;�) = hf;D�giL2(
;R;�) (2.16)

for all f 2 Hk(
;R; �) and g 2 dom(D�) = fg 2 H2(Rn;R; �) : 8x 2 @
; g(x) = 0;rg(x) = 0g.

Example 2.3 shows an example of an unbounded operator where the domain dom(L�) is a strict
subset of Z unlike in the case of bounded, closed operators in Examples 2.1 and 2.2. Derivative
operators with boundary conditions are common in numerical methods for control, signal processing
and partial di�erential equation applications. Similarly the use of integral operators for learning
has been considered for learning in [28].

2.2.2 Subspace Valued Maps

The notion of subspace valued maps expands the class of regularizers that a generalized representer
theorem can explain and was introduced in [9]. LetH be a separable Hilbert space, 2H be the power
set on H and V(H) be a set of all closed vector subspaces of H. Also for any subsets A;B � H, let
A+B denote the set fa+ b : a 2 A; b 2 Bg. A map S : H ! V(H) is then called a subspace valued
map. For evaluation on any set A � H, we denote S(A) to mean, S(A) = [x2AS(x). The union
operation, thus, extends the map S : H ! V(H), in general, to a set valued map S : V(H) ! 2H
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(as the union of vector spaces is not necessarily a vector space). Below we present a few de�nitions
of terms we will use in the context of subspace valued maps and show conditions under which the
union leads to closed vector spaces.

De�nition 2.3. (Subspace valued map)
Let H be a separable Hilbert space and V(H) be a set of all closed vector subspaces of H. A map
S : H ! V(H) is called subspace valued.

De�nition 2.4. (Union extension)
Let S : H ! V(H) be a subspace valued map. Then the extension of S : V(H)! 2H given by an
union operation S(A) = [x2AS(x) is called the union extension of S.

De�nition 2.5. (Inclusive map)
A subspace valued map S : H ! V(H) is called inclusive, if, for all x 2 H, x 2 S(x)

De�nition 2.6. (Super additive map)
A map S : H ! V(H) is called super additive if its union extension S : V(H) ! 2H is super-
additive, i.e. for all vector subspaces A;B 2 V(H),

S(A) + S(B) � S(A+B)

Note the the above name is a misnomer since we do not require S : H ! V(H) to be super-additive,
but only its union extension to be super-additive. The misnomer is used for the purposes of brevity.

De�nition 2.7. (Closed map)
A map S : H ! V(H) is called closed if its union extension S : V(H)! 2H maps closed subspaces
from V(H) to closed subsets in 2H.

De�nition 2.8. (Orthogonal subspace)
For any A � H, we de�ne S(A)? := fb 2 H : 8a 2 S(A); ha; biH = 0g

The following shows a few examples of inclusive and super-additive subspace valued maps that are
used for application examples in Section 2.4,

Example 2.4. Subspace valued maps

1. SR(a) := f�a : � 2 Rg is a closed, inclusive, super additive subspace valued map. Inclusivity
of SR is straightforward to see since a = 1 � a 2 S(a) = f� � a : � 2 Rg. Further for any
A;B 2 V(H), S(A) + S(B) = f�1a + �2b : �1; �2 2 R; a 2 A; b 2 Bg = f�a : � 2 R; a 2
A + Bg = S(A + B). Also for any closed subspace A 2 V(H), the union extension is such
that SR(A) = [a2ASR(a) = A and thus maps closed subspaces to closed subspaces.

2. Let K = fLi : H ! H : i = 1; : : : ; ng be a �nite set of linearly independent, closed
and bounded linear operators with the identity operator I 2 span(K). Then SL(a) :=
f
Pn

i=1 �iLia : �i 2 Rg is a closed, inclusive and super additive subspace valued map. The
fact that SL is closed, can be seen by noting that for any closed subspace A, we have
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SL(A) =
Pn

i=1 LiA. Since Li are closed linear operators, the sets LiA are closed and the sum
of �nitely many closed sets remains closed. SL being inclusive follows from the fact that the
identity operator Ia = a belongs to span(K), and thus a 2 SL(a), implying SL is inclusive.
Also for any closed vector subspaces A;B 2 V(H), S(A) + S(B) = f

P1
i=1 �iLia + �0iLib :

�i; �0i 2 R; a 2 A; b 2 Bg = f
P1

i=1 Li(�ia+ �0ib) : �i; �0i 2 R; a 2 A; b 2 Bg = f
P1

i=1 Lia : a 2
A+Bg = S(A+B).

3. A special case of the above example is the case when H = Rn and E = fe1; : : : ; eng is the
standard orthonormal basis for Rn. Then Sproj(a) := f

Pn
i=1 �iha; eiiHei : ei 2 E; �i 2 Rg

is an inclusive, super additive subspace valued map. The Sproj corresponds to SL from the
previous example, with Li : H ! H, being a set of projections onto the orthonormal basis,
given as Lia = ha; eiiHei

4. A countable counterpart of the example above can be presented for the space of square
summable sequences, H = ‘2(N;R), taking values in R and indexed by natural numbers N.
Let f�i 2 ‘2(N;R) : i 2 Ng with �i(j) = 1 if i = j and 0 otherwise, be the orthonormal basis
for ‘2(N;R). Let f(i) denote the ith member of a sequence and let hf; giH =

P1
i=1 f(i)g(i).

Then Sproj(f) =
nP1

i=1 �(i) hf;�iiH�ijjf jjH
: � 2 ‘2(N;R)

o
for jjf jjH 6= 0 and Sproj(f) = f0g if

jjf jjH = 0, is an inclusive, closed and super additive subspace valued map. The Sproj de�ned
can be seen to be inclusive as for any f 2 ‘2(N;R), there exists a representation for f
in terms of the orthonormal basis f =

P1
i=1 a(i)�i for some coe�cients sequence a 2 ‘2.

Sproj(f) = f
P1

i=1 �(i)�i : � 2 ‘2(N;R); �(i) = 0 if a(i) = 0g and thus f =
Pn

i=1 a(i)�i
belongs to Sproj(f). Similarly for any f =

P
i=1 a(i)�i and g =

P
i=1 b(i)�i with a; b 2

‘2(N;R), we have Sproj(f) + Sproj(g) = f
P1

i=1 �(i)�i : � 2 ‘2(N;R); �(i) = 0 if a(i) =
0g + f

P1
i=1 �(i)�i : � 2 ‘2(N;R); �(i) = 0 if b(i) = 0g = f

P1
i=1 �(i)�i : � 2 ‘2(N;R); �(i) =

0 if b(i) = a(i) = 0g = Sproj(f + g). Thus Sproj(A) + Sproj(B) = Sproj(A + B) for all
A;B 2 V(H) and thus it is trivially super-additive. Also Sproj is closed as it maps any
A 2 V(H), to Sproj(A) = f

P1
i=1 �(i)�i : � 2 ‘2(N;R) and �(i) = 0 if a(i) = 0 for all a 2 Ag

which is a closed vector subspace of ‘2(N;R)

Examples 2.4-3 and 2.4-4 are used to construct representers for regularizers given by ‘1 norm.
Noting that the union extension of a subspace valued map S : V(H) ! 2H, in general, is

not subspace valued, the following Lemma shows that a subspace valued union extension S :
V(H)! V(H) to a subspace valued map S : H ! V(H) exists, if and only if, the union extension
S : V(H)! 2H is super-additive.

Lemma 2.2. (Extending S : H ! V(H) to S : V(H)! V(H))
Let S : H ! V(H) be a subspace valued map and its union extension S : V(H) ! 2H be given
by S(A) = [x2AS(x). Then the extension maps into V(H), if and only if, S is super-additive and
closed.

Proof: We �rst prove that if S is super-additive and closed then for any A 2 V(H), S(A) 2 V(H)
and thus the extension S : V(H)! 2H has range in V(H).

To show S(A) 2 V(H), we need to show that for any a; b 2 S(A), �a + �b 2 S(A) for all
�; � 2 R and that any converging sequence fan 2 S(A)g converges within S(A).
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First, we show that S(A) is a vector space if S is super-additive.
Since S(A) = [x2AS(x), for any a 2 S(A), there exists a xa 2 A such that a 2 S(xa). Further,

S : H ! V(H) maps xa 2 H to a closed vector space S(xa) 2 V(H). Thus a 2 S(xa) implies
�a 2 S(xa) for all � 2 R, also implying �a 2 S(A). By the same arguments, for all � 2 R,
b 2 S(A), implies �b 2 S(A). Thus the one dimensional closed vector spaces Ka = f�a : � 2 Rg
and Kb = f�b : � 2 Rg are subspaces in S(A) i.e., Ka � S(A) and Kb � S(A). Thus Ka + Kb �
S(A) + S(A). By super-additive property of S, S(A) + S(A) � S(A + A) = S(A) (because for
vector space A, A + A = A). Also, �a + �b 2 Ka + Kb � S(A), implying for all a; b 2 S(A),
�; � 2 R, �a+ �b 2 S(A).

S(A) is also closed, as S is taken to be a closed subspace valued map. Thus we have shown
that S being super-additive and closed implies for all A 2 V(H), S(A) 2 V(H). Thus the union
extension can be written as S : V(H)! V(H).

Next we show the reverse statement that a union extension S : V(H) ! V(H) implies S is
super-additive and closed.

For all A;B 2 V(H), we have A+B 2 V(H), as the sum of two closed vector spaces is a closed
vector space. Also A � A+B and B � A+B. Thus S(A) = [x2AS(x) � [x2A+BS(x) = S(A+B).
Similarly, S(B) � S(A + B). Given S maps V(H) into V(H), we have for A;B;A + B 2 V(H),
S(A); S(B); S(A + B) 2 V(H). Since S(A) � S(A + B) and S(B) � S(A + B), S(A) + S(B) �
S(A+B) implying S is super-additive. S being closed follows from the assumption that S(A) was
in V(H) which is a space of closed vector spaces. �

The notions of quasilinear and idempotent maps from [9] are related to the notion of super
additivity by noting that for any quasilinear, idempotent S, Ssup(A) :=

P
w2A S(w) can be de�ned

as the corresponding super additive map. Also the representers from [9] are of the form
Pm

i=1 S(wi)
and thus equivalently can be written as Ssup(span(fw1; : : : ; wmg)). Thus considering a super-
additive subspace valued map does not lead to any loss of generality. Furthermore [9] assumed
the maps to be idempotent, i.e., S(S(x)) = S(x), which implicitly assumes that S has a subspace
valued union extension and thus all idempotent subspace valued maps are implicitly required to
be super-additive.

Another property that is of interest for us is the preservation of N?L = range(L�) for a given
operator L : H ! Z under a subspace valued map, i.e., we want range(L�) � S(range(L�)). S
being inclusive is a su�cient condition for such a range preserving property. Formally we de�ne
this property as follows,

De�nition 2.9. (Range preserving map)
Let L : H ! Z be a closable, densely de�ned operator as considered in Section 2.2.1 and let
N?L = range (L�) be the null space orthogonal of L. Then a subspace valued map S : V(H)! V(H)
is called range preserving with respect to L if

N?L � S(N?L )

or equivalently, S(N?L )? � NL.

Given that N?L and NL are closed, orthogonal complementary subspaces in H, the subspace valued
extension S : V(H) ! V(H) implies S(N?L ) and S(N?L )? are also closed, orthogonal complemen-
tary spaces in H.
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The range preserving property S(N?L )? � NL implies that any g 2 S(N?L )?, g 2 NL, i.e.,
Lg = 0. This property will be useful later when proving the generalized theorem.

Lemma 2.3. (Inclusive implies range preserving)
If S : V(H) ! V(H) is inclusive then it is range preserving with respect to any closable, densely
de�ned operator L : H ! Z.

Proof: If S is inclusive, then for all A 2 V(H), A � S(A). For a closable, densely de�ned operator,
the orthogonal to the null space N?L = range (L�) is a closed vector subspace in V(H) and thus
inclusivity implies N?L = range (L�) � S(N?L ). �

The range preserving property and orthogonal complementary nature of S(N?L ) and S(N?L )? will
be key in characterizing the conditions for the existence of a representer theorem.

2.2.3 Orthomonotone Functionals

[8, 9] introduced orthomonotone functionals as a way to expand the class of regularizers. The
following reiterates the notions introduced there in the context of subspace valued maps of the
form S : V(Z) ! V(Z) and separates out the notions of orthomonotonicity with respect to a
single closed subspace (which gives a su�cient condition for the existence of a representer) and
orthomonotonicity with respect to a subspace valued map, which gives as a necessary and su�cient
condition when considering existence of representers for a family of minimization problems.

De�nition 2.10. (Orthomonotonicity with respect to a subspace)
Let Z be a Hilbert space and K � Z be a closed subspace of Z. Let K? denote the orthogonal
complementary space to K. A functional 
 : Z ! R [ f+1g is called orthomonotone with
respect to the subspace K if

8f 2 K; g 2 K?; 
(f + g) � 
(f)

De�nition 2.11. (Orthomonotonicity with respect to a subspace valued map)
Let Z be a Hilbert space. A functional 
 : Z ! R[f+1g is called orthomonotone with respect
to a subspace valued map S : V(Z)! V(Z) if

8A 2 V(Z); f 2 S(A); g 2 S(A)?; 
(f + g) � maxf
(f);
(g)g

Consider the subspace valued map SR from Example 2.4. [8, Theorem 1] showed that a func-
tional 
 is orthomonotone with respect to SR if and only if there exists a monotonically increasing
functional h : R! R [ f1g such that 
(z) = h(jjzjj); 8z 2 Z. Note that while the above charac-
terization with a monotonically increasing functional restricts its analysis to inner product induced
norms, other kinds of orthomonotone functionals can be constructed as well, and orthomonotonic-
ity with respect to a subspace valued map S : H ! V(H) was introduced in [9] as a means to
expands the class of regularizers to non inner product terms. Example 2.5 belows shows a few
examples of orthomonotone regularizers.

Example 2.5. Orthomonotone functionals
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1. 
(z) = jjzjjpZ , for any p > 0 is orthomonotone w.r.t. SR

2. Let Z = Rn and jj � jj1 denote the ‘1 norm. Then, 
(z) = jjzjj1 is orthomonotone w.r.t. Sproj
(Sproj as de�ned in Example 2.4-3).

The proof for the �rst statement follows directly from [8, Theorem 1] since 
(z) = jjzjjpZ , for any
p > 0 is a monotonically increasing function of the inner product induced norm. The proof for the
second statement follows from Theorem 2.1.

The second statement in the example above shows how sparse regularization problems involving
the ‘1 norm are also covered by the notion of orthomonotone functionals.

The orthomonotonicity of ‘1 regularizers is formalized with the following theorem,

Theorem 2.1. Orthomonotonicity of ‘1 regularizers
Let Z = Rn, Sproj be the subspace valued map de�ned in Example 2.4 and let h : [0;1] !
R [ f+1g be a monotonic increasing function. Then 
(z) = h(jjzjj1) is orthomonotone with
respect to Sproj .

Proof: We �rst show 
(z) = jjzjj1 is orthomonotone w.r.t. Sproj . The result for monotonic
increasing h follows from there.

Let E = fe1; : : : ; eng be the standard basis for Rn. Note that for any z 2 Rn, Sproj(z) =
f
Pn

i=1 �ihz; eiiRnei : ei 2 E; �i 2 Rg and (Sproj(z))? = f
P

j �jej : hz; ejiRn = 0; ej 2 E; �j 2
Rg. Similarly for a set A � Rn, Sproj(A) = f

Pn
i=1 �ihz; eiiRnei : ei 2 E; �i 2 R; z 2 Ag and

(Sproj(A))? = f
P

j �jej : ej 2 E; �j 2 R; 8z 2 A; hz; ejiRn = 0g. Now for any z 2 Sproj(A) and c 2
Sproj(A)?, jjz + cjj1 =

P
fi:hz;eiiRn 6=0g jzij+

P
fi:hz;eiiRn=0g jcij with zi = hz; eiiRn and ci = hc; eiiRn .

Also jjzjj1 =
Pn

i=1 jzij =
P
fi:hz;eiiRn 6=0g jzij and jjcjj1 =

Pn
i=1 jcij =

P
fi:hz;eiiRn=0g jcij. Thus we see

jjz + cjj1 = jjzjj1 + jjcjj1 � maxfjjzjj1; jjcjj1g =) 
(z) = jjzjj1 is orthomonotone with respect to
Sproj .

For any monotonically increasing function h, for any a; b 2 [0;1), a > b implies h(a) > h(b).
Thus jjz+ cjj1 � maxfjjzjj1; jjcjj1g implies h(jjz+ cjj1) � maxfh(jjzjj1); h(jjcjj1)g. And thus 
(z) =
h(jjzjj1) is orthomonotone with respect to Sproj for any monotonically increasing function h. �

The theorem can also be extended to a countable space of sequences as follows,

Theorem 2.2. (Orthomonotonicity of ‘1 regularizers in countable spaces)
Let Z = ‘2(N) be the Hilbert space of R�valued square summable sequences on N. Let

jjf jj1 =

(P1
i=1 jfij if summation is bounded

+1 otherwise
. Let Sproj be the subspace valued map consid-

ered in Example 2.4-4 and h : [0;1] ! R [ f1g be a monotonic increasing function. Then

(f) = h(jjf jj1) is orthomonotone with respect to Sproj .

Proof: For any A 2 V(Z), f 2 Sproj(A), g 2 Sproj(A)?, we have f =
P

i2KA �i�i and g =P
j2NnKA �j�j , for �i being the orthonormal basis of ‘2(N) considered in Example 2.4-4 and KA

being some subset of indices in N for which A has a non-zero projection on �i, written as KA =
fi 2 N : there exists some a 2 A such that ha; �ii‘2 6= 0g. Thus we have jjf + gjj1 = jjf jj1 + jjgjj1
(including the case when any of them takes the value of1) as both f and g have disjoint supports.
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Thus we have jjf + gjj1 � maxfjjf jj1; jjgjj1g for all A 2 V(Z) and f 2 Sproj(A), g 2 Sproj(A)?.
Then for any monotonically increasing function h, we have h(jjf + gjj1) � maxfh(jjf jj1); h(jjgjj1)g
and thus 
 is orthomonotone with respect to Sproj . �

For more properties of orthomonotone functional regarding compositions and sums we refer the
reader to [9]. With the notions of linear and adjoint operators combined with subspace valued maps
and orthomonotone functionals, we are now ready to present the main result for the generalized
representer theorem.

2.3 Generalized representer theorem

Let H and Z be separable Hilbert spaces. Let L : H ! Z be closed, densely de�ned operators on
H. Let C : Z ! R [ f+1g and 
 : H ! R [ f+1g be some lower semi-continuous functionals.

Functionals of the form C 0 : Z1�� � ��Zm ! R[f1g := C 0(L1f; : : : ; Lmf) are written without
loss of generality in terms of a Hilbert space Z considered above, as follows. For any m 2 N and
i 2 f1; : : : ;mg, let Li : H ! Zi be closed, densely de�ned linear operators from H to separable
Hilbert spaces Zi. Let Z = Z1�Z2�� � ��Zm and let L : H ! Z be given by Lf = (L1f; : : : ; Lmf),
thus equivalently writing C 0 as a functional C : Z ! R [ f+1g.

Now, consider the optimization problem,

fopt = argmin
f2H

C(Lf) + 
(f) (2.17)

The inclusion of f+1g in the range of lower semi-continuous C and 
 allows one to consider
constrained optimization problems. A few examples of learning problems written in this form are
shown below,

Example 2.6. (Learning and control problems)

1. Let H be an RKHS space of functions taking values in Zi = Rn. Consider the evaluation
operator from Example 2.1 such that Lx : H ! Zi is given by Lxf := f(x). Let f(xi; yi) : i =
1; : : : ;mg be a training data set. Let L1; : : : ; Lm be given by Lx1 ; : : : ; Lxm and L0 : H ! H
be the identity operator. Let C(L1f; : : : ; Lmf) :=

Pm
i=1 jjyi��(Lxif)jj2Z for some activation

function � : Rn ! Rn. Let 
(L0f) := jjf jj2H. Then for J(f) =
Pm

i=1 jjyi��(Lxif)jj2Zi + jjf jj
2
H

we get a regularized least squares problem in the RKHS space if � is linear and an RKHS
based neural network layer for some nonlinear �.

2. Let 
(f) = jjf jj21 in the above example and we get a ‘1 regularized problem.

3. Let Zi = R, yi 2 f+1;�1g, C(L1f; : : : ; Lmf) :=

(
0 8i 2 f1; : : : ;mg; yiLif > 0
+1 otherwise

and


(f) = jjf jj2. Then J(f) = C(L1f; : : : ; Lmf) + 
(f) gives the hard margin support vector
machine objective for binary classi�cation.

4. Let � be a positive measure on the measurable space (R;B(R)). Let f; u be functions
in L2([0;1); �; Rn) and L2([0;1); �; Rm) respectively. Consider the regularizer 
(f; u) =
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jjf jj2L2 + jjujj2L2 and C(L(f; u)) =

(
0 if @tf(ti)��(f(ti);u(ti))=0 for all i=1;:::;m

f(0)=x0;u(0)=u0

+1 otherwise
for some known

nonlinear function � : Rn � Rm ! Rn, �nite set of points fti 2 [0;1) : i = 1; : : : ;mg and
(x0; u0) 2 Rn � Rm. Then J((f; u)) = C(L(f; u)) + 
(f; u) gives the objective function for
solving a collocation based approximation to a continuous time nonlinear optimal control
problem, where � is a known function for the dynamics of the system, f denotes the con-
tinuous time trajectory and u denotes the continuous time control signal. The measure � is
used as a weighting measure to determine the growth rate of the functions considered in the
hypothesis space for the solutions. Note also that the derivative operator @t is only a closed,
densely de�ned operator and not a bounded one.

Given a learning problem in the form of (2.17), let 
 be orthomonotone with respect to an
inclusive, super-additive subspace valued map S : V(H) ! V(H). The generalized representer
theorem states that a minimizer for (2.17) exists in the subspace given by S(N?L ) and the problem
(2.17) is said to be linearly representable.

The notion of linear representability is signi�cant as it often allows one to reformulate in�nite
dimensional optimization problems in H into equivalent �nite dimensional optimization in Z given
as

fopt = arg min
f2S(range(L�))

C(Lf) + 
(f) (2.18)

(2.18) gives a �nite dimensional optimization if Z is �nite dimensional and S(range(L�)) is a �nite
dimensional subspace.

Below we state and prove, �rst the su�cient condition for linear representability of a functional
J(f) = C(Lf) + 
(f) and then the complete statement of necessary and su�cient condition for
linear representability over a given family of functionals.

2.3.1 Su�cient conditions for linear representability

Theorem 2.3. Generalized Representer Theorem (Su�cient condition)
Let H and Z be separable Hilbert spaces and L : H ! Z be a closed, densely de�ned linear
operator with the null space orthogonal N?L = range(L�). Let S : V(H) ! V(H) be a closed and
super additive subspace valued map, range preserving with respect to L. Let 
 : H ! R [ f+1g
and C : Z ! R[f+1g be a lower semicontinuous functionals, with 
 orthomonotone with respect
to the subspace S(N?L ). Then for the problem,

fopt = argmin
f2H

C(Lf) + 
(f) (2.19)

if the minimizers are attainable, atleast one minimizer is linearly representable with respect to S,
such that fopt 2 S(N?L ).

Proof: Since 
 is orthomonotone with respect to the closed subspace S(N?L ), 8f 2 S(N?L ); g 2
S(N?L )?, 
(f + g) � 
(f). Also by De�nition 2.9, S is range preserving with respect to L, implies
S(N?L )? � NL. Thus for all g 2 S(N?L )?, Lg = 0.

For a closed, densely de�ned operator L, N?L = range(L�) is a closed vector subspace and thus
by de�nition is mapped to a closed subspace S(N?L ) by the subspace valued map. Thus S(N?L )
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and S(N?L )? form an orthogonal complementary pair for H and for any F 2 H we can �nd a
decomposition F = f + g, with f 2 S(N?L ), g 2 S(N?L )?. Then

J(F ) = C(L(f + g)) + 
(f + g) (2.20)
= C(Lf) + 
(f + g) (2.21)
� C(Lf) + 
(f) (2.22)

Thus 8F 2 H, 9f 2 S(N?L ) such that J(f) � J(F ). Thus if J admits a minimizer in H, a
minimizer must exists in S(N?L ), implying J is linearly representable w.r.t. S. �

2.3.2 Necessary and su�cient conditions for linear representability

The generalized representer theorem we present here di�ers from its previous counterpart [9, The-
orem 3.1] in three signi�cant ways. Firstly, there is no assumption for a �nite dimensional r-
regularity property on the subspace valued map and secondly, the loss functional C can be de�ned
on arbitrary in�nite dimensional Hilbert spaces Z. These two changes become signi�cant since
when dealing with stochastic regression problems the output space Z is an in�nite dimensional
Hilbert space of random variables (or measurable functions) and when dealing with ‘1 regulariza-
tion problems in function spaces, the corresponding subspace valued map Sproj is not r-regular for
any �nite r. We will expand upon these di�erences in Section 2.4 with corresponding application
examples. Lastly, we consider closed and densely de�ned operators in the loss function which
allows for unbounded, derivative like operators in learning and control problems.

Now note that problems of the form (2.17) are typically considered over families of linear
operators L : H ! Z where L depends on training data for the learning problem and scaled
regularizers f
 :  2 (0;1)g, and if (2.17) is linearly representable for some choice of L and ,
it is natural to expect the problem to be linearly representable for all possible problems in this
family. In fact if 
 is orthomonotone with respect to a closed, inclusive and super-additive subspace
valued map S, this follows from Theorem 2.3 for all closed, densely de�ned linear operators (since an
inclusive S is null space preserving for any operator L, by Lemma 2.3). The necessary condition in
the representer theorem considers the reverse proposition, that is, if (2.17) is linearly representable
with respect to a closed, inclusive and super-additive subspace valued map S for all closed, densely
de�ned operators L and all  2 (0;1), then under certain additional assumptions on C and 
 it
can be concluded that 
 must be orthomonotone with respect to S.

Thus, consider the family of functionals, given a closed, inclusive and super-additive subspace
valued map S,

JS = fC � L+ 
 j  2 (0;1); L : H ! Z is closed, densely de�nedg (2.23)

and for �xed functionals C : Z ! R [ f1g and 
 : H ! R [ f1g such that C admits a unique
non-zero minimizer z? in Znf0g with compact sub-level sets in its neighborhood and 
 admits a
minimizer at 0. Note that the assumption on 
 is not a new one. Any 
 orthomonotone with
respect to a subspace valued map must admit a minimizer at 0 and thus was not explicitly stated
in Theorem 2.3. For the reverse proposition of the representer theorem, however 
 is not assumed
to be orthomonotone and thus for it to be orthomonotone by the reverse proposition, a minimizer
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at 0 must be assumed (the minimizer at 0 need not be a unique minimizer).
The necessary and su�cient conditions for the generalized representer theorem can then be

stated as follows,

Theorem 2.4. Generalized Representer Theorem (Necessary and Su�cient Conditions)
Let H and Z be separable Hilbert spaces. Let S : V(H) ! V(H) be a closed, inclusive and
super additive subspace valued map. Let 
 : H ! R [ f1g and C : Z ! R [ f+1g be
lower semicontinuous functionals, such that 
 admits a minimizer at 0 and C admits a unique
minimizer z? in Znf0g with sequentially compact sub-level sets around z?. Let JS = fJL; =
C � L + 
 j  2 (0;1); L : H ! Z is a closed, densely de�ned linear operatorg be the family of
functionals corresponding to all closed, densely de�ned linear operators L : H ! Z and constants
 2 (0;1). For each functional in JL; 2 JS consider the problem,

fopt = argmin
f2H

JL;(f) (2.24)

Then, each problem in the family fminf2H JL;(f) : JL; 2 JSg is linearly representable with
respect to S if and only if, 
 is orthomonotone with respect to S

Proof: The proof for su�ciency (i.e. orthomonotone 
 =) existence of linear representer)
follows from Theorem 2.3 and Lemma 2.3.

To prove necessity of orthomonotone 
, assume that all functionals JL; 2 JS corresponding
to a linear operator L and constant  are linear representable w.r.t. to S, i.e., for all functionals
JL; = C � L+ 
 2 JS a minimizer exists in S(N?L ). Note that a minimizer JL; exists because
both C and 
 admit minimizers in Znf0g and H respectively and range(L) is a closed subset in
Z.

We �rst show that for all closed densely de�ned operators L : H ! Z we must have 
(f +g) �
maxf
(f);
(g)g for all f 2 S(N?L ) and g 2 S(N?L )? for a family of functionals fJL; 2 JS :  2
(0;1)g to be linearly representable with respect to S. We show this in two parts, �rst we show

(f + g) � 
(f) and then 
(f + g) � 
(g) for f 2 S(N?L ) and g 2 S(N?L )?.

Finally we show that there exists a one to one correspondence between the space of all closed
vector subspaces A 2 V(H) and a set of closed and bounded linear operators (which is a subset
of closed, densely de�ned linear operators) and thus for all A 2 V(H), we must have a closed,
bounded operator L : H ! Z such that A = N?L . Thus for all A 2 V(H), f 2 S(A) and
g 2 S(A)? we have 
(f + g) � maxf
(f);
(g)g. Thus we show that if the family of functionals
JS = fJL; = C � L+ 
 j  2 (0;1); L : H ! Z is a closed, densely de�ned linear operatorg for
a given tuple of functionals and subspace valued map (C;
; S) are all linearly representable with
respect to S then 
 must be orthomonotone with respect to S.

We start by proving the result that 
(f + g) � maxf
(f);
(g)g for all f 2 S(N?L ) and
g 2 S(N?L )?.

(i) Consider �rst the corner case for f 2 S(N?L ) such that f = 0, and g 2 S(N?L )?. Then,
we have 
(f + g) = 
(g) � 
(g) (trivially true) and 
(f + g) = 
(g) � 
(0) = 
(f) (since 

admits a minimizer at 0 and f = 0). Thus for the case of f 2 S(N?L ), f = 0, we have shown that

(f + g) � maxf
(f);
(g)g for all g 2 S(N?L )?.
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(ii) Next, consider the corner case, where the operator L : H ! Z is such that S(N?L ) = f0g,
i.e. there exists no f 6= 0 in S(N?L ). If S(N?L ) = f0g, then result (i) implies that for all f 2 S(N?L )
and g 2 S(N?L )?, 
(f + g) � maxf
(f);
(g)g.

(iii) Now for the general case where S(N?L ) 6= f0g, there exist a f 6= 0 in S(N?L ). Let z? 6= 0 2 Z
denote the unique minimizer for functional C. From result (i) we already have the result that for
f = 0, 
(f + g) � maxf
(f);
(g)g for all g 2 S(N?L )?. Thus, consider the case for f 6= 0. By
Proposition 2.1 below, we have shown that for any closed, densely de�ned operator L : H ! Z
for which S(N?L ) 6= f0g, given a f 6= 0 2 S(N?L ), we have a closed and bounded linear operator
L0f : H ! Z, such that L0ff = z? and for any g 2 S(N?L )?, L0fg = 0. Since L0 is closed and
bounded we have the functional JL0f ; = C �L0f + 
 in JS . Let h?f; 2 S(N?L ) be a minimizer for
JL0f ; .

Next, note that since z? is a minimizer for C, we have C(z?) � C(L0fh
?
f;) and thus

C(z?) + 
(h?f;) � C(L0fh
?
f;) + 
(h?f;) = JL0f ;(h?f;) (2.25)

Also h?f; is the minimizer for JL0f ; and thus

JL0f ;(h?f;) = C(L0fh
?
f;) + 
(h?f;) � C(L0f (f + g)) + 
(f + g)

for all g 2 S(NL)?.
But from Proposition 2.1, we have L0f (g) = 0 and L0ff = z?, implying C(L0f (f + g)) = C(z?),

giving
C(L0fh

?
f;) + 
(h?f;) � C(z?) + 
(f + g) (2.26)

Thus we have the inequality

C(z?) + 
(h?f;) � JL0f ;(h?f;) � C(z?) + 
(f + g) (2.27)

for all  2 (0;1) or equivalently,

(h?f;) � 
(f + g) (2.28)

for all  2 (0;1), g 2 S(N?L )? and all minimizers h?f; .
Also, from (2.25), we have the inequality C(L0fh

?
f;) � C(z?) � 0 and from (2.26) we have

C(L0fh
?
f;)� C(z?) � (
(f + g)� 
(h?f;)). Thus we have an inequality

0 � C(L0fh
?
f;)� C(z?) � (
(f + g)� 
(h?f;)) (2.29)

for all  2 (0;1), g 2 S(N?L )? and minimizers h?f; . For the case where 
(f +g) =1, 
(f +g) �
maxf
(f);
(g)g is trivially satis�ed. When 
(f + g) <1, so is 
(h?f;) (by (2.29)). Thus for the
case of 
(f + g) <1, we have 
(f + g)� 
(h?f;) <1 and thus by (2.29),

 ! 0 =) C(L0fh
?
f;)! C(z?)

Since the sub-level sets around C(z?), V� = fz 2 Z : C(z) � C(z?)+�g are given to be sequentially
compact, and z? is the unique minimizer, this implies L0fh

?
f; ! z? as  ! 0. But f; h?f; 2 S(N?L )
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and thus by Proposition 2.1, we have strong convergence h?f; ! f .
Thus from (2.28), under the limit  ! 0, we have 
(f) � 
(f + g) for all g 2 S(N?L )?. Since

the above argument holds for all f 6= 0, f 2 S(N?L ) and we have the result from (i) for f = 0, we
have for all f 2 S(N?L ) and all g 2 S(N?L )?, the result that


(f + g) � 
(f)

(iv) To show the remaining inequality 
(f + g) � 
(g) for all f 2 S(N?L ) and g 2 S(N?L )?,
similar arguments to result (i), (ii) and (iii) are required and are presented in the following.

(iv-i) Firstly note that for g = 0, g 2 S(N?L )? and for any f 2 S(N?L ), we have 
(f + g) =

(f) � 
(f) (trivially true) and 
(f + g) � 
(0) = 
(g) (because 
 admits a minimizer at 0 and
g = 0). Thus for g = 0, we have 
(f + g) � maxf
(f);
(g)g for all f 2 S(N?L ).

(iv-ii) Now consider the corner case, where S(N?L )? = f0g. In such a case, using result (iv-i),
we have for all f 2 S(N?L ) and g 2 S(N?L )?, 
(f + g) � 
(g)

(iv-iii) For the general case when S(N?L )? 6= f0g, there exists a g 2 S(N?L )? such that g 6= 0.
For g = 0, we already have the required inequality from (iv-i). Thus we consider the case for
g 2 S(N?L )? and g 6= 0. From Proposition 2.1, using the A = S(N?L )?, we have a closed and
bounded operator L0g : H ! Z such that L0gg = z? and for all f 2 S(N?L ), L0gf = 0. Thus we have
the functional JL0g ; = C � L0g + 
 in JS . Let h?g; be a minimizer for JL0g ; . Then following the
same arguments as before from (iii), we have the analogous inequality


(h?g;) � 
(f + g) (2.30)

for all f 2 S(N?L ),  2 (0;1) and minimizers h?g; .
As  ! 0, we have as before, a sequence of minimizers h?g; ! g and thus in the limit, we have


(f + g) � 
(g) for all f 2 S(N?L ) and g 2 S(N?L )?, g 6= 0. Combining with the result from (iv-i)
for g = 0, we have for all f 2 S(N?L ) and g 2 S(N?L )?,


(f + g) � 
(g)

(v) Thus from (iii) and (iv), we have shown that for all f 2 S(N?L ) and g 2 S(N?L )?, we have,


(f + g) � maxf
(f);
(g)g

for all closed, densely de�ned operators L : H ! Z.
(vi) Finally, we show that there is a one to one correspondence between the set of closed

vector spaces A 2 V(H) and a set of closed, bounded linear operators L : H ! Z, such that
for any A 2 V(H) there exists a closed bounded operator L satisfying A = N?L . Using this
correspondence and the result from (v), we have the �nal result stating that for all closed vector
subspaces A 2 V(H), and for all f 2 S(A) and g 2 S(A)?,


(f + g) � maxf
(f);
(g)g

implying 
 is orthomonotone with respect to S.
To show the correspondence between A and L consider the following.
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For any closed vector subspace A 2 V(H), let PA : H ! H denote the orthogonal projection
onto the closed vector subspace A. Since A is a closed vector subspace of H, A and A? form
an orthogonal complementary pair of subspaces such that range(PA) = A and null space of PA
is A?, and thus by the closed graph theorem, it follows that PA is a closed operator. Since for
any F 2 H, there exists an unique decomposition F = f + g such that f 2 A and g 2 A? and
PAF = PA(f + g) = f , it also follows that jjPAF jjH = jjf jjH � jjF jjH and PA is thus a closed,
bounded linear operator. It is also easy to see that hPAF1; F2iH = hF1; PAF2iH for all F1; F2 2 H
and thus PA is a self-adjoint, closed, bounded operator.

Let L : H ! Z be any closed, bounded linear operator with null space NL = f0g. Then the
composition L0A = L�PA is also closed and bounded, andN?L0A = range((L0A)�) = range(PAL�) = A.
Thus for every A 2 V(H), we have a closed and bounded operator given by L0A such that N?L0A = A.
The result for orthomonotonicity of 
 then follows, as stated above.

�

To prove the necessary part of theorem 2.4, the following proposition is considered.

Proposition 2.1. Let H and Z be separable Hilbert spaces. Let there exist a minimizer z? 6= 0 2
Z for the lower semicontinuous functional C : Z ! R [ f1g. Let A 2 V(H) be a closed vector
subspace of H. Let there exist a f 2 A such that f 6= 0. Let H be spanned by a orthonormal basis
ff=jjf jj; �1; �2; : : :g, let NA be a subset of N such that A is spanned by ff=jjf jjg [ f�k : k 2 NAg
and A? is spanned by f�0k : k0 2 NnNAg. Then there exists a closed and bounded linear operator
L0f : H ! Z given by

L0fh = z?
*
X

k2NA

�k
k2 +

f
jjf jj2

; h

+

H

such that

1. L0fg = 0 for all g 2 A?

2. L0ff = z?

3. h 2 S(A) and L0fh = z?, implies h = f

Proof: Firstly, note that the existence of a countable basis ff=jjf jj; �1; �2; � � � g is guaranteed by
E. Schmidt’s orthogonalization [24, Chapter III-5] for a separable Hilbert space. Since A and A?

are orthogonal complementary subspaces and f 2 A, they split the orthonormal basis into two
disjoint countable subset as mentioned in the statement of the proposition given by the index set
NA.

To see that L0f is bounded, note that for any h 2 H, jjL0fhjjZ = jjz?jjZ jh
P

k2NA �k=k
2 +

f=jjf jj2; hiHj. Then note that jh
P

k2NA �k=k
2 + f=jjf jj2; hiHj �

P
k2NA jh�k=k

2; hiHj +
jhf=jjf jj2; hiHj � (

P
k2NA 1=k2 + 1=jjf jj)jjhjjH. Now since

P
k2NA 1=k2 �

P
k2N 1=k2 = �2=6 <1

(since summation of a series 1=k2 over N is known to be bounded), 0 < jjf jjH <1 and jjz?jjZ <1,
we have jjL0fhjjZ �M jjhjjH for some bounded constant M = jjz?jj(

P
k2NA 1=k2 + 1=jjf jj) <1.

Also since the null space of L0f denoted ker(L0f ) is A?, inffjjL0fhjjZ : h 2 ker(L0f )?; jjhjjH =
1g > 0 and thus L0f is closed by [17, Proposition 6.5.5].
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Then for any g 2 S(A)?, we have L0fg = z?h
P

k2NA �k=k
2f=jjf jj2; giH = 0, showing the �rst

property stated for L0f .

The second statement L0ff = z?, follows by substituting f into the de�nition for L0ff . Since
ff=jjf jj; �1; �2 : : :g are orthonormal basis, f is orthogonal to all �k and thus h�k; fiH = 0, which
leaves the term z?hf=jjf jj2; fiH = z?.

The last statement can be seen from the fact that L0fh = z? implies L0fh = L0ff or L0f (h�f) = 0,
i.e., h

P
k2NA �k + f; f � hiH = 0 implying f � h 2 S(A)? (since �k and f span S(A)). But both

f and h are given to be in S(A) and thus they must be in S(A) \ S(A)? = f0g. Thus h = f .

�

2.3.3 Related work

We presented here a generalized version of representer theorems for problems of the form

fopt = arg min
f2H

C(Lf) + 
(f) (2.31)

for a loss function C : Z ! R [ f+1g on a separable Hilbert space Z and closed, densely de�ned
operator L : H ! Z and 
 orthomonotone with respect to a subspace valued map S. The
assumption of \r-regularity" on subspace valued maps from previous counterparts of the theorem
was dropped to allow for more general regularization like the ‘1 norm on function spaces, Z was
considered as separable Hilbert spaces to allow for loss functional on in�nite dimensional Hilbert
space, as occurring in examples from learning in Hilbert spaces of stochastic processes and the
linear operators were considered to be closed and densely de�ned to allow for unbounded operators
like the derivative operators that occur commonly in optimal control problems.

Special cases of the theorem addressing learning with bounded functionals like the least squares
regularization for vector valued functions in Reproducing Kernel Hilbert Space (RKHS) framework
can be found in [18, Theorems 3.1, 4.1]. Special cases of the theorem for ‘1 regularization can be
found in [5]. A generalized version of the representer theorems for general loss functions but still
restricted to Hilbert spaces of real valued functions and bounded functionals can be found in [8, 6].
The far more general framework of subspace valued maps was introduced in [9, Theorem 3.1]
and a variant of the presented theorem with an assumption of r�regularity, for bounded linear
functionals and with the loss functional C on Z = Rm can be found there. Representer theorems for
problems with general constraints involving di�erential operators in the functional C and squared
norm regularizers in 
 are presented in [29].
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Figure 2.1: Multi class classi�cation with a 3 layer, squared exponential kernel based neural net-
work. Class probabilities shaded as red, blue, green values. Training data shown as point clusters.

2.4 Application examples

2.4.1 Deep neural networks

Motivation

Consider, �rst, a single layer perceptron with a nonlinear activation function �, with input x and
output y. Given m training samples f(xi; yi) : i 2 Nmg consider the variational learning problem

min
f2H

mX

i=1

jjyi � �(Lxif)jj2Z + �jjf jj2H (2.32)

Let Z = Rn, H be an RKHS space with kernel K and Lxi : H ! Z be a closed bounded linear
evaluation operator Lxif = f(xi) on the RKHS space. This minimization problem �ts exactly the
form of (2.17) by taking C(Lx1f; : : : ; Lxmf) =

Pm
i=1 jjyi � �(Lxi(�))jj2 and 
 to be jjf jj2H. Since


 is orthomonotone with respect to SR, we know a minimizer of the form
Pm

i=1 L
�
xizi must exist.

Substituting this form into the minimization above we can get a �nite dimensional minimization
problem.

min
zj2Z

mX

i=1

jjyi � �(Lxi
mX

j=1

L�xjzj)jj
2
Z + �jj

mX

j=1

L�xjzj jj
2
H (2.33)

On the RKHS H, the adjoint L�x is known to be the kernel section K(�; x) (see Example 2.1)
and LxiL�xj = K(xi; xj). Thus we have a nonlinear program to solve for a kernel based single
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layer perceptron with zi 2 Z being the new decision variables. Note that the program becomes
nonlinear due to a nonlinear activation function � and only thus di�ers from a generalized least
squares setting.

So far we see nothing new as the problem is simply a least squares like problems in the RKHS
space with �nite dimensional outputs. Such problems can easily be covered by representer theorems
from [9].

Now consider a N-layer concatenation of such perceptrons. Let the inputs for the �rst layer
be denoted as y(0) = (y(0)

1 ; : : : ; y(0)
m ) 2 Rn0�m taking values y(0)

i = Xi from a training data set
D = f(Xi; Yi) 2 Rn0 � RnN : i = 1; : : : ;mg. Let the function f (1) for the �rst layer be learned
from an RKHS space H(1) of Rn1-valued functions and let the output for the �rst layer be the
unknown latent variables y(1) = (y(1)

1 ; : : : ; y(1)
m ) 2 Rn1�m. Let Z(1) denote the separable Hilbert

space Rn1�m � H(1) for notational convenience. The learning of the function f (1) can thus be
considered as the variational problem,

y(1)
opt; f

(1)
opt = arg min

(y(1);f (1))2Z(1)
C1(L(1)(y(1); f (1))) + 
1((y(1); f (1))) (2.34)

with L(1)(y(1); f (1)) = (y(1)
1 �Ly(0)

1
f (1); : : : ; y(1)

m �Ly(0)
m
f (1)) being the bounded linear operator L(1) :

Z(1) ! Rn1�m, C1 : Rn1�m ! R [ f1g being the loss functional such that C1(L(1)(y(1); f (1))) =(
0 ; if y(1) = Ly(0)f (1)

1 ; otherwise
and 
1((y(1); f (1))) = jj(f (1))jj2H(1) being the regularizer. Again, nothing

new so far, we have a Hilbert search space Z(1) and a �nite dimensional domain for the loss
functional, Rn1�m. Also, note that this variational problem is ill posed since only the input data is
�xed and the output data is left free and thus the minimizer for the above problem is at y(1)

opt = 0 and
f (1)
opt = 0. We ignore the ill-posed nature of the optimization for now, as additional concatenated

layers connecting to the �nal output data will force the minimizer to become non trivial.
Consider next the second layer for the network. Let y(2) 2 Rn2�m be the latent variables, H(2)

be a an RKHS space of Rn2-valued functions and f (2) 2 H(2) be the learned function for this layer.
Let Z(2) denote the Hilbert space Rn2�m � H(2). The learning problem for the second layer can
then be posed as,

y(1)
opt; y

(2)
opt; f

(2)
opt = arg min

y(1)2Rn1�m;(y(2);f (2))2Z(2)
C2((y(1); y(2); f (2))) + 
2((y(2); f (2))) (2.35)

with C2((y(1); y(2); f (2))) =

(
0 ; if y(2) = Ly(1)f (2)

1 ; otherwise
and 
2((y(2); f (2))) = jjf (2)jj2H(2) .

This is where we see a signi�cant di�erence from the standard least squares like problem for
the �rst time. Here y(1) being an unknown latent variable, is considered as a decision variable for
the problem and thus Ly(1) is not a linear operator on the search space Rn1�m�Z(2). Thus unlike
the �rst layer we cannot write the loss functional for the second layer as C2(L(y(1); y(2); f (2)))
for some linear operator L : Rn1�m � Z(2) ! Rn2�m. The operator Ly(1) makes the operator
L(y(1); y(2); f (2)) = y(2) � Ly(1)f (2) a non-linear operator. Instead we consider a non-linear loss



2.4 Application examples 29

functional C : Rn1�m � Rn2�m �H(2) ! R [ f1g as given in (2.35).
The problem for learning the �rst and second layer together can then be written as

y(1)
opt; f

(1)
opt ; y

(2)
opt; f

(2)
opt = arg min

(y(1);f (1))2Z(1);(y(2);f (2))2Z(2)
C1(L(1)(y(1); f (1)))

+ C2(y(1); y(2); f (2)) + 
1((y(1); f (1))) + 
2((y(2); f (2)))
(2.36)

Also note that we did not use any activation functions � in the construction above. This was
done to show clearly that the nonlinearity of the operation Ly(1)f (2) present in C2 has nothing to
do with the activation function. Even with a simple interpolation or least squares like loss function
we have to treat C2 as a nonlinear functional on the Hilbert space Rn1�m � Z(2). Having shown
that C2 is a nonlinear functional on Rn1�m � Z(2) in any case, we can reintroduce the activation
function and write C(2) : Rn1�m �Z(2) ! R [ f1g as the functional

C2((y(1); y(2); f (2))) =

(
0 ; if y(2) = �(Ly(1)f (2))
1 ; otherwise

(2.37)

For the functional C1, reintroducing � makes the operator L(1) : Rn1�m �H(1) ! Rn1�m de�ned
above, nonlinear. We can instead view the operator L(1) as the linear operator L(1) : Rn1�m �
H(1) ! Rn1�m � Rn1�m given as the mapping

L(1)(y(1); f (1)) = (y(1); Ly(0)f (1))

and C1 as a corresponding nonlinear functional on Rn1�m � Rn1�m. Thus we can view C1 as the
functional C1 : Rn1�m � Rn1�m ! R [ f1g, given as,

C1(L(1)(y(1); f (1))) =

(
0 ; if y(1) = �(Ly(0)f (1))
1 ; otherwise

(2.38)

A similar construction can be done for each layer upto the (N�1)th layer. Note also that, while we
introduced H(l) as a RKHS space and Ly(l�1) as the linear evaluation operator evaluating functions
at the point y(l�1), the same construction remains valid for any separable Hilbert spaceH(l) and any
closed, densely de�ned linear operator Ly(l�1) , where the subscript y(l�1) denotes that the operators
action depends on the output of the previous layer. The following describes the construction of
the full N -layer neural network.

Formal construction

Let y(l) 2 Rnl�m be the latent output variable for each layer l = 1; : : : ; N � 1. Let y(0) =
(X1; : : : ; Xm) and y(N) = (Y1; : : : ; Ym) be the known input and output data respectively, used for
training the network. Let f (l) denote the function learned for the lth layer from a separable Hilbert
space H(l) of Rnl�valued functions. Let OH(l);Rnl�m be a set of closed, densely de�ned operators
from H(l) to Rnl�m. Let �l : Rnl�1�m ! OH(l);Rnl�m be known functions mapping the output,
y(l�1), of the (l�1)th layer to some closed, densely de�ned operator, Ly(l�1) 2 OH(l);Rnl�m , denoted
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as Ly(l�1) = �l(y(l�1)). Let L�y(l�1) : Rnl�m ! H(l) denote the adjoint to Ly(l�1) and ��l denote
the map ��l (y

(l�1)) = L�y(l�1) . An example for OH(l);Rnl�m is the set of all evaluation operators
on an RKHS space and the function � maps y(l�1) to the linear operator evaluating a function in
the RKHS space at y(l�1). Another example for OH(l);Rnl�m is the set of gradient operators rx
computing the gradient of a function in H(l) at a point x 2 Rnl�1�m with �(y(l�1)) = ry(l�1) .

For notational convenience, let z(l) = (y(l); f (l)) and Z(l) = Rnl�m �H(l).
Let

Cl(y(l�1); z(l)) =

(
0 y(l) = �l(�l(y(l�1))f (l))
1 otherwise

for l = 1; : : : ; N � 1 (2.39)

be the lower semi-continuous functional Cl : Rnl�m � Z(l) ! R [ f1g, with �l : R ! R being a
lower semi-continuous function, interpreted as acting on each component for a matrix in Rnl�m.
Let,


l(z(l)) = jjf (l)jj2H(l) for l = 1; : : : ; N

be the regularizer 
l : Z(l) ! R [ f1g.
For the �nal N th layer, let y(N) = (Y1; : : : ; Ym) 2 RnN�m be a known output vector. Let the

loss functional CN : RnN�1�m �H(N) ! R [ f1g be given as

CN (y(N�1); f (N)) = jjy(N) � �N (Ly(N�1)f (N))jj2RnN�m

Given a training data set D = f(Xi; Yi) : i = 1; : : : ;mg of input-output pairs, we can write the full
N -layer neural network learning problem as

z(1)
opt; : : : ; z

(N�1)
opt ; f (N)

opt = arg min
z(1);:::;z(N�1);f (N)

2 Z(1)�����Z(N�1)�H(N)

CN (y(N�1); f (N)) +
N�1X

l=1

Cl(y(l�1); z(l))

+
NX

l=1


l(z(l))

(2.40)

Applying the generalized representer theorem to the neural network

(2.40) written in the standard form for the representer theorem,

Fopt = arg min
F2H

C(LF ) + 
(F ) (2.41)

is a problem considered on the Hilbert space H = Z(1) � � � � � Z(N�1) � H(N). Let F 2 H, be
the concatenated vector F = (z(1); : : : ; z(N�1); f (N)). The operator L : H ! Rn1�m � Rn1�m be
a closed, densely de�ned operator, given by the oblique projection L(F ) = (y(1); Ly0f (1)). Given
the adjoint operator L�y0 : Rn1�m ! H(1), we can write the adjoint L� : Rn1�m � Rn1�m ! H as
L�(y; c) = ((y; L�y0c); 0; 0; : : : ; 0). Thus L is an operator L : H ! (Rn1�m � H(1)) with the null
space orthogonal

N?L = Rnl�m � range(L�y0)� f0g � f0g � � � � f0g (2.42)
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with the f0g sets corresponding to Z(2) � Z(3) � : : :Z(N�1) � H(N). The functional C(LF ) =
C1(y(0); LF ) with C1 as de�ned by (2.39) and


(F ) = 
1(z(1)) +
NX

l=2

(Cl(y(l�1); z(l)) + 
l(z(l))) (2.43)

Let SR be the inclusive, closed, super-additive subspace valued map SR(a) = f�a : a 2 Rg,
considered in Example 1.

Then, consider the subspace valued maps,

S1(z(1)) = SR(y(1))� SR(range(L�y(0))) (2.44)

For l = 1; : : : ; N � 1, let Yl � Rnl�m be a Borel measurable subset of Rnl�m given by the range of
the function �l, i.e., Yl = f�l(y) : y 2 Rnl�mg � Rn�m. Let B(Yl) be the Borel ��algebra on Yl
(inherited from the Borel ��algebra on Rnl�m).

For l = 1; : : : ; N�1, recall that Cl(z(l)), forces y(l) = �(Ly(l�1)f (l)) for a non-in�nite cost. Then,
the range of values for y(l), Yl restricts the possible input values for �l+1 and shrinks the solution
space in which a minimizer may lie. For measurable, bounded variation functions ��l , we can exploit
this fact by considering the following subspace valued map over the Z(l), for l = 2; : : : ; N � 1,

Sl(z(l)) = SR(y(l))� closure
��Z

Yl
��l (y)dcl(y) : cl 2M�(Yl�1;B(Yl�1); Rnl�m)

��
(2.45)

where M�(Yl�1;B(Yl�1); Rnl�m) is the Banach space of signed, Rnl�m�valued Borel measures with
bounded total variation (see [30]) on the measurable space (Yl;B(Yl)).

Lemma 2.4 shows that Sl : Z(l) ! V(Z(l)) de�ned in (2.45) under a certain regularity assump-
tions for the map �l and ��l over the domain Yl�1, is a closed and super-additive subspace valued
map.

Lemma 2.4. (Sl is closed and super-additive)
Let Yl�1 be a Borel measurable subset of Rnl�1�m. Let jjT jjLRnl�m

= inffc � 0 : jjTvjjRnl�m �
cjjvjjRnl�m for all v 2 Rnl�mg be the standard operator norm for bounded operators mapping
Rnl�m into itself. Let �l; ��l be measurable functions such that, ��l is a function of bounded variation
and the self-adjoint operator given by �(y)��(y) = LyL�y is a closed and bounded linear operator,
for all y 2 Yl�1 and there exists a constant M <1 satisfying the bound supfjj�l(y)��l (y)jjLRnl�m

:
y 2 Yl�1g = M for all y 2 Y. Let M�(Yl�1;B(Yl�1); Rnl�m) be the Banach space of signed,
Rnl�m�valued Borel measures with �nite total variation. Then Sl : Z(l) ! V(Z(l)) as de�ned by
(2.45) is a closed and super-additive subspace valued map.

Proof: The map Sl is a product of SR with the set K =
closure

�nR
Yl
��l (y)dcl(y) : cl 2M�(Yl�1;B(Yl�1); Rnl�m)

o�
. SR is already known to be closed

and super-additive (from Example 1). Thus it only remains to be shown that the set K is closed,
super-additive and actually subspace valued i.e. K � H(l) and K 2 V(H(l)).

If ��l is assumed to be integrable with respect to every cl 2 M�(Yl�1;B(Yl�1); Rnl�m),
it is easy to see that K is a vector space since for any f1; f2 2 K, there exist c1

l ; c
2
l 2
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M�(Yl�1;B(Yl�1); Rnl�m) such that fi =
R
Yl
��l (y)dcil(y) for i = 1; 2. Thus by linearity for

the integral we have for any �; � 2 R, �f1 + �f2 =
R
Yl�1

��l (y)d(�c1
l (y) + �c2

l (y)). Since
M�(Yl�1;B(Yl�1); Rnl�m) is a closed vector space (actually a Banach space), we have a c0l =
�c1

l + �c2
l 2 M�(Yl�1;B(Yl�1); Rnl�m) and thus �f1 + �f2 belongs to K. Next we show

that under the conditions mentioned for �l; ��l , �
�
l is actually integrable with respect to every

cl 2M�(Yl�1;B(Yl�1); Rnl�m) and that K � H(l) is actually a closed subspace, i.e. K 2 V(H(l)).
By [31, De�nition 1], the measurable function ��l : Yl�1 ! LRnl�m;H(l) is integrable with respect

to a Rnl�m�valued measure cl : B(Yl�1) ! Rnl�m if there exists a h 2 H(l) such that for every
� > 0, and every countable partition fEig of Yl�1 with maximum volume � for any cell in the
partition, and any selection of points yi 2 Ei, we have jjh �

P
Ei �

�
l (yi)cl(Ei)jjH(l) < �. For this

to be true we need that jj
P

Ei �
�
l (yi)cl(Ei)jjH(l) <1 for any partition fEig and selection yi 2 Ei,

and then convergence of
P

Ei �
�
l (yi)cl(Ei) to a unique h 2 H(l).

First we show that jj
P

Ei �
�
l (yi)cl(Ei)jjH(l) < 1. Note that

jj
P

Ei �
�
l (yi)cl(Ei)jjH(l) �

P
Ei jj�

�
l (yi)cl(Ei)jjH(l) =

P
Ei(h�

�
l (yi)cl(Ei); �

�
l (yi)cl(Ei)iH(l))1=2 =

P
Ei(hcl(Ei); �l(yi)�

�
l (yi)cl(Ei)iRnl�m)1=2 �

P
Ei(jjcl(Ei)jjRnl�m jj�l(yi)�

�
l (yi)cl(Ei)jjRnl�m)1=2 �

P
Ei(jjcl(Ei)jj

2
Rnl�m jj�l(yi)�

�
l (yi)jjLRnl�m

)1=2 =
P

Ei jjcl(Ei)jjRnl�m jj�l(yi)�
�
l (yi)jj

1=2
LRnl�m

.
But note from the assumptions on �l(y)��l (y), that jj�l(yi)�l(yi)jjLRnl�m

< M . Thus
jj
P

Ei �
�
l (yi)cl(Ei)jjH(l) � M

P
Ei jjcl(Ei)jjRnl�m � M jjcljjM�(Yl�1;B(Yl�1);Rnl�m) (the in-

equality follows from the de�nition of the norm on the space of vector measures [32],
jjcljjM�(Yl�1;B(Yl�1);Rnl�m) = sup

P
Ei jjcl(Ei)jjRnl�m , over all partitions fEig of Yl�1 ). Thus for

any cl 2M�(Yl�1;B(Yl�1);Rnl�m) and any partition fEig of Yl�1, jj
P

Ei �
�
l (yi)cl(Ei)jjH(l) <1.

Now for the uniqueness in convergence, note that for any re�nement fE0ig of a partition fEig
such that Ei = E02i [ E

0
2i+1 for all i = 0; : : : ;1, and selection of points without loss of gen-

erality, as yi = y02i, we have jj
P

Ei �
�
l (yi)cl(Ei) �

P
E0i
��l (y

0
i)cl(E

0
i)jj = jj

P
E02i

��l (y
0
2i)cl(E

0
2i) +

P
E02i+1

��l (y
0
2i)cl(E

0
2i+1) �

P
E02i

��l (y
0
2i)cl(E

0
2i) �

P
E02i+1

��l (y
0
2i+1)cl(E02i+1)jj = jj

P
E02i+1

(��l (y
0
2i) �

��l (y2i+1))cl(E02i+1)jj �
P

E02i+1
jj(��l (y

0
2i) � ��l (y

0
2i+1))jjjjcl(E02i+1)jj. Since ��l has bounded total

variation for any partition E0i, we have
P

E02i+1
jj(��l (y

0
2i) � ��l (y

0
2i+1))jj � sup

P
E0i
jj(��l (y

0
i) �

��l (y
0
i+1))jj < 1. Then as the partition re�nements converge E0i ! Ei, cl(E02i+1) tends to 0

and thus we have
P

E02i+1
jj(��l (y

0
2i)� �

�
l (y
0
2i+1))jjjjcl(E02i+1)jj converging to 0.

Thus we have shown that the conditions of ��l and �l(y)��l (y) ensure that ��l is integrable with
respect to all cl and thus the integral h =

R
Yl
��l (y)dcl(y) belongs to H(l) for all cl, implying K is

a vector subspace of H(l).
Finally taking the closure of K, makes the subspace a closed subspace of H(l) (since H(l) is

closed).
Now, since Sl(y(l); f) = SR(y(l)) � K for any f 2 H(l) (K does not depend on f), we have

for any closed subspaces A;B 2 V(Z(l)), we have Sl(A) = Ay � K and Sl(B) = By � K, where
Ay, By are the vector subspaces in V(Rnl�1�m � Rnl�m) corresponding to the additive subspace
valued map SR. Thus we have Sl(A) + Sl(B) = Ay �K +By �K = (Ay +By)�K = Sl(A+B)
(since we have SR(Ay) = Ay; SR(Ay) = By and SR(Ay +By) = Ay +By), implying Sl is closed and
super-additive (trivially, since its additive). �
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For the last layer, consider,

SN (f (N)) = closure
��Z

Yl
��l (y)dcl(y) : cl 2M�(YN�1;B(YN�1); RnN�m)

��
(2.46)

which is again a closed, super-additive subspace valued map by the arguments in Lemma 2.4.
Now consider the subspace valued map S : H ! V(H) for the complete network given by

S(F ) = S1(z(1))� S2(z(2))� � � � � SN�1(z(N�1))� SN (f (N)) (2.47)

Theorems 2.5 below, shows that the functional 
 in (2.43) is orthomonotone with respect to
the subspace S(N?L ) for N?L as de�ned in (2.42).

Theorem 2.5. Let S : H ! V(H) be the closed, super-additive subspace valued map de�ned
in (2.46). Let N?L be the closed subspace as de�ned in (2.42) and 
 : H ! R [ f+1g be the
functional from (2.43). Then 
 is orthomonotone with respect to the subspace S(N?L ), i.e. for all
f 2 S(N?L ) and g 2 S(N?L )?, 
(f + g) � 
(f).

Proof: For the vector subspace N?L = Rnl�m � range(L�y0) � f0g � f0g � � � � f0g in V(H),
we have S(N?L ) = Rn1�m � range(L�y(0)) � (�N�1

l=2 Rnl�m � Kl) � KN , for the subspace

Kl = closure
�nR

Yl
��l (y)dcl(y) : cl 2M�(Yl�1;B(Yl�1); Rnl�m)

o�
for each l = 2; : : : ; N . Also

S(N?L )? = f0g � range(L�y0)? � (�N�1
l=2 f0g � K?l ) � K?N . Also recall that 
(F ) = 
1(z(1)) +

PN
l=2(Cl(y(l�1); z(l)) + 
l(z(l)))
Thus for F = (z(1); : : : ; z(N�1); f (N)) 2 S(N?L ), we have z(1) = (y(1); f (1)) 2 Rn1�m �

range(L�y0), z(l) = (y(l); f (l)) 2 Rnl�m �Kl for l = 2; : : : ; N � 1 and z(N) 2 KN .
Similarly for G = (x(1); : : : ; x(N�1); g(N)) 2 S(N?L )?, we have x(l) = (y0(l); g(l)) for y0(l) = 0

and g(l) 2 K?l , for each l = 2; : : : ; N � 1, g(N) 2 K?N . And x(1) = (y0(1); g(1)) for y0(1) = 0 and
g(1) 2 range(L�y0)?.

Now for l = 1, note that the only term in 
 depending on z(1) and x(1) is 
1 de�ned as 
(f) =
jjf jj2H(1) . The squared norm functional is orthomonotone for any pair of orthogonal subspaces (from
Example 2.5). Thus for any orthogonal z(1) and x(1) as de�ned above we have 
1(z(1) + x(1)) =
jjz(1) + x(1)jj2 = jjz(1)jj2 + jjx(1)jj2 � jjz(1)jj2 = 
1(z(1)) (the equality of square of sum, to sum of
squares, follows from orthogonality of the two vectors).

Similarly for each l = 2; : : : ; N � 1, for the orthogonal vectors z(l) and x(l), we have 
l(z(l) +
x(l)) � 
l(z(l)) and for f (N); g(N), 
(f (N) + g(N)) � 
(f (N)).

The terms remaining to be shown orthomonotone are the functional Cl. Note that for all
l = 2; : : : ; N , we have y(l�1) 2 Rnl�1�m, y(l) 2 Rnl�m and f (l) 2 Kl, and we have y0(l�1) = 0,
y0(l) = 0 and g(l) 2 K?l .

Then, Cl(y(l�1) + y0(l�1); y(l) + y0(l); f (l) + g(l)) = Cl(y(l�1); y(l); f (l) + g(l)) (since y0(l�1) = 0 and
y0(l�1) = 0).

Now note that for any l = 1; : : : ; N � 1, if y(l) =2 Yl, then Cl(y(l�1); y(l); f) = 1 for any
f 2 H(l). Then we trivially have 
(F + G) = 
(F ) = 1 (thus satisfying the orthomonotone
inequality trivially).
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For all y(l) 2 Yl, for f (l) 2 Kl, g(l) 2 K?l , we have Cl(y(l�1); yl; f (l) + g(l)) = Cl(y(l) �
�l(�l(y(l�1))f (l) + �l(y(l�1))g(l))) for some cl 2M�(Yl�1).

Now since for all z 2 Rnl�m, cl = z�y(l�1) (where �y(l�1) is the dirac measure centered on
y(l�1)) belongs to M�(Yl�1;B(Yl�1); Rnl�m), N?�l(y(l�1)) = range(��l (y

(l�1))) � Kl, implying K?l �

N�l(y(l�1)) for all y(l�1) 2 Yl�1. Thus for any g 2 K?l , �l(y(l�1))g = 0. Thus Cl(y(l�1); yl; f (l) +
g(l)) = Cl(y(l�1); yl; f (l)), for all y(l) 2 Yl, y(l�1) 2 Yl�1, f (l) 2 Kl, g(l) 2 K?l .

Thus for all l = 2; : : : ; N , we have shown Cl(y(l�1) + y0(l�1); y(l) + y0(l); f (l) + g(l)) + 
l(y(l) +
y0(l); f (l) + g(l)) � Cl(y(l�1); y(l); f (l)) + 
l(y(l); f (l)) and 
1(z(l) + x(l)) � 
1(z(l)).

Thus 
(F +G) � 
(F ) for all F 2 S(N?L ), G 2 S(N?L )?, i.e. 
 is orthomonotone with respect
to S(N?L ). �

Corollary 2.2. (S is range preserving with respect to L)
For L : H ! Rn1�m � Rn1�m de�ned as LF = (y(1); Ly0f (1)) for F = (z(1); : : : ; z(N�1); f (N)) 2 H,
S : H ! V(H) as de�ned in (2.46) and N?L as de�ned in (2.42), we have N?L � S(N?L ).

Proof:
N?L = Rnl�m � range(L�y0)� f0g � f0g � � � � f0g

and
S(N?L ) = Rn1�m � range(L�y(0))� (�N�1

l=2 Rnl�m �Kl)�KN

for the subspace Kl = closure
�nR

Yl
��l (y)dcl(y) : cl 2M�(Yl�1;B(Yl�1); Rnl�m)

o�
for each l =

2; : : : ; N . From the above expressions, it is visible that N?L � S(N?L ) �

N?L = Rnl�m � range(L�y0)� f0g � f0g � � � � f0g in V(H), we have

Corollary 2.3. (Linear representer for the neural network exists in S(N?L ))
There exists an optimal set of representers c1;opt 2 Rn1�m, y(l)

opt 2 Yl for l = 1; : : : ; N � 1, and
cl;opt 2M�(Yl�1;B(Yl�1); Rnl�m) for l = 2; : : : ; N such that a minimizer for (2.41) of the form

Fopt =

 

y(1)
opt; : : : ; y

(N�1)
opt ; L�y0c1;opt;

Z

Y1

��2c2;opt; : : : ;
Z

YN�1

��NcN;opt

!

(2.48)

exists.

Proof: Theorem 2.5 showed that 
 is orthomonotone with respect to the subspace S(N?L ) and
Corollary 2.2 showed that S is range preserving with respect to L. Thus by the su�cient condition
for existence of representers (Theorem 2.3) a linear representer exists in the subspace S(N?L ),
written as (2.48). �

Now since we know that, given the optimal solution y(l)
opt; y

(l�1)
opt , for the (l � 1)th and (l)th layer,

we have,
f (l)
opt = arg min

h(l)2H(l)
Cl(y

(l)
opt � �l(Ly(l�1)

opt
f (l))) + jjf (l)jj2H(l) (2.49)

for all l = 2; : : : ; N , we have f (l)
opt = L�

y(l�1)
opt

pl;opt for some pl;opt 2 Rnl�m.
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This implies that an optimal solution of the form

Fopt =

 

y(1)
opt; : : : ; y

(N�1)
opt ; L�y0c1;opt;

Z

Y1

��2p2;optd�y(1)
opt
; : : : ;

Z

YN�1

��NpN;optd�y(N�1)
opt

!

(2.50)

exists for some pl;opt 2 Rnl�m, i.e. we know that there exist dirac measures �y(l)
opt

corresponding

to the optimal measures cl;opt from (2.48). Such a representer in terms of diracs is not directly
useful, since the points at which the optimal diracs are centered y(l)

opt are unknown apriori. We can
however use this knowledge to guide our search for measures converging towards diracs.

We can thus design a scheme to iteratively optimize over the space of measures c(l) and outputs
y(l) such that the measures converge to dirac’s centered at the predicted output. In particular if
the maps �l and ��l are di�erentiable (in addition to the regularity conditions of Theorem 2.4), we
can design a scheme to optimize directly over the centers of dirac measures. We show in the next
subsection a numerical example for such a scheme for a squared exponential kernel, satisfying the
regularity and di�erentiability conditions.

Numerical example

Consider a N-layer network with each layer given by an RKHS space H(l) with a matrix valued
square exponential kernel,

Kl(x; y) =

0

BB@

e�a
(l)
11 jjx�yjj

2 : : : e�a
(l)
1nl
jjx�yjj2

...
...

...

e�a
(l)
nl1
jjx�yjj2 : : : e�a

(l)
nlnl jjx�yjj

2

1

CCA (2.51)

for some known constants a(l)
11 ; : : : ; a

(l)
nlnl , mapping x; y 2 Rnl to a matrix in Rnl�nl .

Given m training samples, we denote the output of a layer as y(l) = (y(l)
1 ; : : : ; y(l)

m ) 2 Rnl�m.
The kernel function is extended to inputs from Rnl�m by computing the matrix,

Kl(x; y) =

0

B@
Kl(x1; y1) : : : Kl(x1; ym)

...
...

...
Kl(xm; y1) : : : Kl(xm; ym)

1

CA (2.52)

where xi; yi denotes the ith column of x and y respectively.
Let Ey : H(l) ! Rnl�m denote the evaluation operator such that Eyf = (f(y1); : : : ; f(ym)).

The adjoint to the evaluation operator on the RKHS space is given by the kernel function and thus
we have the adjoint E�y = Kl(�; y).

Let Ol = fEy : y 2 Rnl�mg be the set of all the linear evaluation operators on H(l). Similarly,
let O�l = fE�y : y 2 Rnl�mg denote the set of all adjoints to the linear evaluation operators on H(l).

Thus we have the function �� : Rnl�m ! O�l given by ��(y) = Kl(�; y) and a function � :
Rnl�m ! Ol given by �(y) = Ey.

Let �l : R ! R be the hyperbolic tangent function �(x) = tanh(x), extended to inputs from
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Rnl�m, as

�(X) =

0

B@
tanh(X11) � � � tanh(X1m)

...
...

...
tanh(Xm1) � � � tanh(Xmm)

1

CA

where Xij denotes the (i; j)th component of the matrix X.
Thus the activation function restricts the output of the lth�layer to the set

Yl = fX 2 Rnl�m : Xij 2 (�1; 1) for all i; jg

for all l = 1; : : : ; N
Since the function ��l : Yl�1 ! O�l , given by ��(y) = Kl(�; y) has a bounded domain

Yl�1 and Kl(�; y) is a smooth bounded function in y, ��l is a function of bounded variation on
Yl�1 and thus satis�es the regularity condition for Lemma 2.4. Similarly jj�l(y)��l (y)jjLRnl�m

=
jjKl(y; y)jjLRnl�m

= jjKl(0; 0)jjLRnl�m
< 1 for all y 2 Yl�1, we have the regularity condition for

�l��l satis�ed as well.
Now since ��(y) is a smooth function in y and we know that a optimal solution to the linear

representer of the form (2.50) exists on the smooth manifold such that (y(l�1)
opt ; f (l)

opt) 2 f(y; ��l (y)pl) :
y 2 Yl�1; pl 2 Rnl�mg, we can instead solve the smooth �nite dimensional optimization problem

p1;opt; : : : ; pN;opt;
y1;opt; : : : ; yN�1;opt

= arg min
pl2Rnl�m;yl2Yl�Rnl�m

NX

l=1

Cl(y(l) � �l(Ly(l�1)L�y(l�1)pl)) + 
l(f (l)) (2.53)

Figure 2.1 shows the output of a three layer neural network trained in such a way for 3 way
classi�cation of a given set of points in R2. The output of the network is in R3, with the training
data given such that the ith component is set to 1 if a point is in the ith class and the other
components are set to 0. The trained network provides an output in R3 and the output is passed
through a soft-max function (to rescale values in each component to [0,1]) and interpreted as class
probability for points in R2 shaded with corresponding RGB color values (a small problem in R2

is chosen to allow for easy visualization of the results). Also note that the optimization scheme
in (2.53) can only guarantee convergence to a local minimizer, but this is most often the case in
neural networks due to the non-convex nature of the problem.

2.4.2 Multi-output stochastic regression with uncertain observations

Let Z = Cb(X ) be the Banach space of continuous and bounded Rn�valued functions on some
domain set X . Let B(Z) be the Borel �-algebra on Z and � : B(Z)! [0; 1] be a Gaussian measure
on Z. Let Z� be the Banach space of all a�ne measurable functions X : Z ! Z with B(Z�) being
the Borel �-algebra on Z�. Z� de�nes a space of Gaussian processes on the probability measure
space (Z;B(Z); �) (see Section D.1). Let � : B(Z�)! [0; 1] be a Gaussian measure on Z� and let
H�;� be the RKHS space of Gaussian processes induced by the measure � on Z� as de�ned in Section
D.2. Let Y = Rn and B(Y) be the Borel �-algebra on Rn. Let Lx : Z ! Y be the closed, bounded
linear evaluation operator Lxf = f(x). The linear operator Lx induces induces a push forward
Gaussian measure � � L�1

x on (Y;B(Y)) (L�1
x denoting the preimage operation, not the linear
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inverse). Let Yx;� denote the Hilbert space of a�ne measurable functions y : Y ! Y induced by
the push forward measure ��L�1

x with the inner product hy1; y2iYx;� =
R
Y y1(!)y2(!)d(��L�1

x )(!).
Yx;� is thus denotes a Hilbert space of Rn�valued Gaussian random vectors. The extension of Lx
to H�;� , for any a�ne function X : Z ! Z in Z�, is given as LxX(f) = X(Lxf) = X(f(x)), and
de�nes a linear operator Lx : H�;� ! Yx;�, to space of Gaussian random vectors in Yx;�. The
extension Lx : H�;� ! Yx;� also preserves the closed and bounded property of Lx : Z ! Y (by
Lemma D.5).

Assuming that the Lx : H�;� ! Yx;� induces equivalent Gaussian measures on Y for all x 2 X ,
we can write the map as Lx : H�;� ! Yc;�, mapping into a common probability measure space on Y.
The adjoint L�x can then be speci�ed by a kernel functionK : X�X ! L+

Yc;�;Yc;� for the RKHS space
H�;� such that for all y 2 Yc;� and f 2 H�;� , hL�xy; fiH�;� = hK(�; x)y; fiH�;� = hy; LxfiYc;� . Note
that L+

Yc;�;Yc;� denotes the space of closed, bounded symmetric positive de�nite linear operators
from Yc;� into itself. Since Yc;� is a Banach space of Gaussian random vectors given by all a�ne
transformations of Y, we must have the kernel as a deterministic function taking values in L+

Y;Y (else
the Gaussianity will be lost), i.e., K(x1; x2)(!) = K 0(x1; x2) for all ! 2 Y and K 0 : X �X ! Rn�n

being a deterministic kernel of the kind usually used in non stochastic variants of kernel regression
(see for example the squared exponential kernel used in Section 2.4.1). The form of the kernel is
determined by the choice of the Gaussian measure � and vice versa (in general the kernel function is
chosen and the measure � is as a result determined implicitly as there is a one to one correspondence
between Gaussian measures on separable Banach spaces and the induced RKHS spaces).

Now with the spaces and adjoint de�ned we can consider a regression problem on the RKHS
space of Gaussian processes H�;� . Let H�;� be the RKHS space of Gaussian process with a kernel
K. Let D = f(xi; yi) 2 X � Yc;� : i = 1; : : : ;mg be a given training data set with observations
yi 2 Yc;� given as Rn�valued Gaussian random vectors. Then consider the regression problem,

fopt = argmin
f2H�;�

mX

i=1

jjyi � Lxif jj
2
Yc;� + �jjf jj2H�;� (2.54)

Note that the observations yi 2 Y�;� are now Rn�valued Gaussian random vectors and not points
in Rn, making the loss functional Ci : Yc;� ! R [ f1g, given as jjyi � Lxif jj2Yc;� , an example
of a loss functional de�ned on a separable Hilbert space di�erent from Rn. Also note that even
though the functional Ci(yi � Lxi(f)) can be written as in terms of the mean and covariance of
a Rn�valued Gaussian random vector, i.e. a functional of the form C 0i : Rn � Rn�n ! R [ f1g,
as we will see below, we cannot write this reformulated objective as an equivalent functional
C 0i � L

0
xi : H�;� ! R [ f1g for a linear operator L0xi : H�;� ! Rn � Rn�n, mapping the stochastic

process f to its mean and covariance at xi (since the mapping from f to its covariance will be a
nonlinear operator). Thus (2.54) presents an example of a regression problem where the functional
Ci : Yc;� ! R [ f1g must be considered on the in�nite dimensional Hilbert space of measurable
a�ne maps given by Yc;� in order to establish a representer in terms of the adjoint L�xi .

Since, 
(f) = jjf jj2H�;� is known to be orthomonotone with respect to the the subspace valued
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map SR, we can write the representer for (2.54) as

SR

 mX

i=1

range(L�xi)

!

=

( mX

i=1

K(�; xi)zi : zi 2 Yc;�

)

(2.55)

Substituting a representer into (2.54), we can write the equivalent optimization problem,

fopt =
mX

i=1

K(�; xi)zopti

zopt1 ; : : : ; zoptm = arg min
zi2Yc;�

mX

i=1

jjyi �
mX

j=1

K(xi; xj)zj jj2Yc;� +
mX

i=1

mX

j=1

hzi;K(xi; xj)zjiYc;�

= arg min
zi2Yc;�

mX

i=1

E�

2

4jjyi �
mX

j=1

K(xi; xj)zj jj2Rn +
mX

j=1

zTi K(xi; xj)zj

3

5

(2.56)

where E� is the expectation with respect to the �. We can expand the expectation from (2.56) as

E�[jjyijj2Rn ] + E�

2

4jj
mX

j=1

K(xi; xj)zj jj2Rn

3

5

�2E�

2

4yTi
mX

j=1

K(xi; xj)zj

3

5+ E�

2

4
mX

j=1

zTi K(xi; xj)zj

3

5

(2.57)

For the terms involving the decision variables zi 2 Yc;�, let Kxx 2 Rnm�nm denote the symmetric
positive de�nite kernel matrix such that its block Kxx

i;j is the kernel evaluation K(xi; xj) 2 Rn�n

and let Z and y be the concatenation of all zi and yi respectively in to the vectors Z = (z1; : : : ; zm)
and y = (y1; : : : ; ym), i.e., we write,

Kxx =

0

B@
K(x1; x1) K(x1; x2) � � � K(x1; xm)

...
...

...
...

K(xm; x1) K(xm; x2) � � � K(xm; xm)

1

CA ; Z =

0

BBB@

z1
z2
...
zm

1

CCCA
y =

0

BBB@

y1
y2
...
ym

1

CCCA
(2.58)

(2.59)

And let the mean and covariance be denoted as

E�[Z] = �Z ; E�[y] = �y (2.60)
E�[(y � �y)(y � �y)T ] = �y E�[(Z � �Z)(Z � �Z)T ] = LLT (2.61)

for some lower triangular matrix L 2 Rnm�nm and the given covariance matrix �y for the obser-
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vations. We can then, rewrite the terms involving the decision variables zi, as

�2�TyK
xx�Z + E�[(Z(Kxx)1=2)T (Kxx)1=2Z] + E�[(KxxZ)TKxxZ] (2.62)

�2E�[(Y � �y)TKxx(Z � �Z)] (2.63)

and using the properties of Gaussian random vectors under a�ne transformations, we have,

E�[(KxxZ)TKxxZ] = �TZK
xxKxx�Z + trace(KxxLLTKxx) (2.64)

E�[(Z(Kxx)1=2)T (Kxx)1=2Z] = �TZK
xx�Z + trace(KxxLLT ) (2.65)

E�[(Y � �y)TKxx(Z � �Z)] = trace(KxxL(�1=2
y )T ) (2.66)

(2.66) follows from the fact that y and Z are jointly Gaussian under a common measure � : B(Y)!
[0; 1] and are thus related to each other through the a�ne transformation

�
y(�)
Z(�)

�
=

 
�1=2
y �
L�

!

+
�
�y
�Z

�

(without loss of generality, taking � to be the Gaussian measure for the standard normal distribu-
tion N (0; I) on Rn)

Thus for the new decision variables �Z 2 Rnm and L 2 (Rnm�nm)lt (lower triangular matrix
denoted with subscript lt), we can write the equivalent �nite dimensional problem to (2.56) as,

�zopt; Lopt = arg min
�z2Rnm;L2(Rnm�nm)lt

(�y �Kxx�Z)T (�y �Kxx�Z) + �TZ(KxxKxx)�Z

+ trace(LTKxxL+ (KxxL� (�1=2
y ))T (KxxL� (�1=2

y )))
(2.67)

From (2.67) it is easy to see the problem is an unconstrained quadratic program in �Z and L and
thus has an unique minimizer.

The �nal function form of fopt from (2.56), is then given by the a�ne transformation of the
random vector Zopt having mean �optZ and covariance Lopt(Lopt)T .

fopt(�) = K(�; X)Zopt (2.68)

where K(�; X) is the matrix
�
K(�; x1) K(�; x2) � � � K(�; xm)

�
.

Thus we have
E�[fopt(�)] = K(�; X)�optZ

and covariance,
Covar�[fopt(�)] = K(�; X)Lopt(Lopt)TK(�; X)T

Note that the mean coincides, as expected with the Bayesian posterior mean, however the
covariance is quite di�erent. Instead of acquiring certainty at points of observations, the regression
model tries to �t the Gaussian process to the speci�ed covariances of the observations.

Figure 2.2 shows an example for such a regression with a squared exponential kernel mapping
with the output yi 2 Z being a two dimensional Gaussian random vector and xi 2 R.
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Figure 2.2: Learning a R2-valued Gaussian process in an RKHS of Gaussian processes

Note that while we restricted our Banach space Z� in the beginning to a space of Gaussian
processes, there is no restriction from the point of view of the representer theorem, requiring Gaus-
sianity. The above process can in principle be repeated for any given Banach space of stochastic
processes (including non-Gaussian ones) and appropriate linear operator (as the evaluation opera-
tor may not be linear for non Gaussian cases). We limit ourselves to Gaussian processes in this case
as it leads to simple analytically tractable computations. Also while we restricted ourselves to a
simple regression problem, note that by virtue of the generalized representer theorem we can apply
the above process to many other loss functionals and regularizers to create stochastic variants of
any kernel based learning algorithms like the SVM, or the neural network example from Section
2.4.1, where the RKHS space of Gaussian processes alongside a moment matching constraint be-
tween the layers can be considered, to create a Gaussian process variant for the neural network
example.

The example is left limited to this simple case, as it demonstrates the key issue being considered,
which is the utility of extending the loss functional to C : Z ! R [ f1g for arbitrary separable
Hilbert spaces Z, like the Hilbert space of measurable functions Y� considered above.

2.4.3 ‘1-Regularization

Motivating �nite dimensional example

Consider �rst an example of the ‘1-regularization problem in a �nite dimensional decision space.
Let X = Rl, Y = Rn�k, Z = Rk and H = Rn. Let � : X ! Y be a given collection of features and
let fe1; : : : ; eng be the standard basis for Rn. Consider the continuous linear operator Lx;� : H ! Z
from Example 2.2(a), where Lx;�(w) = �(x)Tw. Then consider the ‘1-regularization problem for
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feature selection given a set of observations D = f(xi; yi) : xi 2 X ; yi 2 Z; i = 1; : : : ;mg given by,

min
w2H

mX

i=1

jjyi � Lxi;�wjj
2
Z + �jjwjj21 (2.69)

where the jjwjj1 = (
Pn

i=1 jwij) is the standard ‘1-norm on Rn. Let wi denote the ith component of
a vector w 2 Rn. From Theorem 2.2 we know that the ‘1 norm is orthomonotone with respect to
a subspace valued map Sproj : H ! V(H), given by

Sproj(w) =

( nX

i=1

�ihw; eiiHei : �i 2 R

)

=

8
<

:
X

fi:wT ei 6=0g

�iei : �i 2 R

9
=

;
(2.70)

Example 3 showed that Sproj is an inclusive, quasilinear subspace valued map with the union
extension Sproj : V(H)! V(H). Then from the representer theorem (Theorem 2.3) we know that
a minimizer for (2.69) must exist in Sproj(

Pm
i=1 range(L�xi;�)) = Sproj(f

Pm
i=1 L

�
xi;�zi : zi 2 Rkg).

From Example 2.2(a), we also know that L�xi;�zi = �(xi)zi. Thus we have

Sproj

 mX

i=1

range(L�xi;�)

!

=
mX

i=1

Sproj(range(L�xi;�)) =
mX

i=1

Sproj(f�(xi)zi : zi 2 Rkg) (2.71)

=
mX

i=1

8
<

:
X

fj:�(xi)T ej 6=0g

�jej : �j 2 R

9
=

;
(2.72)

=

8
<

:
X

fj: �(xi)T ej 6=0 8i=1;:::;mg

�jej : �j 2 R

9
=

;
(2.73)

Substituting this form of the minimizer into (2.69), we can then �nd the optimal �js. The above
problem is often used as a means for sparse feature selection in learning problems.

The subspace valued map Sproj de�ned above is a n�regular subspace valued map as it is
quasilinear, idempotent, inclusive and Sproj(w) for any w 2 H has dimension at most n. However
if we let n ! 1, Sproj will lose the r�regularity property. This does not however mean that
the representer for the case of n ! 1 will be in�nite dimensional. In fact since the dimension
of
Pm

i=1 range(L�xi;�) is at most m, the dimension for the representer is at most maxfn;mg, even
when Sproj is not r�regular for any �nite r, i.e., for any n > m, the representer dimension is
limited to m.

We show below an example of ‘1 regularization in an in�nite dimensional space (n = 1) and
show an example of applying the representer theorem to a problem with a non r�regular subspace
valued map.

A non r�regular example

To show an application of a non r�regular subspace valued map, consider an analogue of the �nite
dimensional example presented above over an in�nite dimensional Hilbert space. For this purpose,
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let X = N be the set of natural numbers and Z = R. Let H = ‘2(N;R) be the space of square
summable sequences taking values in R. For any sequence f 2 H, let f(i) denote the ith member of
the sequence f and let jjf jj2 = (

P
i2N jf(i)j2)1=2 <1 be the ‘2 norm. Let hf; giH =

P
i2N f(i)g(i)

be the inner product on H. Let hz1; z2iZ = z1z2 be the scalar product on Z = R.

As an analogue to the orthonormal basis in Rn, consider a set of orthonormal basis for H given

by f�i 2 H : i 2 Ng with �i de�ned as �i(j) =

(
1 if i = j
0 otherwise

. The above space of ‘2 functions

forms a separable Hilbert space as shown by [33, Riesz-Fischer Theorem].

For all f 2 H, let jjf jj1 =
P

i2N jf(i)j denote the ‘1 norm for the sequence. If a sequence f 2 H
is not absolutely summable, i.e.

P
i2N jf(i)j is not bounded, then we set jjf jj1 =1.

Further note that the evaluation operator Lx : H ! Z de�ned as Lxf = f(x) for any x 2 N
is a bounded linear operator on ‘2(N;R) with the adjoint L�x given by �x(�), since for all z 2 R,
hz; LxfiZ = zf(x) = hz�x; fiH = hL�xz; fiH.

Then for the problem,

min
f2H

mX

i=1

jjyi � Lxif jj
2
Z + �jjf jj21 (2.74)

we have 
 : H ! R[f1g given by 
(f) = jjf jj21. The functional 
 is orthomonotone with respect
to the subspace valued map

Sproj(f) =

( 1X

i=1

�(i)
hf; �iiH�i
jjf jjH

: � 2 ‘2(N;R)

)

Example 4 shows that Sproj : H ! V(H) de�ned above is an inclusive, quasilinear and super-
additive subspace valued map with a union extension Sproj : V(H) ! V(H). Theorem 2.2 shows

that 
(f) =

(
jjf jj21

P1
i=1 jf(i)j <1

+1 otherwise
is orthomonotone with respect to the Sproj de�ned above.

Note also that Sproj(f) in general can be in�nite dimensional and thus is not r-regular for any
�nite r. However by Theorem 2.4 we know the minimizer for (2.74) must be of the form

Sproj

 ( mX

i=1

L�xizi : zi 2 R

)!

= Sproj

 ( mX

i=1

�xi(�)zi : zi 2 R

)!

=

( mX

i=1

�xi(�)zi : zi 2 R

)

The above representer can then be substituted for f in (2.74) and the optimization can be posed
as a �nite dimension optimization over fz1; : : : ; zmg. Thus (2.74) provides an example of problems
where a non r-regular subspace valued map is required and thus was not be covered by previous
counterparts of the generalized representer theorem. Also note that the non r�regularity of Sproj
does not lead to an in�nite dimensional representer as the dimension of the space is limited by the
range of the adjoint.
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2.5 Conclusion

We presented here an extension to existing work on generalized representer theorems by extending
the result to apply to learning arbitrary Hilbert space-valued function spaces with loss functionals
composed with closed, densely de�ned operators on separable Hilbert spaces. Subspace valued
maps with a super additive property were introduced and the property was shown to be necessary
and su�cient for preserving a vector space structure for the union extension of a subspace valued
map. The assumption of \r-regularity" was removed from the generalized theorem in order to
allow more general subspace valued maps and its implications were shown for the ‘1 regularization
problem in function spaces. The formalism of linear operators and adjoints was introduced into
the generalized representer theorem and in�nite dimensional representer spaces were treated as
part of the result. The ‘1 norm was shown to be orthomonotone with respect to a projection based
subspace valued map that shows the sparsity inducing nature of the ‘1 norm regularizers. An
example from regression in a space of stochastic processes was shown to demonstrate the utility of
the theorem when dealing with loss functionals on in�nite dimensional Hilbert spaces and linear
operators from one in�nite dimensional Hilbert space to another. Finally, an example from kernel
based neural networks was presented to show an approximation scheme based on the representer
theorem to a kernel based neural network.

2.6 Appendix

2.6.1 Subspace Valued Maps

De�nition 2.12. (Quasilinear map)
A subspace valued map S : H ! V(H) is called quasilinear if

8x; y 2 H; �1; �2 2 R; S(�1x+ �2y) � S(x) + S(y)

For any A 2 V(H), let S(A) = [x2AS(x). Then idempotence can be de�ned as,

De�nition 2.13. (Idempotent map)
A map S : H ! V(H) is called idempotent if

8x 2 H; S(S(x)) = S(x)

De�nition 2.14. (r�regular maps)
For some r 2 N, we call a map S : H ! V(H), r-regular if

1. it is quasilinear and idempotent

2. for all a 2 U , dimension of S(a) is at most r

3. 8x 2 H, x 2 S(x)

Lemma 2.5. (Summation of subspace valued maps are super-additive)
Let S : H ! V(H) be a subspace valued map. Let Ssup(A) =

P
x2A S(x). Then for any A;B 2

V(H), we have Ssup(A) + Ssup(B) � Ssup(A+B).
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Proof: The proof follows directly from the de�nition of Ssup, Ssup(A) + Ssup(B) =
P

x2A S(x) +P
y2B S(y) =

P
x2A[B S(x). For vector spaces A;B 2 V(H), we must have A [B � A+B. Thus

Ssup(A) + Ssup(B) =
P

x2A[B S(x) �
P

x2A+B S(x) = Ssup(A+B). �

The following example shows how addition of sets works in practice and shows a non r�regular
example of a super-additive subspace valued map.

Example 2.7. (Summation of subspace valued maps are super-additive)
Let H = ‘2(N) be the space of square summable sequences and let jjajj2‘ = (

P1
i=1 a

2
i )

1=2. Consider
the non r-regular subspace valued map Sproj : H ! V(H) given by

Sproj(a) =

(
f
P1

i=1 �i
ha;�iiH
jjajj‘2

�i : f�ig 2 ‘2(N)g ; jjajj‘2 6= 0;

f0g ; otherwise

where �i(j) = 1 for j = i and 0 elsewhere. Let Sprojsup (A) =
P

a2A S
proj(a). Consider the subspaces

A = f
P1

i=1 �2i�2i : �i 2 ‘2(N)g and B = f
P1

i=1 �3i�3i : �i 2 ‘2(N)g. We have Sprojsup (A) =
f
P1

i=1 �2i�2i : �i 2 ‘2(N)g = A and likewise Sprojsup (B) = B and Sprojsup (A+B) = A+B. Sprojsup (A) +
Sprojsup (B) = A + B = f

P1
i=1 �2i�2i + �03i�3i : �i; �0i 2 ‘

2(N)g = A + B = Sprojsup (A + B) (equality
trivially implies the inclusion required for super-additivity).

Note that the representers in [9] are given as
Pm

i=1 S(wi) for some r-regular subspace valued map
S : H ! V(H). The consideration of super-additive subspace valued maps does not lead to
any loss of generality as we can consider the map Ssup(A) =

P
x2A S(x) as given by the above

lemma as our super-additive subspace valued map and then the representer is equivalently written
as Ssup(spanfw1; : : : ; wmg) =

Pm
i=1 S(wi). Note also that the super-additivity of Ssup does not

contradict the sub-additive property of S required by quasi linearity, as we are considering Ssup
as a new subspace valued map, entirely di�erent from S, thus while S may be sub-additive, its
summation Ssup is super-additive (in fact additive, in such a case, as shown below).

Lemma 2.6. (Summation of quasilinear maps is additive)
Let S : H ! V(H) be a quasilinear subspace valued map. Let Ssup(A) =

P
x2A S(x) be the

corresponding summation map de�ned as Ssup : V(H)! V(H). Then Ssup is additive, i.e., for any
A;B 2 V(H), S(A) + S(B) = S(A+B).

Proof: Ssup(A)+Ssup(B) =
P

x2A S(x)+
P

y2B S(y) =
P

x;y2A[B S(x)+S(y) �
P

x;y2A[B S(x+
y) = Ssup(A + B). Thus using a quasilinear S we get Ssup(A) + Ssup(B) � Ssup(A + B). From
Lemma 2.5, we already have Ssup(A) + Ssup(B) � Ssup(A + B). Thus combining the two results,
we have additivity, Ssup(A) + Ssup(B) = Ssup(A+B). �

Example 2.8. (A non-idempotent, non-r-regular, subspace valued map)
Let Em = fe1; : : : ; emg be the standard orthonormal basis for Rm and Emn = fe11; : : : ; emng be
the standard orthonormal basis for Rm�n. Let H be a Hilbert space of Rm-valued smooth, square
integrable polynomial functions supported on [�1; 1]n � Rn with the Legendre polynomials, given
as

fpijei 2 H : pij(x) = cj@jxi [(x
2
i � 1)j ]; cj = (j + 0:5)

1
2 (2jj!)�1; j 2 N; ei 2 Em; xi = hx; eiiRng
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as the orthonormal basis for H, where pij is a polynomial of order j. Let Y be the space of Rm�n-
valued functions andr : H ! Y be the Jacobian operator, computing the Jacobian for a Rm-valued
function. Let ‘2(f1; : : : ;mg � N) be the space of dual indexed sequences f�ij : i 2 f1; : : : ;mg; j 2
Ng that are square summable. Consider the subspace valued map Sproj : H ! V(H) given by,

Sproj(a) =

(nP1
j=0
Pm

i=1 �ij
haei;pijeiiHei
jjajjHjjpij jjH

: �ij 2 ‘2(f1; : : : ;mg � N)
o

; jjajjH 6= 0

f0g ; otherwise

Let for a matrix valued function f 2 Y, let fi denote the ith row of the matrix. Let r� be the
divergence operator and r� : Y ! H be the adjoint operator to r, given as r�f = �(r�f1; : : : ;r�
fm). A subspace valued map S0 : Y ! V(Y) is then induced by the jacobian operator r given as,

S0(f) = r(Sproj(r�f))

Let fn 2 Y denote a polynomial of maximum order n. Then note that S0(fn) contains polynomials
of order at most n� 2. Thus clearly fn =2 S0(fn). Thus S0 is not inclusive.

Also S0(S0(fn)) contains polynomials of order at most n � 4 and thus S0(S0(fn)) 6= S0(fn),
implying S0 is not idempotent. Also in general f 2 Y can be an in�nite order polynomial and thus
the dimension of S0(f) can be in�nity.

Note that S0 : Y ! V(Y) is however a quasilinear, super-additive subspace valued map and
can still be used to establish a representer theorem, provided it is range preserving with respect to
the L being used with the loss functional. An example of such an operator would be the smooth
kernel of an RKHS de�ned on H. Since range(L�) then contains polynomials of order upto in�nity,
N?L � S

0(N?L ).
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Chapter 3

Manifolds Learning for Path
Following, Obstacle Avoidance MPC

A novel manifold learning approach is presented to incorporate computationally e�cient obstacle
avoidance constraints in optimal control algorithms. The method presented provides a signi�cant
computational bene�t by reducing the number of constraints required to avoid N obstacles from
linear complexity O(N) in traditional obstacle avoidance methods to a constant complexity O(1).
The application to autonomous driving problems is demonstrated by incorporation of the manifold
constraints into optimal trajectory planning and tracking model predictive control algorithms in
the presence of static and dynamic obstacles.

3.1 Introduction

Autonomous driving is an important application domain where obstacle avoidance is required in
combination with optimal path planning and control. A wide range of methods including dynamic
programming, numerical optimal control, MPC and randomized methods like RRT and A� have
been used for motion planning and control of autonomous vehicles in presence of obstacles (e.g.
[34, 35, 36, 37]).

The approaches to obstacle avoidance can be broadly separated into two classes based on the
obstacle/environment representation used. We will call these: (i) an obstacle centric approach
and (ii) an environment centric approach. In an obstacle centric approach each obstacle in the
environment is represented using a geometric description of its shape and constraints are imposed
to ensure that the vehicle geometry does not collide with any obstacle geometry. In the environment
centric approach a geometric description is directly extracted for a feasible region of movement
from sensor data without reference to individual obstacle shapes. Constraints are then imposed
such that the vehicle geometry remains inside the feasible region to avoid any collisions.

Examples of the obstacle centric approach can be found in works like [34, 38, 39, 40, 41, 42, 43,
44, 45, 46, 35, 36, 47] while the environment centric approach can be found in [48, 49, 37, 50, 51, 52].

Polyhedral obstacle and vehicle geometries are used by [34, 40, 39, 38] with hyperplane sepa-
ration constraints to impose obstacle avoidance in a nonlinear model predictive control (NMPC)
scheme. [35] uses circular obstacles with dynamic programming while [36] uses an RRT* algorithm
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with polyhedral obstacles. [45, 46] de�ne a potential �eld for spherical obstacles while [47, 43, 44]
use a mixed integer approach for spatially varying constraints for polyhedral obstacles.

The obstacle centric approach imposes an O(N) complexity in the number of constraints if
N obstacles are present. In particular for algorithms planning over a horizon length H, O(NH)
constraints are needed. This dependence on N creates a problem for real time applications where
N can be large and more importantly, can change dynamically, requiring an online update of the
optimal control problem structure.

The environment centric approach seeks to circumvent this dependence on N by constructing
directly a representation for the feasible region from sensor data. [48, 49] use a Support Vector
Machine to learn a non-convex environment representation and perform RRT within the learned
region. [37] uses a circular region around the vehicle and LIDAR measurements to partition the
circle into sectors not containing any obstacles. A multiphase NMPC scheme is then used to plan
trajectories within this circle. [50, 51, 52] use a deep neural network to learn a mapping from
features observed in video data of the road to the steering action applied. The features typically
correspond to boundaries or markers for the feasible region (e.g. [53]). The approach however does
not combine with optimal planning or control and may not always guarantee obstacle avoidance
depending on the quality of training and network architecture used.

We present here a manifold learning algorithm to learn feasible environment representations, for
an environment centric approach of obstacle avoidance in optimal control methods. The number
of constraints introduced is independent of the number of obstacles (O(1) complexity or O(H) for
horizon H), while introducing constraints of comparable computational complexity to the linear
hyperplane constraints.

The chapter is structured as follows: Section 3.2 presents the manifold learning algorithm and
its use for obstacle avoidance in a general optimal control method. Section 3.3 discusses an optimal
trajectory planning and path following NMPC scheme for a car parking scenario incorporating the
manifold constraints to avoid static and dynamic obstacles in a complex environment. Numerical
studies are presented in Section 3.4. Section 3.5 concludes the paper with a few remarks on the
method presented and future directions.

Notation

Throughout this chapter, let H be a Hilbert space of 2�-periodic functions mapping [0; 2�) to
R2, with orthonormal basis from a subset of [k�1;k2N;ei2f(1;0);(0;1)g(fei cos ktg [ fei sin ktg). Let
� : R2 ! [0; 2�), de�ned as

�([x; y]) := arctan2(y; x)

give the angular coordinate of a point in R2. The angular coordinate for the point (0; 0) is taken
to be 0, i.e. �([0; 0]) = 0.

Let jj � jjH, h�iH and jj � jjR2 , h�iR2 be the standard 2-norm and inner product on H and R2

respectively. Let � be the cross product in R2.
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Figure 3.1: A star shaped manifold Mc centered at c 2 R2. The manifold is parameterized by
t 2 [0; 2�) and satis�es the constraint t = �(F (t)� c) for all t 2 [0; 2�).

3.2 Manifold learning

Manifold learning provides a means to learn a representation for a surface of lower dimensions
embedded in a higher dimension space. Several algorithms for manifold learning like local linear
embedding, principle component analysis, local tangent space alignment have been presented in
machine learning literature. A thorough survey of such methods is available in [54]. The manifold
learning methods from [54], aim to learn a surface representation that best �ts a given sample
data set. We present here a manifold learning algorithm that provides a manifold surface that best
�ts the given data with two additional constraints. Firstly, the learned manifold is a 2�-periodic
surface embedded in R2 (i.e. a one dimensional manifold) whose interior is a star shaped set.
Secondly, all provided samples strictly lie outside or on the boundary of the manifold.

We then present the use of such a learned manifold for an environment centric approach to
obstacle avoidance in optimal control. We start by de�ning the notion of a star shaped manifold.

De�nition 3.1. (Star-shaped Manifold)
Let c be any point in R2. Let f 2 H be a 2� periodic function. Let fr 2 H be de�ned as
fr(t) = (r cos(t); r sin(t)) for some �xed r > 0 and Mc := fF (t) := (f(t) + fr(t) + c) : t 2 [0; 2�)g
be a closed curve of points in R2. Then, for all t 2 [0; 2�) if �(F (t)� c) = t then we say Mc is a
star shaped S1 isomorphic manifold centered at c.

Note that this de�nition for star shaped manifold is non-standard and refers to the idea that the
interior of such a closed curve will be a star shaped set. For a star shaped manifold Mc, let the
interior be de�ned as int(Mc) := fp 2 R2 : 8m 2 [0; 1]; mp+(1�m)c =2Mcg, i.e. the set of points
p in R2 such that a straight line connecting p to c has no intersection with the closed curve of the
manifold Mc.
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Note that not all 2�-periodic functions f 2 H will represent a star shaped manifold and that
the shape of the interior changes as we change the function f . De�ne

Ltf := F (t) = f(t) + fr(t) + c (3.1)

as the a�ne operator from H ! R2 for each �xed t. Similarly de�ne

Ttf = @tf(t) + @tfr(t) (3.2)

and
Ntf :=

�
0 1
�1 0

�
Ttf (3.3)

giving a tangent and normal respectively to the manifold at t.

3.2.1 Learning the manifold

Given a point cloud P of data in R2, Theorem 3.1 below describes the means to learning a star
shaped manifoldMc such that all obstacle points lie outside the area enclosed byMc, i.e. int(Mc)\
P = ?.

Theorem 3.1. Let P := fpi : i = 1; : : : ;M; pi 2 R2g be a point cloud of data coordinates and for
any c 2 R2nP be some point not included in P. Then a minimizer to the variational problem

fopt = arg min
f2H

jjf jj2H (3.4)

s.t. 8i 2 f1; : : : ;Mg; ti = �(pi � c)
(Ltif � c)�Ntifr = 0 (3.4a)
hpi � Ltif;NtifriR2 � 0 (3.4b)

de�nes a star shaped S1 isomorphic manifold centered at c 2 R2,

Mc := fFopt(t) := fopt(t) + fr(t) + c : t 2 [0; 2�)g

with int(Mc) \ P = ?.

The proof for the theorem relies on the following two lemmas.

Lemma 3.1. Let H� := ff 2 H : 8t 2 [0; 2�); �(Ltf � c) = tg be the subset of curves in H that
lead to a star shaped manifold. De�ne

�f = arg min
f̂2H�

jjf � f̂ jjH

as the projection of f to H�. Then

(i) H� is a closed convex set in H and

(ii) 8f 2 HnH�, jj�f jjH < jjf jjH
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Proof: Firslty, note that any f 2 H� must be of the form f(t) = a(t)(cos(t); sin(t)), for some
2�-periodic function a : [0; 2�)! [0;1) in L2([0; 2�)). f(t) must take this form, because the angle
�(Ltf � c) = t is given for any f 2 H�. Also the function a(�) must be in L2([0; 2�)) to ensure that
jjf jjH = jja(�)(cos(�); sin(�))jjH < 1. Thus for all f1; f2 2 H�, there exist functions a1 : [0; 2�) !
[0;1) and a2 : [0; 2�)! [0;1) such that f1(t) = a1(t)(cos t; sin(t)) and f2(t) = a2(t)(cos t; sin(t)).

Then for all �; � 2 [0;1), �f1 + �f2 = (a1(t) + a2(t))(cos(t); sin(t)) 2 H�. As a result for any
� 2 [0; 1], � = (1��) and f1; f2 2 H�, we have �f1 + (1��)f2 2 H�, implying H� is a convex set.

Further for any converging sequence fn 2 H�, we have a corresponding converging sequence
an 2 L2([0; 2�)). Since L2([0; 2�)) is a closed Hilbert space (by the Riesz-Fischer theorem), an
must converge to a point a 2 L2([0; 2�)) and thus fn converges to a f in H�, implying H� is closed.

Thus we have shown the �rst statement (H� is a closed convex set).
Then by the Hilbert Projection Theorem [55, Theorem 1.2], �f 2 H� and (f ��f ) 2 H?� . Thus

jj�f jj2H + jjf � �f jj2H = jjf jj2H =) (ii). �

Lemma 3.2. Let f 2 H be any feasible solution to (3.4). Then �f = arg minf̂2H� jjf � f̂ jj is also
feasible for (3.4).

Proof: Let T = ft : t = �(pi� c); pi 2 Pg be all the tis at which constraints in (3.4) are imposed.
Note that normal to the circle fr at any t 2 [0; 2�), is given by Ntfr = (r cos t; r sin t). Also,
as argued in Lemma 3.1, �f 2 H� must be of the form �f (t) = a(t)(cos(t); sin(t)) for some 2�-
periodic function a : [0; 2�)! [0;1) in L2([0; 2�)). Thus �f trivially satis�es (3.4a) for all ti 2 T .
Also since both f(ti) and �f (ti) satisfy (3.4a), both are in the span of Ntifr. We can then claim
f(ti) = �f (ti) for all ti 2 T as follows.

Suppose f(ti) 6= �f (ti) for some ti 2 T , then there must exist a g 6= 0 in H� and a g? 2 H?� such
that f = �f +g+g?. Also since for all ti 2 T , f(ti); �f (ti); g(ti) are all co-linear (satisfying (3.4a)),
g?(ti) = 0 for all ti 2 T . Then �f = arg minf̂2H� jjf � f̂ jjH = arg minf̂2H� jj�f + g + g? � f̂ jjH =
�f + g. But this implies g = 0 and hence a contradicts the assumption f(ti) 6= �f (ti) for some
ti 2 T . Thus for all ti 2 T , we must have f(ti) = �f (ti) and thus Lti�f = Ltif and �f satis�es
(3.4b) as well. �

The proof for Theorem 1 then follows,

Proof: [Theorem 1] Note that by Lemma 3.2 for any feasible solution f 2 HnH�, there exists the
projection �f 2 H� as a feasible star shaped solution. Further by Lemma 3.1, jj�f jjH < jjf jjH.
Thus the minimum norm solution Mc must be star shaped. To show int(Mc) \ P = ?, note that
(3.4a) enforces Ltifopt � c to be in the span of the outward pointing normal Ntifr, while (3.4b)
enforces that the vector pointing from Ltifopt to pi is also outward pointing. This ensures that
Ltifopt lies inside the line segment joining c and pi and sinceMc is star shaped, int(Mc)\P = ?.
Finally, note that for all c 2 R2nP there exists an open neighborhood of c, call it int (Mfeas), such
that int (Mfeas) \ P = ? (by virtue of Hausdor� separability of R2). Thus for all c =2 P, there
exists a feasible solution to (3.4). �

Note that the minimization problem in (3.4) can be an in�nite dimensional one and that the
proofs did not rely on any particular de�nition for the inner product (thus the theorems hold
for any inner product de�nition on H). The in�nite dimensional problem is reduced to a �nite
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dimensional one by limiting H to a space generated by �nitely many sin and cosine basis. Then
f 2 H takes the form f(t) =

PK
k=0 ak cos kt+ bk sin kt with a �nite K and ak; bk 2 R2 become the

decision variables for (3.4). Another approach to reducing (3.4) to a �nite dimensional problem
while not reducing H to a �nite basis is to use a reproducing kernel hilbert space H with a periodic
kernel. We avoid this approach in the present work as it would incur a O(M) complexity (M being
the size of the point cloud) in evaluating Ltfopt (instead of O(K), K being the size of the basis)
making obstacle checking more expensive in Theorem 3.2.

3.2.2 Using the manifold for planning and control

Theorem 3.2. LetMc be the optimal manifold given by Theorem 3.1 with a center c 2 R2. Then
a point p 2 R2 is contained in its interior, int(Mc), if and only if (3.5) is satis�ed, i.e.,

p 2 int(Mc)() hp� Lvfopt; NvfriR2 � 0 for v = �(p� c) (3.5)

Theorem 3.2 provides a simple inequality check for any point being contained in a star shaped
manifold. Thus for any point p 2 R2 in order to check for containment in int(Mc) a single
inequality su�ces. To include such a constraint for obstacle avoidance in an optimal control
problem simply include (3.5) for each p that needs to be checked. Thus for a horizon H optimal
control algorithm where the state for each of the H steps is enforced to be feasible the number of
constraints included are of the order O(H). Section 3.3 describes this process in more detail.

3.3 Optimal control and manifold constraints

Three di�erent optimal planning and control algorithms are presented below that are used to
accomplish di�erent tasks for an autonomous car parking scenario, using the manifold constraints
from Theorem 3.2. Section 3.3.1 describes a corridor planning algorithm over a graph of manifolds
using a dynamic programming approach. The corridor plan is then used in Section 3.3.2 to solve a
N -phase free end time, numerical optimal control problem for planning a trajectory for the vehicle
to move within the free space described by the corridor, while accounting for the vehicle dynamics.
The planned trajectory is used as a reference path and a path-following model predictive controller
is described in Section 3.3.3 to account for dynamic obstacles and real-time control requirements.

3.3.1 Corridor planning

Given a set of point cloud information pertaining to locations of obstacles in an environment,
a single star shaped manifold may not be enough to adequately represent the entire free space
con�guration in which the vehicle can move. Figure 3.3 shows an example of such an environment
(with the point cloud shown in blue). A collection of manifolds (shown in faded black) are then
learned with di�erent centers in order to cover the entire free space of interest for the vehicle
movement. The collection of manifolds is constructed to ensure that no manifold has a disjoint
interior from the rest of the collection and as such there is a path connecting any two manifolds in
the collection going through manifolds within the collection.

A undirected graph G of manifolds is then given by such a collection with each nodes in the
graph representing a manifold from the collection and an edge between two nodes indicating that
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Figure 3.2: Learned Manifolds and Normal Fields. (Green point - center of manifold, red points
- point cloud visible from manifold center, blue points - points invisible/out of sensor range from
center, black - surface of the manifold, arrows - outward pointing normals on the manifold surface)
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Figure 3.3: Corridor Planning over Manifolds. The shortest sequence of manifolds Rseq colored
in magenta, cyan, red and green from start to goal. Unused manifolds from G are in faded black.
The car to be controlled is plotted in red and the desired target state is shown with a dashed black
pro�le.
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the interiors of the manifolds has non-empty intersection. The complete point cloud of static
obstacle points from which the manifolds are learned is denoted as Ostatic. Figure 3.3 shows an
example of such an Ostatic and G. A unit weight is assigned to each edge for simplicity (although
other weighting schemes are also possible). Further all manifolds are learned with Theorem 3.1 so
that ([M2G int(M)) \ Ostatic = ?.

Then, given a desired starting and end point, pstart and pend respectively, for the vehicle in
R2, we can �nd the shortest sequence of manifolds in G connecting pstart to pend using a dynamic
programming algorithm. The process for constructing the shortest sequence is a standard dynamic
programming algorithm is as shown in Algorithm 1. The containment check for any point p in a
manifold in Algorithm 1 can be done using Theorem 3.2.

Algorithm 1 Dynamic programming over a graph for corridor planning
Input: graph of manifolds: G, start point: pstart, end point: pend
Algorithm:

First setup the costs for traversing the graph from any point to pend as follows:

(i) Let all manifolds in G be assigned an in�nite cost.

(ii) Find all manifolds in G containing pend, call the set of such manifolds A0 and set their cost
to 0. Set the iteration counter l = 0.

(iii) Let, the set of immediate neighbors to Al with cost equal to 1 be called Al+1. If Al is
an empty set, then terminate. Else, set the cost of all manifolds in Al = l + 1. Set the
iteration counter l to l + 1.

(iv) Repeat (iii) till termination. (Note that the steps terminate since we have �nitely many
nodes in G)

Next �nd a shortest sequence of manifolds going from pstart to pend
(i) Find all nodes in G containing the point pstart, call the set B0. Set Mc1 as the manifold in
B0 with the lowest assigned cost. Set the iteration counter to l = 1.

(ii) Find an immediate neighbor of Mcl with minimum cost and set Mcl+1 to that neighbor.
If the cost of Mcl+1 is 0, terminate. Else, set the iteration counter l to l + 1.

(iii) Repeat (ii) till termination.

Assuming the iteration terminates of the N th step, we have the sequence of manifolds
fMc1 ; : : : ;McN g giving the minimum cost for traversing the graph from pstart to pend

Output: fMc1 ; : : : ;McN g

A path connect subset C � R2 such that C \ Ostatic (i.e. not containing any static obstacle
points) is called a corridor in the context of autonomous driving. Such a corridor is given by
Mc1 [Mc1 [ � � � [McN , because each manifold satis�es Mcl \Ostatic = ?, by virtue of Theorem
3.1.

Algorithm 1 thus provides a fast corridor planning algorithm to �nd the shortest sequence of
manifolds, Rseq = fMc1 ; : : : ;McN g, that must be traversed to reach the end position. A multiphase
optimal trajectory to traverse Rseq is then constructed in section 3.3.2, taking the vehicle dynamics
into account.
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Figure 3.4: Optimal Trajectory Planning over Manifolds. The shortest time trajectory avoiding the
corridor plan manifold constraints and adhering to the state dynamics and state-input constraints.
The evolution of the car position and orientation is plotted in green over the period of the optimal
trajectory.

3.3.2 Optimal trajectory planning

Let Rseq = fMc1 ; : : : ;McN g be the sequence of manifolds given by Algorithm 1 for start and
end points, pstart and pend respectively. Also let the center of Mci be the point ci 2 R2 for all
i = 1; : : : ; N .

Consider for simplicity, a slip free Dubin’s car model (3.6) to describe the non-holonomic vehicle
dynamics, with the state q = (z1; z2;  ; v) comprising of (z1; z2) giving a coordinate position for
the vehicle in R2,  giving a yaw orientation and v giving the car’s forward speed. The controls
used are a steering input � and acceleration a. k�, kacc are known constants corresponding to the
steering and acceleration input gains.

_q =
�
v cos ; v sin ; k� � v � �; kacc � a

�T (3.6)

Assume, now, that the initial state of the vehicle dynamics is given as qstart, such that the corre-
sponding position of the vehicle in R2 is pstart and the desired end state qend for the vehicle is such
that the corresponding position is pend, as were used to plan the corridor sequence Rseq.

The algorithm presented next is agnostic of the exact form and details of the dynamic model
used and we will simply denote the state of the vehicle dynamics by q, the inputs to the vehicle as
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u and the dynamics to be given by an ordinary di�erential equation,

_q = Q(q; u) (3.7)

Then, a N -phase optimal trajectory satisfying the non-holonomic vehicle dynamics and obstacle
avoidance constraints can be generated as follows.

Let Mc1 to McN denote the N manifolds in Rseq. Let q(t) 2 Rn; u(t) 2 Rm be the state and
input at time t for the vehicle and _q(t) = Q(q(t); u(t)) be the vehicle dynamics. qstart is given as
the initial state of the vehicle at time t = 0 and qend is the desired end state.

Let pj(t) = 
j(q(t)), j = 1; : : : ; k for some �nite k denote a collection points on the vehicle
geometry for which to enforce obstacle avoidance, given by selection functions 
j : Rn ! R2 (see
De�nition 3.2 for an example of 
j). Also for purposes of brevity we will denote the fact that

pj(t) = 
j(q(t)) 2 int(M); 8j = 1; : : : ; k () q(t) 2 int(M)

by the abuse of notation q(t) 2 int(M).
By construction, Rseq is such that qstart 2 int(Mc1) and qend 2 int (McN ). Let the state and

input be bounded in box constraints Xbox, Ubox respectively. Let tf 2 [0;1) be a free end time for
the trajectory and let tif 2 [0;1) be the time for �rst exit from int(Mci) for i 2 f1; : : : ; N � 1g.
For notational convenience, let t0f = 0 and tNf = tf . A general N -phase optimal control problem
is described in Algorithm 2 below, variants of which lead to the optimal trajectory generation and
MPC path following algorithms to be presented later.

Algorithm 2 N-phase Optimal Control
Input: initial state: q0, goal state: qf , manifolds: fMc1 ; : : : ;McN g and smooth, strongly convex

cost functionals: ‘ : Rn � Rm ! [0;1), G : Rn ! [0;1)
OCP: qopt; uopt; t1f opt; : : : ; t

N
f opt

:=

arg min
q̂(�)2L2([0;1);Rn)
û(�)2L2([0;1);Rm)
t1f ;:::;t

N
f 2[0;1)

G(q̂(tf )) +
Z tf

0
‘(q̂(s); û(s))ds+

NX

i=1

(tif )2 (3.8a)

s.t. 8s 2 (ti�1
f ; tif ]; i 2 f1; : : : ; Ng; j 2 f1; : : : ; kg (3.8b)

q̂(0) = q0; q̂(tf ) = qf ; t0f = 0 (3.8c)

q̂(s) 2 Xbox; û(s) 2 Ubox; tif � t
i�1
f � 0 (3.8d)

_̂q(s) = Q(q̂(s); û(s)) (3.8e)
p̂j(s) := 
j(q̂(s)) 2 int (Mci) (3.8f)

Output: qopt, uopt; t1f opt; : : : ; t
N
f opt
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(3.8) describes a general free-end time N�phase optimal control problem where the variable
tif represents the end time for phase i, i = 1; : : : ; N . In each phase of the problem one manifold
constraint is active, i.e. Mci is active for phase i.

(3.8c) enforces the initial and terminal boundary conditions for the vehicle state and sets the
initial t0f = 0 for notational convenience of (3.8d). (3.8d) enforces the input and state constraints to
be satis�ed and states that the switching times should be ordered such that the time at which the
manifold is switched fromMci toMci+1 (given by tif ) is greater than the switching time ti�1

f when
the constraint forMci was �rst made active. (3.8e) enforces that the solution qopt, uopt satisfy the
di�erential equation for the dynamics considered. (3.8f) enforces that for all times s 2 (ti�1

f ; tif ]
the selected points on the vehicle geometry are in the interior of the active manifold Mci , thus
avoiding all obstacles. (3.8f) is equivalent to the inequality constraint given by (3.5).

The optimal reference trajectory qref and control uref from qstart to qend, given Rseq can then
be found using Algorithm 3. Note that we are subscripting the optimal solutions as qref and
uref as these solutions will be used as reference trajectories for a path following model predictive
controller in Section 3.3.3.

Algorithm 3 Optimal Trajectory Generation
Input: q0 = qstart, qf = qend, manifolds: Rseq, ‘(q̂(s); û(s)) = jjû(s)jj2 for some  > 0 and
G(q̂(tf )) = 0

Solve: OCP (3.8) and get qopt; uopt and tif opt, i = 1; : : : ; N

Output: treff = tNf opt, qref : [0; treff ]! Rn := qopt

Theorem 3.3. Let Rseq, Xbox and Ubox be such that the optimization (3.8) is feasible in Algorithm
3. Then the optimal trajectory, qref is such that for all t 2 [0; treff ] and all j 2 f1; : : : ; kg,

j(qref (t)) \ Ostatic = ? and qref (treff ) = qend.

The proof for Theorem 3.3 follows directly from the enforced terminal constraint (3.8c) and mani-
fold constraints (3.8f), which by Theorem 3.1 implies 
j(qref (t))\Ostatic = ? in each phase. Thus
Theorem 3.3 guarantees that the optimal reference trajectory is such that for all points on the
trajectory qref , selected points of the vehicle geometry are contained in the interior of manifolds
in Rseq, thus avoiding all known static obstacles in the map.

The next section, describes a real-time path following model predictive controller, using qref as
a reference path in order to address the concerns of fast real time control (as generating an optimal
trajectory by (4.6) for ever changing values of N , large values of N can be computationally expen-
sive) and to address the issue that Ostatic being an o�ine data set of static obstacle information
may not accurately describe the obstacles in the environment. To address the issue of apriori
unknown and possibly moving obstacles, we introduce a new dynamic set Odyn of point cloud
data (acquired in real time with a LIDAR like sensor) in the next section and learn a dynamically
changing manifold Mc1(t) centered around a point on the vehicle.
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3.3.3 Dynamic obstacles and model predictive control

Let Odyn be a point cloud of dynamic obstacles not accounted for in G and let O = Ostatic [Odyn.
While Theorem 3.3 provides an e�ective method to plan trajectories in presence of static obstacles;
for dynamic obstacles we formulate an MPC path following scheme tracking the planned qref with
a reference geometric path to follow. Treating qref as simply a parametrized geometric path
and not a time-bound trajectory allows the controller to move to qref and follow along qref at a
speed that is feasible for the real vehicle dynamics (as there may be a di�erence between the real
vehicle dynamics and the model used for planning) and for constraints placed by the new dynamic
obstacles.

Also since path-following under dynamic obstacles can lead to unforeseeable situations, we
address here only the problem in a semi-cooperative setting. Under such a setting, we assume that
path qref is not permanently made infeasible, i.e. we can move to any point to qref without being
hindered by an obstacle permanently (a point may be unreachable for a �nite amount of time,
but the obstacles will move away in a �nite time span, to make the point reachable). In such a
setting, we also do not address adversarial obstacles, that are either actively trying to collide with
the vehicle or accidentally in a state such that no control action by the MPC controller can avoid
collision.

At any time t, let q(t) be the vehicle state. Let c1(t) = s0(q(t)) be the position of a sensor on
the vehicle in R2, given the state of the car, q(t). LetMc1(t) be a dynamic manifold learned using
Theorem 3.1 at each time t using new data from the sensor, allowing detection and avoidance of
dynamic obstacles in O. Let treff and qref : [0; treff ]! Rn be the reference end time and reference
geometric curve mapping into the vehicle’s state space as given by Algorithm 3.

Let J : Rseq ! R be a map from a manifold in Rseq to its cost to go, assigned in the dynamic
program from Algorithm 1 to reach the end of the sequence. Then choose a manifold,

Mc2(t) = arg min
M2Rseq

J(M) s.t. c1(t) 2 int(M)

i.e. Mc2(t) is the manifold in Rseq with the minimum cost to go such that the current sensor position
is contained in its interior. Recall thatMc1(t) is the dynamically learned manifold, centered around
the sensor position and thusMc2(t)\Mc1(t) 6= ?. It is assumed that the initial state of the vehicle
in such thatMc2(t0)\Mc1(t0) 6= ? and the recursive feasibility of the MPC shown later will ensure
that this remains true for all t � t0.

Then for the path following MPC problem considered over a �nite horizon T , a heuristic
reference terminal state for the horizon [t; t+ T ] is then chosen as follows.

Let N (Mc2(t)) be the set of immediate neighbors ofMc2(t) in Rseq includingMc2(t) itself. Let
tw(w; t) > 0 be a positive o�set parameter at time and path parameter (t; w), given by

tw(w; t) = arg max
t̂w2[0;treff ]

t̂w s.t. qref (w + t̂w) 2 int(M) and M 2 N (Mc2(t))
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and let wf (w; t) := min(w+ tw(w; t); treff ) be a forward shift for any w 2 [0; treff ]. Then choose

w�(t) = arg min
w2[0;treff ]

jjqref (w)� q(t)jj s.t. qref (wf (w; t)) 2 [M2N (Mc2(t)) int(M)

This ensures qref (w�(t)) is the closest point on qref to the current vehicle state q(t) such that a
future point qref (wf (w�(t); t)) lies within the neighborhood N (Mc2(t)) and that qref (wf (w�(t); t))
is the closest possible point to the end goal that can be selected within the neighborhoodN (Mc2(t)).
Recall that for any state q 2 Rn, we mean by q 2 int(M), that the corresponding selection of vehicle
points pi 2 R2 is in int(M). Note that this minimization is always feasible, sinceMc2(t) belongs to
N (Mc2(t)) and it is assumed the current vehicle state is inMc2(t) and thus one can always trivially
choose qref (w�(t)) and qref (wf (w�(t); t)) to be points inMc2(t) (sinceMc2(t) is a manifold chosen
at time t from Rseq and qref passes through every manifold in Rseq by design).

Now let the heuristic end goal for the MPC over the horizon [t; t+ T ] be given as

qrefend(t) = qref (wf (w�(t); t))

and let
Mc3(t) = arg min

M2N (Mc2(t))
J(M) s.t. qrefend(t) 2 int(M)

be the manifold in the neighborhood N (Mc2(t)) with minimum cost to go, containing the end goal
qrefend(t).

Thus we have three manifolds at each time t;Mc1(t) accounting for new or dynamic obstacles in
O, and Mc2(t);Mc3(t) 2 Rseq, accounting for only static obstacles in Ostatic for manifolds leading
from qref (w�(t)) to qrefend(t). The following optimal control problem can then be solved at each time
t to get a path following NMPC controller.

Algorithm 4 Path Following MPC
Input: N = 3, q0 = q(t), qf = qrefend(t), manifolds: fMc1(t);Mc2(t);Mc3(t)g, a safety time margin:
tsafe > 0 and a maximum blocking time: Tblocking. The cost functionals:

‘(q̂(s); û(s)) = 1jjq̂(s)� qref (minfw�(t) + s; wf (w�(t); t)g)jj2 + 2jjû(s)jj2

G(q̂(tf )) = 3jjq̂(tf )� qrefend(t)jj
2

for some constants 1; 2; 3 > 0
Solve: OCP (3.8) subject to an additional constraint Tblocking � t1f � tsafe and get the optimal

solution uopt
Output: Applied control action: u(t) = uopt(0)

Algorithm 4 thus proposes a moving horizon version of the free end time, N�phase optimal
control problem in (4.6) with N = 3, tracking a geometric curve qref , thus giving a path following
MPC controller. The MPC controller computes the control signal to follow the geometric reference
path as closely as possible starting at q(t) while avoiding the manifold constraints in order to reach
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a end state qrefend(t) such that qopt(tNf opt) = qrefend(t) (by the imposed terminal constraint in (4.6)).
The computed control signal at time t, u(t) is applied to the system, to reach a new state and
the optimization problem for Algorithm 4 is resolved again at the new state. Section 3.4 gives
more details on the discrete time implementation of such a scheme. With the initial state in (4.6),
set as the current state q(t) and the end goal qf in (4.6) set to the heuristically selected end goal
qrefend(t), note that when the true state qend is in N (Mc2(t)), the heuristic end goal as given above
will always be qrefend(t) = qend, as it is the closest point in the neighborhood to the end goal. Thus
the heuristic end goal over the horizon moves forward towards qend as soon as such a movement is
permitted by the obstacle environment, enabling the path following MPC to progress towards the
end goal.

The manifoldsMc1(t) is enforced to ensure that the dynamic obstacles are avoided for all time
[t; t + t1f ]. Manifolds Mc2(t) and Mc3(t) are used to plan future motion towards the goal once a
blocking obstacle has moved away. The switching time t1f > tsafe ensures that a safety time margin
is permitted for the vehicle to come to a halt or reverse its motion to avoid a moving obstacle,
during the next iteration of the MPC algorithm. The amount of time the vehicle has to spend
within Mc1(t) before it can proceed with motion through the originally planned manifolds Mc2(t)
and Mc3(t) is given by t1f . If a obstacle is blocking the path of motion for the vehicle then the
problem in (4.6) is infeasible as we require for a t1f opt � tNf opt < 1, qopt(tNf opt) = qrefend(t). Thus,
an assumption is made on the obstacles, such that the obstacle will move away in a maximum
time Tblocking and thus we have tf1 = Tblocking when the motion is blocked and we plan the motion
through Mc2(t) and Mc3(t) for the time [t + Tblocking;1). Note however that if the obstacle does
not move away in time Tblocking, the re-solving of the MPC at the next time iteration again sets
tf1 = Tblocking and thus the MPC can be permanently blocked from making progress by an obstacle
and also the controller will not collide with such an obstacle for any time [0;1), since there is a
safety margin of tsafe seconds left from the previous iteration in which the vehicle can be brought
to a halt.

The following assumptions on the obstacle environment are made to give formal guarantees on
the convergence and recursive feasibility properties for the MPC scheme.

Assumption 3.1.

(i) The dynamic obstacles follow a semi-cooperative policy for their motion such that at any time
t 2 [0;1], the obstacle will remain outside Mc1(t) for the time interval [t; t+ tsafe] seconds.
Note that this is not exploited by the MPC to behave in a adversarial manner and push
obstacles around, since tsafe is only a lower bound for t1f . This assumption simply means
that there is a non-zero safety time margin tsafe for the MPC to take a control action such
that a collision can be avoided, given the current state of the vehicle.

(ii) Obstacles do not permanently make qrefend(t) unreachable in Rseq (i.e. blocking obstacles will
eventually move away). (This time may be di�erent from Tblocking, the assumption is just
required to ensure that we do not have in�nite iterations of the MPC with t1f = Tblocking and
thus the MPC is prevented from making any progress towards the goal)
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(iii) The vehicle dynamics and input constraints are such that the vehicle has a maximum velocity
and acceleration/braking such that in tsafe seconds it can go from the maximum velocity to
zero velocity in tsafe=2 seconds and the reference trajectory can be tracked with zero position
and orientation error for any velocity pro�le within the limits set by the state and input
constraints, given a zero error at the initial state.

Given such assumptions, the following theorem can be established for an MPC scheme for
following qref as a reference path in the presence of dynamic obstacles.

Theorem 3.4. Given assumption 3.1-(i) and (iii), the closed loop solution q(t) obtained by ap-
plying a control signal u(t) = uopt(0) using Algorithm 4 is such that for all t 2 [0;1) and all
j 2 f1; : : : ; kg, 
j(q(t)) \ O = ?, i.e. selected points on the vehicle geometry avoid all obstacles
(dynamic and static) from O = Odyn [ Ostatic.

Proof: At some time t if (3.8) is feasible then t1f opt is strictly greater than tsafe (by the imposed
constraint). This implies there is a strictly positive time t1f opt > tsafe before any 
j(q(t)) exits
int(Mc1(t)). Further by assumption 1-(i), all obstacles are guaranteed to remain outside int(Mc1(t))
for [t; t + tsafe]. Thus for all t0 2 [t; t + tsafe], 
j(q(t)) \ O = ?. Given the optimal solution at
time t, going from q(t) to qendref (t), for any time t0 2 [t; t + tsafe=2], Algorithm 4 can be re-solved
for which a feasible solution from q(t0) to qrefend(t

0) can be obtained as a motion from q(t0) to qendref (t)
(albeit with a di�erent time pro�le) followed by motion along qref from qendref (t) to qendref (t0). (Such
a solution exists by virtue of the assumption 3.1-(iii), which state that a given state trajectory is
can be tracked with zero error in position and yaw for any velocity pro�le ). Thus (3.8) remains
feasible for all t0 2 [t; t + tsafe=2]. By recursively applying this argument for any t 2 [0;1), (3.8)
remains feasible for [t; t+ tsafe=2] for each t 2 [0;1). Thus (3.8) remains feasible for all t 2 [0;1)
if (3.8) is feasible at t = 0 and 
j(q(t)) \ O = ?. �

Theorem 3.5. Given assumption 1-(ii), there exists a �nite time tend such that q(tend) = qend

Proof: By assumption 1-(ii), for any time t, qendref (t) is reachable in some �nite time, i.e. there
exists a �nite time t0 2 [0;1) such that q(t0) = qendref (t) (note that here by reachable we mean
the actual state q reaching the goal qendref (t) and not just the MPC prediction qopt). Thus there
exists a �nite time t0 > t such that w�(t0) > w�(t). Thus qrefend(t

0) is closer to qend along qref than
qrefend(t). Since w�(t0) is upper bound by treff , there must exist a �nite t0 such that w�(t0) = treff ,
i.e., qrefend(t

0) = qend. Then a �nite time tend > t0 exists such that q(tend) = qend. �

3.4 Numerical results

Figure 3.2 shows the result of learning individual manifolds around di�erent centers using Theorem
3.1. We use r = 30 m in fr and a H space generated by a �nite basis of sine and cosine with
K = 10. In order to avoid the dependence on a dynamically changing and large M in Theorem
3.1, we preprocess the sensor data to return a single closest point in a sector of resolution �res by
dividing the [0; 2�] interval into Npart = 90 intervals. With Npart large enough we are assured that
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the sensor data accurately enough represents the obstacles. Thus M in Theorem 3.1 is �xed to be
Npart for fast online optimization. The preprocessed visible points are shown in red in Figure 3.2.

Figure 3.3 shows Rseq for a parking scenario with qstart = (0; 0; 0; 0) and qend = (6; 31:5; 0; 0).
Using this Rseq and Theorem 3.3, Figure 3.4 shows the optimal trajectory plan qref from qstart
to qend. Figure 3.5 shows the closed loop behavior of the MPC scheme in presence of a dynamic
obstacle. A second car (displayed as a green polytope) is added to the environment (not accounted
for in Ostatic) and drives out in the opposite direction of the controlled car (displayed as a red
polytope). The planned motion at time t (qopt(�)) is shown in cyan and the goal state at time t
(qrefend(t)) is shown as a pink dashed polytope. The �nal goal state qend is shown as a black dashed
polytope. When the new obstacle is encountered, as shown in Figure 3.5b, the path for the vehicle
to move forward is blocked. In order to avoid the obstacle (moving in the opposite direction), the
car reverses its motion and moves in reverse from Figure 3.5b to 3.5c (the front edge of the car
can be seen moving from z2 = 20 m in 3.5b to z2 = 17 m in 3.5c). Eventually space is freed by the
moving obstacle (Figure 3.5d) and the car drives forward again to eventually reach the parking
state qend.

The slip free Dubin’s car model from (3.6) is used for the non-holonomic vehicle with the state
q = (z1; z2; �; v) comprising of the z1; z2 coordinate position in the ground plane, yaw orientation
 and car’s forward speed v. The controls used are a steering input � and acceleration a.

De�nition 3.2. (Vehicle Geometry)
For describing the vehicle geometry we use an elongated hexagon for the car shape projected on
the z1 � z2 ground plane. Nine vertices are placed on the hexagon corners and side and backward
face bisectors. The sensor for the car is placed at its center. The corresponding selection functions

j (j = 0; : : : ; 9) are de�ned as 
j(q(t)) = (pj1 cos�� pj2 sin�+ z1(t); pj1 sin�+ pj2 sin�+ z2(t))T if
(pj1; p

j
2) are coordinates of the point when the car state is (0; 0; 0; 0)T .

For solving the free end time optimal control problem in (3.8), we use a time scaling input
as a decision variable along with time scaled vehicle dynamics. The continuous time problem is
converted to discrete time using a multiple shooting approach with RK4 integration of step-size:
0.1.

The control and state bounds imposed were Ubox := f(�1;�1)T � u � (1; 1)T g, Xbox :=
f(�1;�1;�1;�1) � x � (+1;+1;+1; 4)g and tsafe = 0:05 seconds with k� = 0:4, kacc = 5.

On an Intel Core i7, 2.8 GHz processor using an interior point solver (ipopt) the average
solve times for the algorithms were as follows: Manifold Learning: 200 ms, free end 4�phase
time optimal trajectory generation: 34.9 sec and the free end time 3�phase path following MPC:
754 ms. Note also that the longer solve times for the MPC and optimal trajectory generation
are to be expected as we are solving a multiphase, free end time optimal control problem, which
is typically computationally expensive compared to a trajectory tracking like approach. Faster
implementation schemes thus need to be explored to make the MPC controller compatible for real
time implementation.
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3.5 Conclusion

A novel manifold learning approach was presented to learn representations of complex and dy-
namic obstacle environments and to provide computationally tractable constraints for optimal
control algorithms. The use of the manifold constraints for obstacle detection and avoidance was
demonstrated with three variants of optimal control problems; a dynamic programming approach
for corridor planning, an optimal trajectory generation problem and a nonlinear MPC problem for
path following. The three variants were deployed to drive a vehicle in a car parking scenario in
presence of static and dynamic obstacles. Recursive feasibility of the MPC under semi-cooperative
obstacle movements was shown. MPC schemes taking into account obstacle speed and movement
plan or adversarial obstacles remains a subject for future investigation and was not covered in this
work.
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(a) Tracking on a turn (b) Dynamic obstacle encountered

(c) Car reversing to avoid obstacle (d) Space found after obstacle moved forward

(e) Transition into the reverse parking position (f) Executing the reverse parking

Figure 3.5: Path Following MPC with Dynamic Obstacles (Mc1(t) in bold black, unused manifolds
in faded black, sensor data as red point cloud, qopt in cyan, qrefend(t) in dashed pink, qend in dashed
black, q(t) in red, qref as black dotted line)



Chapter 4

Path Following MPC in Airborne
Wind Energy Systems

A nonlinear path following model predictive control scheme with application to a kite based air-
borne wind energy system is presented. A novel terminal convergence �eld constraint is introduced
to guarantee closed-loop stability and convergence of the vehicle to geometric paths of desired
shapes. Convergence conditions are investigated and the e�ectiveness of the approach is demon-
strated via numerical simulations for desired path shapes under nominal and perturbed conditions.

4.1 Introduction

A common operational requirement for kite based Airborne Wind Energy (AWE) systems is to
track a desired optimal trajectory that maximizes power generation. This requires the kite to reel
out at a desired rate as it ies a high energy extraction trajectory, then reel back in with a low
energy consumption maneuver to produce a net positive energy generation cycle (see, e.g., [56, 57]).

While the desired trajectory for the vehicle can be pre-computed using numerical optimal con-
trol solvers ([58, 59, 60]), the trajectory tracking itself presents numerous challenges due to nonholo-
nomic properties of the system, uncertain wind and system parameters and limited controllability
of the vehicle speed. In fact, since the main driving force is provided by the wind, the vehicle can
only follow time-pro�les along the reference path that are coherent with the wind speed. Previ-
ous works, like [61, 62] consider trajectory-tracking Nonlinear Model Predictive Control (NMPC)
schemes that can track reference positions on a time parameterized reference trajectory. The ef-
fects of unknown wind conditions however limit the applicability of such schemes as the reference
trajectory can quickly become incoherent with the wind speed and kite position, leading to non
zero tracking errors. [63, 64] overcome this issue of incoherence by changing the reference only on
certain position feedback switching events. They do not, however, consider any exact reference
trajectory or path shape to be followed. [65] tackles this issue by considering a path following
scheme based on feedback linearization of the AWE system. The feedback linearization scheme
however provides only a localized region of attraction in the presence of input saturation and leads
to suboptimal control demands due to cancellation of all natural dynamics of the vehicle.

Motivated by these observations, a model predictive, path following control (abbreviated
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MPFC) scheme is presented to plan for feasible trajectories guaranteeing convergence and tracking
of the reference path.

The core idea of a path following MPC scheme is to consider a geometric reference path instead
of a time-parametrized reference trajectory [66]. A virtual system is used to control the motion
of a reference point along the path. Finally, the input to the virtual system and the real system
input are computed by means of receding horizon optimization such that the path is followed as
closely as possible.

In order to guarantee path convergence, we consider terminal constraints, which are inspired by
vector �eld control schemes often used in aerial vehicles or mobile robots ([67]). The advantage of
incorporating such constraints in the MPC scheme is that we do not need an explicit representation
of the vector �eld.

The organization of the chapter is as follows. In Section 4.2, the problem statement is intro-
duced with the kite and virtual path reference dynamics. Section 4.3 discusses the design of the
proposed MPFC scheme. Section 4.4 provides the proof for stability and recursive feasibility of the
MPFC scheme subject to a reachability assumption for the convergence �eld. Section 4.5 presents
results for numerical tests of the controller under nominal and perturbed conditions.

Notation

jjvjj 2-norm of a vector (jjvjj :=
p
vT v)

jjvjjQ Q-norm of vector (jjvjjQ :=
p
vTQv)

atan2(�; �) Four quadrant inverse tangent
@�f Partial derivative of a function f w.r.t. �

_f Partial derivative of function f with respect to time

4.2 Problem statement

Recall that the core idea of MPFC is to coordinate the control of the real vehicle and the reference
speed along a path such that the tracking error is minimized. In order to precisely de�ne this
objective for path following in AWE systems, we describe the model of the AWE system and
the virtual system used to control the reference motion along the path. Finally, we de�ne the
path-following problem.

4.2.1 Kite model

The vehicle for the AWE system moves on a sphere of radius L (tether length). Its position in
polar coordinates is given by the elevation and azimuth angles #; ’. We denote by  the direction
of the tangential velocity of the vehicle on the sphere. By simple geometric relations, the angle 
can be written as,

 = atan2( _’ cos#; _#) (4.1)

Let
Q = f(#; ’; ) : # 2 [0; �=2); ’ 2 (��=2; �=2);  2 [��; �]g
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Figure 4.1: Kite coordinate frames representation.

denote the state space for the kite state. Let � = (vw; E) 2 R2 be the parameters, wind speed and
aerodynamic glide ratio for the kite, respectively. Denoting the state of the vehicle at time t as
q(t) := (#(t); ’(t); (t)) 2 Q, we can write the vehicle dynamics as,

_q = s(q; �; L; z)

0

@
cos 
sin 

0

1

A+

0

@
0
0
u

1

A (4.2)

where s(q; �; L; z) : Q���R�R! R+ is the physical speed of the kite as a function of the vehicle
state q 2 Q, physical parameters p 2 � comprising the wind speed and aerodynamic parameters,
tether length L and the reel out rate _L = z. u is a steering input to the system that allows us to
turn the vehicle ( _ = u). We refer the reader to Figure 4.1 for a graphical representation of the
angles and to [65] for details on this model. The speci�cs of s;� are given in the Appendix.

Remark 4.1. We assume for the design of the controller, that the tether length L is �xed and
the reel out rate z = 0. Any deviation from this assumption is treated as a perturbation.

4.2.2 Reference path

For the reference path we consider any twice continuously di�erentiable periodic mapping qref (�) :
R! Q satisfying the assumptions below.

Assumption 4.1 (Nonholonomic constraint). The reference path is such that ref =
atan2(@�’ref cos#ref ; @�#ref ).

Thus the reference path ref satis�es the same geometric relation with #ref ; ’ref as (4.1). This
assumption is satis�ed by any path for which we choose #ref (�); ’ref (�) and then compute ref (�)
as given above.
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Assumption 4.2 (Regular curve). The path is regular in the sense that for all � we have
jj@�qref (�)jj 6= 0.

Thus the reference qref (�) does not remain stationary as � changes. In other words, locally each
point on the path corresponds to a unique � , cf. [68].

Assumption 4.3 (Compact range). The path parametrization qref : R ! Q has a compact
range in Q.

Thus qref (�) attains a value for each � within Q, avoiding unbounded reference trajectories and
limiting behavior where the limiting value does not lie in Q.

Assumption 4.4 (Input admissibility). The reference path curvature is limited such that it
can be tracked at a given vehicle speed while respecting the input constraints on steering.

Assumption 4.4 allows only those reference paths which can be tracked by the real vehicle at a
given speed s with limited steering input umax when starting with zero tracking error.

We move a virtual point along the path by moving � with controlled velocity u� with the
dynamics,

_� = u� (4.3)

We enforce u� � 0 to make the virtual vehicle move in a �xed direction along the path.

4.2.3 Kite path-following problem

We consider the augmented system of the virtual point and real vehicle with the state

x(t) := (q(t); �(t)):

The dynamics of x(t) is then given by (4.2), (4.3). We de�ne the path error for q and qref (�) for
an arbitrary q; � as

e(q; �) = q � qref (�): (4.4)

For q(t); �(t), at time t, we denote the path-following error as

e(t) = q(t)� qref (�(t)): (4.5)

For notational convenience, the tangent to the reference path is denoted as m(�) = @�qref (�). The
control objective is then to asymptotically drive e(t) to 0 as t ! 1 subject to the constraints
(4.2{4.3) and the actuator constraint set

U = f(u� ; u)T 2 R2 ju� � 0; ju j � umax g:
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4.3 Model predictive path following control

As standard in conventional NMPC, MPFC is based on receding horizon solutions to an Optimal
Control Problem (OCP). Here, we consider MPFC based on the following problem:

min
x(�)2L2([0;T ];Rn)
u(�)2L2([0;T ];Rm)

Z T

0

1
2
jje(s)jj2Q + jju(s)jj2Rds+

1
2
jje(T )jj2Qf (4.6a)

subject to (4.2); (4.3) with x(0) = x̂(t) (4.6b)
u(s) 2 U ; x(s) 2 X 8s 2 [0; T ] (4.6c)
1
2
jje(T )jj2Q + e(T )TQf _q(T ) � 0: (4.6d)

e(q(T ); �(T ))Qfm(�(T )) � 0 (4.6e)

where X := Q � R, and x̂(t) denotes the system’s state at time t under the closed-loop control
action of the MPFC scheme. The OCP is solved in receding horizon fashion at time t.1 The actual
input applied to the system û(t) is given by û(t) = u?(0) for the optimal solution u?(�) of the OCP
at time t. As will be shown later, the constraints (4.6e),(4.6d) correspond to the existence of a
vector �eld controller and is used to provide a larger region of attraction to the MPFC scheme.
The matrices Q;Qf are chosen to be symmetric positive de�nite.

The next result certi�es the path convergence properties of the MPFC scheme based on OCP
(4.6).

Proposition 4.1 (Path convergence). Consider the MPFC scheme based on (4.6). Let the
prediction model (4.2) be an exact representation of the kite dynamics, i.e. there is no plant-
model mismatch. Suppose that OCP (4.6) is feasible for all t � 0. Then, the closed loop satis�es

lim
t!1
ke(t)k = 0:

Proof: Consider the positive semi-de�nite value function V : X ! [0;1)

V (x̂(t)) =
Z T

0

1
2
jje(s)jj2Qds+

1
2
jje(T )jj2Qf (4.7)

where the trajectory e : [0; T ]! R3 is the one predicted by dynamics (4.2),(4.3) under the optimal
input trajectory u?(�) to (4.6) with initial condition given as x̂(t). Note also that V is positive
semide�nite since it only depends on e which lies in a subset of X and the condition V = 0
characterizes the set of points on the reference path. Consider the derivative of V along the
closed-loop trajectories of x̂(t) ,

dV
dt

=
@V
@x̂

_̂x

1Note that, for sake of simpli�ed exposition, we consider the nominal case of recomputing the solution to (4.6) in
an instantaneous fashion. Furthermore, we assume that, for all x̂(t) and u(�) being piecewise continuous, the OCP
admits a locally optimal solution.
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We have that
@V
@x̂

_̂x =
Z T

0
eT (s)Q _e(s)ds+ eT (T )Qf _e(T ):

Integration by parts yields

dV
dt

=
@V
@x̂

_̂x =
1
2
eT (s)Qe(s)

����
T

0
+ eT (T )Qf _e(T ): (4.8)

The following implication then follows directly

1
2
jje(T )jj2Q + eT (T )Qf _e(T ) � 0 (4.9)

)
dV
dt
� �

1
2
ê(t)TQê(t): (4.10)

Here ê(t) (= e(0) in (4.8)) is the closed-loop path-following error corresponding to x̂(t). In Theorem
4.2 we show that if the terminal constraints (4.6d), (4.6e) hold, then (4.9) is satis�ed. Then, using
LaSalle’s invariance principle in conjunction with (4.10) it follows that x̂(t) converges to the largest
invariant set such that _V = 0 � fx 2 X : e = 0g. �

The above proof sketch relies on the quite strong assumption of recursive feasibility of OCP
(4.6). In the next section we discuss the existence of a terminal control law enforcing (4.6d),(4.6e)
( =) (4.9)) and recursive feasibility.

4.4 Terminal control and constraints

4.4.1 Global Feasibility of (4.6e):

For any state q = (#; ’; )T , let

H(q) = f�? j �? 2 arg min
�

e(q; �)TQfe(q; �)g:

Also recall, m(�) := @�qref (�) and e(q; �) = q � qref (�).

Lemma 4.1 (Minimum error points on path).
For all �? 2 H(q), it holds that e(q; �?)TQfm(�?) = 0.

Proof: Note that �? 2 H(q) is a minimizer of eTQfe. Hence, symmetry of Qf and the �rst-order
optimality condition imply �e(q; �?)TQfm(�?) = 0. �

Lemma 4.2 (Non-emptiness of H (q)).
For all q 2 Q, it holds that H(q) 6= ?.

Proof: As qref (�) is twice continuously di�erentiable map to a compact subset of Q and is periodic
in � , for any q, the term e(q; �)TQfe(q; �) has a minimizer. Thus optimizing over � 2 R implies
H(q) 6= ?. �
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Lemma 4.3 (Existence of neighborhoods of � ?).
For all �? 2 H(q), there exists a non-empty and non-singular neighborhood

N (q; �?) :=
�
� j e(q; �)TQfm(�) � 0

	
6= ?

and N (q; �?) n �? 6= ?.

Proof: By Lemma 4.1, we have e(q; �?)TQfm(�?) = 0. Furthermore, e(q; �)TQfm(�) is a con-
tinuous function of � that has a local minimum at �?. Hence, there exists a neighborhood of �?

wherein e(q; �)TQfm(�) � 0. �

Let
N (q;H(q)) :=

[

�?2H(q)

N (q; �?);

then the following theorem states feasibility of (4.6e).

Theorem 4.1 (Global feasibility of (4.6e)).
For any terminal condition q(T ) 2 Q, there exists a �(T ) 2 R such that (q(T ); �(T )) satis�es (4.6e)
and is given by fq(T ); �(T ) : q(T ) 2 Q; �(T ) 2 N (q(T );H(q(T )))g.

Proof: Observe that, for any given kite state q 2 Q,

N (q;H(q)) = f� je(q; �)TQfm(�) � 0g

is the set of all � satisfying the terminal constraint (4.6e). Lemma 4.3 shows that, for all q 2
Q;N (q;H(q)) 6= ?. Thus, independent of initial condition q(0) and for any terminal state q(T ) 2
Q, �T 2 N (q(T );H(q(T ))) satis�es (4.6e).

Since the considered path is periodic and we do not impose any input magnitude constraint on
u� . Hence, for any �(0), there exists a positive input such that �(T ) = �T . �

4.4.2 Feasibility of (4.6d):

For sake of readability, we drop the time argument T from vectors like m(T ); e(T ); q(T ). Recall
that X := Q� R. We will also use the following short hand notations: F (q; �) :=

�
m e

�
2 R3�2.

Dropping the arguments (q; �), we write, g = F TQfe 2 R2�1; P = F TQfF , S = diag(1; 1; 0)
and H = F TSF . Also note that we can rewrite (4.6d) as

eTQf _q � �
1
2
jjejj2Q

Inspired by the concept of vector �eld controllers, let us try to �nd a vector �eld v(q; �) : X ! R3

such that _q(T ) = v(q(T ); �(T )) satis�es (4.6d). To this end, for w(q; �) : X ! R2, we parametrize
the desired vector �eld v(q; �) as

v(q; �) = F (q; �)w(q; �):
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and thus (4.6d) can be written as

gTw � �
1
2
jjejj2Q

in the notation de�ned above.
Furthermore, from (4.2) we have that jj _qjjS = s(q; �; L; z) imposes a magnitude constraint on

S _q. Thus, in order to �nd a v(q; �) that satis�es this magnitude constraint and satis�es (4.6d), we
consider a optimization problem to be solved at each (q; �) to yield a w?(q; �)

minimize
w2R2

1
2
jjFw �mjj2Qf +

1
2
jjwjj2 (4.11a)

subject to gTw � �
1
2
jjejj2Q (4.11b)

wTHw � s2 = 0 (4.11c)

where s = s(q; �; L; z). Note that, for the sake of readability, we drop the arguments (q; �) above.
The penalization jjFw�mjj2Qf , in the objective function (4.11a), regularizes w such that v points
along the tangent, m, of the path whenever possible. Equation (4.11b) imposes that v satis�es
(4.6d) and (4.11c) imposes that v satis�es the magnitude constraint on S _q. Setting w(q; �) =
w?(q; �) and solving (4.11) yields the desired vector �eld v(q; �).

Proposition 4.3, presented in Appendix, provides the optimal solution w? to (4.11) and its
existence conditions. Speci�cally, when already on the path (e = 0), it turns out that w? is such
that Fw? points along the tangent direction given by direction of m. Thus, when on the path, the
desired vector �eld pushes the vehicle along the path, rendering the path an invariant set under
the vector �eld. Choosing _q(T ) = v(q(T ); �(T )), then imposes (4.6d).

Let S � Q be a compact subset of Q for which the conditions of Proposition 4.3 are satis�ed.
Let V� := fe : 1

2 jjejj
2 � �g be the largest level set contained in S (subject to maximization w.r.t.

�). Furthermore, let \v = atan2(e2v; e1v), e1 =
�
1 0 0

�
, e2 =

�
0 1 0

�
, e3 =

�
0 0 1

�
.

Then the recursive feasibility for (4.6) can be shown as follows.

Assumption 4.5. Assume that, starting at the any q(0) 2 Q, there exists a reachable point in Q
such that v(q(T ); �(T )) = F (q(T ); �(T ))w�(q(T ); �(T )).

Proposition 4.2 (Recursive feasibility of (4.6d)).
Let Assumption 4.5 hold. Then, for any q(T ) 2 V�, �(T ) 2 N (q(T );H(q(T ))) and input u =
e3v(q(T ); �(T )), (T ) = \v(q(T ); �(T )), the terminal condition (4.6d) holds. Furthermore, the
set V� is positively invariant and (4.6d) is recursively feasible.

Proof: Observe that e1 _q = s cos , e2 _q = s sin  and e3 _q = u . Thus, for q(T ) 2 V�, we have
(T ) = \v(q(T ); �(T )), u = e3v(q(T ); �(T )), and (4.11c) implies that _q(T ) = v holds. From
(4.11b) we have v such that _q(T ) = v satis�es (4.6d). Furthermore, considering the positive
semide�nite function VT (q; �) = 1

2 jjejj
2
Qf , we see that _VT = eTQf _e = eTQf _q � eTQfm(�)u� .

Since �(T ) 2 N (q(T );H(q(T ))) is such that eTQfm(�) � 0 and u� � 0, we have eTQfm(�)u� � 0
implying _VT � eTQf _q. Further with _q = v, from (4.11b), we have eTQf _q � �1

2 jjejj
2
Q implying _VT �

�1
2 jjejj

2
Q. This implies that V� is positively invariant and thus (4.6d) is recursively feasible. �
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4.4.3 Convergence Constraints

Theorem 4.2. If (4.6d) and (4.6e) hold for a terminal state x(T ) = (q(T ); �(T )), then (4.9) also
holds for x(T ):

Proof: For sake readability, let us drop the time argument T with the understanding that all
quantities in the expressions below are at the terminal time T . Consider

1
2
jjejj2Q + eTQf _e =

1
2
jjejj2Q + eTQf _q � eTQfm(�)u� :

Then from (4.6d), it follows that eTQf _q � �1
2 jjejj

2
Q. Furthermore, from (4.6e) we have that, for

all u� � 0, �eTQfm(�)u� � 0. These statements imply that

1
2
jjejj2Q + eTQf _e � 0:

This �nishes the proof. �

4.5 Numerical results

For the numerical implementation of our continuous time MPFC scheme we use a sampled data
implementation with sampling time �. The OCP (4.6) in the sampled data setting is solved
using a direct multiple shooting approach with N time step horizon (T = N � �). The nonlinear
program (NLP) is setup with automatic di�erentiation using CasADi ([69]) with a RK4 integrator
approximation and solved using an interior point solver (IPOPT, [70]) on a 2.8 GHz Intel Core i7
processor. The values for Q;Qf ; R;N; T are given in (4.12) in the Appendix.

Subsequently, we discuss results for the following scenarios:

1. Nominal simulations: Simulations under zero plant-model mismatch

2. Perturbed simulations:

(a) Sampled velocity: Speed of the vehicle is sampled at the beginning of the MPC horizon
and then assumed constant at that value over the horizon.

(b) Pumping cycle: The vehicle is reeled in and out with an external controller. The tether
length is sampled at the beginning of the horizon and assumed constant over the horizon.
The vehicle speed is sampled and assumed constant over the horizon as done in scenario
2a.

3. MPFC without terminal constraints

Note that in the perturbed scenarios 2a,2b, the AWE system is still simulated using the full model
in equation (4.2), while the perturbed models as described in 2a,2b are used for predictions in the
MPFC controller. Simulations without the terminal constraints is presented to highlight the role
of terminal convergence constraints in enforcing faster convergence.
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Figure 4.2: Closed loop ight trajectory with convergence constraints for complete pumping cycle.

4.5.1 Nominal simulations

The �rst 30 seconds of Figure 4.2 and 4.3 provide a typical MPFC closed loop trajectory for the
AWE vehicle under nominal simulation when following a lemniscate shaped reference path (see
Appendix, (4.14)). Figure 4.3 shows the closed loop evolution of the system state x̂(t) and closed
loop inputs û(t); û� (t) when tracking the lemniscate. With � = 0:1s and N = 10, the average
solve time to plan a 1 s long horizon is 0.2 s, suggesting the possibility to apply the nominal MPFC
scheme in real time as a higher level planner in a cascaded structure control scheme.

4.5.2 Perturbed simulations

We test our control scheme applying perturbations in the velocity model s(q; �; L; z). Since we do
not have an accurate model s(q; �; L; z) due to unknown parametric and structural uncertainties,
we choose a simpli�ed model where, s(q; �; L; z) = so. The constant so is updated to the speed
estimate of the vehicle at the beginning of the horizon and then held constant for the MPC
prediction over the horizon. Figure 4.4 shows the closed loop path following error obtained under
the perturbation 2a showing a very close overlap with the nominal case. Thus the MPFC scheme
seems to have su�cient inherent robustness with the chosen parameters to plan under imperfect
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Figure 4.3: Closed loop state and input evolution.
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Figure 4.4: Path following errors.
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prediction. Further due to the simpli�cation of the dynamics under this sampled speed model, the
solve time is signi�cantly reduced with an average solve time of about 0.05 seconds and worst case
solve time of about 0.1 second.

The trajectory after 30 seconds in Figure 4.2 and 4.3 shows the closed loop trajectory for the
complete pumping cycle operation of an AWE system corresponding to perturbation 2b. Figure
4.4 shows the path following errors for perturbation 2b, where the closed loop trajectory follows
a reference for the full pumping cycle which is made up by switching between two di�erent lem-
niscate paths for the traction and retraction phases. The switching of reference path creates an
instantaneous increase in the path following error which is reduced quickly by the MPFC scheme
to start tracking the new reference path.

4.5.3 Control without terminal constraints

Figure 4.4 also shows the convergence of path following errors when terminal constraints are not
imposed. This shows that the MPFC scheme can also work with only the terminal penalty being
imposed. However by comparison, the terminal constraints signi�cantly improve the convergence
rates.

4.6 Conclusion

The chapter presented a nonlinear model predictive path following (MPFC) scheme for airborne
wind energy systems that may be used as a high-level planner in combination with a low-level
steering controller. A novel set of terminal convergence �eld constraints are introduced to guar-
antee asymptotic convergence to zero path tracking error. Recursive feasibility and convergence
results have been investigated for the proposed scheme under a reachability assumption for the
convergence �eld. Numerical studies under nominal and perturbed conditions indicate good control
performance. The proposed MPFC scheme is observed to be computationally viable for real-time
application in cascaded kite control schemes.

Appendix

Simulation parameters

MPFC parameters:

Q = diag(1000; 1000; 3); Qf = diag(500; 500; 150)
R = diag(0:1; 0:01); N = 10; � = 0:1sec:; umax = 20

(4.12)

Model data:
Q = f(#; ’; ) : # 2 [0; �=2); ’ 2 (��=2; �=2);  2 [��; �]g

s(q; �; L; z) =
�

1 0
0 (cos#)�1

�
vwL�1

0

@
cos 
sin 
�E

1

A

T 0

@
� sin# cos’
� sin’

� cos# cos’

1

A (4.13)
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� = (vw; E) are the parameters, wind speed and aerodynamic glide ratio respectively.
Reference path parameterization: For the lemniscate reference path used in numerical simula-

tions, we use,
#ref (�) = h+ a sin(2�); ’ref (�) = 4a cos(�) (4.14)

In perturbed Sscenario 2b we use h = �=6 for reel-out and h = �=4 for reel-in. a = 0:2 for all
cases. The tether is reeled-out at 0.5 m/s and reeled-in at 1 m/s.

Terminal convergence constraints

Below adj(�) represents the adjoint or adjugate of a matrix and trace(�) gives the trace of a matrix.
Let, F :=

�
m e

�
2 R3�2, g := F TQfe 2 R2�1, P = F TQfF , H = F TSF and

‘ = �2jjgjj2adj(H); c = �jjgjj2adj(P ) � jjgjj
2

b0 = �gTh� gTadj(P )h�
1
2

(jP j+ 1 + trace(P ))jjejj2Q

b1 = �2gTadj(H)h+ (trace(H) + trace(Hadj(P )))jjejj2Q
b2 = 4jHjjjejj2Q; r0 = b0 � cs; r1 = b1 � ‘s; r2 = b2

The variable s is the speed as de�ned in (4.11).

�0 = �adj(ggT )h+
1
2

(I + adj(P ))gjjejj2Q

�1 = �2adj(H)gjjejj2Q; �0 = h+ adj(P )h

�1 = 2adj(H)h; h =
�
jjmjj2Qf
mTQfe

�

k0 = jP j+ trace(P ) + 1; k2 = 4jHj
k1 = 2 trace(H) + 2 trace(Hadj(P ))

n0 = k0s� �0; n1 = k1s� �1; n2 = k2s

�(�) =
1

‘� + c
(b2�2 + b1� + b0) (4.15a)

for � 2 P1 := fx 2 R : r2x2 + r1x+ r0 = 0g (4.15b)

also let,
P0 = fx 2 R : n2x2 + n1x+ n0 = 0g (4.16)
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Proposition 4.3. The minimizing solution for (4.11) is

w? =
1

�(�)
(a1�+ a0) (4.17a)

with � 2 P� such that, for e 6= 0; �(�) > 0,

P� = P1; & (a1; a0) = (�1; �0); �(�) = ‘�+ c: (4.17b)

Otherwise
P� = P0; (a1; a0) = (�1; �0); �(�) = k2�2 + k1�+ k0: (4.17c)

The solution exists if the quadratics de�ning P0 and P1 have real roots in a compact set S � Q.

Proof: The proof follows by writing the Lagrangian for (4.11) as

L(w; �; �) =
1
2
jjFw �mjj2Qf +

1
2
jjwjj2 + �

�
gTw +

1
2
jjejj2Q

�
+ �

�
wTHw � s2� : (4.18)

Then, writing the KKT conditions and solving for the two cases, � > 0 and � = 0. For � > 0, we
can write w?; � as a function of � as given in (4.15a) for � = �. � itself can be obtained as roots to
a quadratic equation (4.15b) with � = �. When e = 0, the inequality becomes weakly active and
thus the solution can be obtained from the � = 0 case. For � = 0, � can be obtained as roots to
the quadratic as de�ned in (4.16). Once � is taken for the appropriate case, w? can be obtained
as speci�ed by (4.17). �



Part III

Airborne Wind Energy Systems
under Uncertainty





Chapter 5

Optimization of an Airborne Wind
Energy System using Constrained
Gaussian Processes and Transient
Measurements

Airborne wind energy systems are built to exploit the stronger and more consistent wind available
at high altitudes that conventional wind turbines cannot reach. This however requires a reliable
controller design that can keep the airborne system ying for long durations in varying environ-
mental conditions, while respecting all operational constraints. Such reliability is often delivered
by a cascade of low level controllers whose combined behavior is not analytically tractable for
performance optimization. An on-line data based method is presented to optimize the towing
force of such a system in presence of constraints, varying wind conditions and a constrained low
level tracking controller. The approach actively learns Gaussian process models for the objective,
constraint and closed loop dynamics of the system and uses transient measurements to optimize
over the objective. A chance - constrained optimization problem is posed taking into consideration
uncertainty in the learned functions and is used to �nd potential feasible directions for maximizing
of the towing force. Simulation studies are presented showing that we can �nd optimal set points
for the controller without the use of signi�cant assumptions on model dynamics while respecting
the unknown constraint function. The results also show an improved performance over a Gaussian
process optimization scheme that restricts itself to steady state measurements.

5.1 Introduction

A data based optimization algorithm for an AWE design that is actively used by a commercial
company (Skysails) in large marine vessels to increase their fuel savings [71] is presented here.
For the system, a tethered exible airfoil is launched from a mounting station at the front of
the ship towards the sky where it performs �gure eight loops (lemniscate) using a custom low
level controller. In favorable wind conditions the aerodynamic force generated upon the foil is
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transferred through the tether to pull the ship forward, reducing the load on its engine. However,
such a controller can neither automatically guarantee a power optimal steady state trajectory as
given by a problem (5.1), nor that the aerofoil will not cross an altitude safety threshold, given by
the inequality constraint in (5.1).

max
xs;us

F (xs; us)

s.t. xs = f(xs; us); G(xs; us) � 0
(5.1)

[72] addresses (5.1) in the framework of steady state constrained optimization and has demonstrated
that a data based approach can be a potential solution. The work utilizes an empirical observation
for the controller that shows the closed loop dynamics to be exponentially stable for every controller
set point us (within an unknown region of attraction), stabilizing the system to a steady state
given by xs = h(us) for some unknown function h. Thus under stable wind conditions and using
training measurements only after reaching steady state h(us), the composed maps F (h(us); us) and
G(h(xs); us) are learned from the steady state measurements as Gaussian process surrogate models.
The surrogate models are optimized over with a sampling based Gaussian process optimization
technique to trade o� between exploring the parameter space to improve information in the model
and exploiting the available model for improving the objective value. For the system here, the
steady state requires around 10 lemniscate loops with the same inputs applied and fairly constant
wind, to be attained and before a measurement can be taken. Such constant wind conditions
are di�cult to attain in practice, requiring a more frequent wind speed dependent update of
the set points us and also taking measurements before the system has reached steady state to
make predictions about the system at steady state. A more exible solution where transient
measurements after each loop can be used both for learning and optimization is thus presented
here. The problem being addressed is of the form,

max
xs;us

F (xs; us; wn)

s.t. xn+1 = f(xn; us; wn); G(xn; us; wn) � 0
xs = f(xs; us; wn); G(xs; us; wn) � 0

(5.2)

where F : Rn�Rm�Rp ! R is an unknown function mapping to the towing force (objective value)
of the AWE system. The steady state xs is attained as a function of the set point us and wind wn,
i.e. xs = f(xs; us; wn) (for an unknown dynamics function f). f : Rn � Rm � Rp ! Rn describes
the discrete time system dynamics and G : Rn�Rm�Rp ! R is an unknown constraint function.
The transient state of the system at time n is given by xn 2 Rn and can be indirectly manipulated
through the inputs us which are bounded by operation constraints for the controller into a known
compact set X � Rm. The variables w 2 Rp represents an exogenous signal (here the wind) on
which we have no control. The functions considered are assumed to be nonlinear, non-convex and
unknown. Gaussian Processes (GP) [73] have been widely used in practice to model and learn such
functions and have been extensively used in unconstrained, static optimization [74, 75].

With known constraints, the static problem is addressed in [76]. For unknown constraints the
problem is addressed in [77, 78] using joint modeling for the objective and constraint as done
here. Under unknown constraints for optimizing processes through physical experiments, however,
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Figure 5.1: Low level tracking control for changing set points. The yaw ( - kite orientation) con-
troller tracks the level reference signal which changes value when a crossing occurs. The positional
states (� and �) are a�ected by  .

constraint violations are not as freely permissible as for optimization through simulations, as a
result safe learning methods have gained popularity which force the sampling schemes to adhere to a
trust region like approach to avoid sampling in highly uncertain regions. Such approaches have been
explored in [79]. The present work, utilizes a similar approach while considering additional learned
dynamical constraints and transient measurements to make predictions about future steady states
and allows more frequent updates of set-points, adapting to changing wind conditions. Simulation
results demonstrate that the AWE system can be optimized this way and becomes adaptive to the
wind variation while respecting the altitude safety constraint.

The chapter is structured as follows: Section 5.2 briey describes the AWE system. Section 5.3
provides an overview of the Gaussian process optimization scheme used, and Section 5.4 introduces
the algorithm proposed for optimizing in the presence of dynamical constraints and transient
measurements, Section 5.5 presents simulation results and Section 5.6 summarizes the �ndings for
the approaches presented.

5.2 System description

The following describes the simulation model and low level controller used to generate closed loop
simulations and measurements for the state, tether forces (objective) and constraint (altitude) used
in Section 5.5 for the numerical results. Section 5.2.2 presents the low level controller and describes
the set point us used as a decision variable for the optimization scheme in Section 5.4. Section
5.2.3 describes the discrete time closed loop dynamics used for the transient Gaussian process
optimization.
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Figure 5.2: Example of kite trajectory (blue) and switching surfaces (red) for the Skysails controller
in the spherical coordinate system. Arrows denote the direction of crossing for which a switching
surface is active.

5.2.1 Open loop dynamics

The open loop, kinematic equations of motion describing the system [80] can be written as

_# =
wE
L

cos# cos �
w
L

sin#

_’ = �
wE
L

cos#
sin#

sin 

_ = wEg cos (#)� + _’ cos#:

(5.3)

The spherical coordinates (#; ’) and orientation ( ) of the airfoil represent the states of the system.
The exogenous signal is the wind speed (w). The system coordinates are de�ned such that one of
the horizontal axes is assumed parallel to the wind direction. The uncertain system parameters
are the glide ratio (E), the deection coe�cient (g) and the tether length (L). Finally, � is the
deection applied to the kite a�ecting its orientation and is used as a control input for a controller,
described in Section 5.2.2.

The system exhibits nonlinear behavior even without considering some more complex e�ects of
aerodynamics that have been signi�cantly simpli�ed. It is thus di�cult to �nd closed form expres-
sions for the functions of interest. Numerical optimization results using model based approaches,
while useful, are challenged in realistic situations where the model parameters and wind conditions
are unknown.

5.2.2 Event triggered control

A simple but robust low level controller developed by [64] is used for ying the \�gure eight" loops.
The controller uses a model free feedback scheme where a set-point  (i)

s for yaw angle  is tracked
by applying deections � to the kite (see Figure 5.1). The set-point  (i)

s is taken from a sequence
of set-points f (1)

s ; : : : ;  (2r)
s g during every loop, advancing through the sequence at prede�ned
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switching positions f’(1)
s ; : : : ; ’(2r)

s g. This sequence of set points and switching positions is treated
as the high level decision variable

us = f (1)
s ; : : : ;  (2r)

s g � f’(1)
s ; : : : ; ’(2r)

s g

in the Gaussian process optimization scheme de�ned in Section 5.4.

The controller sets the yaw set point to a value given by  (i)
s when the system state ’, crosses

’(i), generating an event when,

’� ’(i)
s = 0 and (�1)i _’ > 0; (5.4)

Each event is de�ned by a constant ’i giving its position in the azimuth angle (’) space, considers
crossings only in one direction (when (�1)i _’ > 0) and ignores crossings in the other direction. A
depiction of the resulting closed loop trajectory can be seen in Figure 5.2. A detailed analysis for
the controller can be found in [81, 82].

5.2.3 Closed loop, event based dynamics

Let a �xed controller event point ’(0)
s = 0 from Section 5.2.2 be given, in addition to the ones

de�ned in us. Let the state of the kinematic system x = (#; ’;  ) from (5.3) at the kth crossing
event on ’(0)

s be denoted as xk = (#k; ’k;  k) and let the sequence of set points us �xed after the
kth crossing be denoted uks . Let the time of the kth crossing of ’(0)

s be denoted tk. Then a closed
loop, event based dynamical system is written as

xk+1 = f(xk; uks ; wk) + �2
f� (5.5)

where f is an unknown function representing the closed loop integration of _x over the time interval
[tk; tk+1], given an initial condition xk, sequence of controller set-points uks and wind condition
wk at the tk (assumed constant over the interval [tk; tk+1]). �2

f� is a zero mean Gaussian vector
valued noise with variance �2

f (to model for di�erences between the simulation model and the real
system).

A noisy, minimum altitude measurement over the interval [tk; tk+1] is given as,

z(xk; uk; wk) = min
�
L cos(#(t)) : t 2 [tk; tk+1]; #(t) =

Z t

tk

_#(l)dl + #k
�

+ �2
G�G

�2
G�G being the real valued, zero mean Gaussian random variable with variance �2

G.

The unknown constraint function from (5.2) is then taken as

G(xk; uks ; wk) = z(xk; uks ; wk)� zmin (5.6)

where zmin is a constant for the minimum altitude at which the kite is permitted to y.
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The average towing force measurement can be given by

F (xk; uks ; wk) = (tk+1 � tk)�1
�Z tk+1

tk
�(v( _x(l)))2dl

�
+ �2

F �F (5.7)

where v( _x(l)) gives the kinematic speed of the kite with respect to the wind at some time l and
� is an aerodynamic constant. The average towing force computes the integral of the tether force
given by �(v( _x(l)))2 over the time interval [tk; tk+1].

This event based dynamics transferring the state from xk to xk+1 according to (5.5) is referred
to as the discrete \time" dynamics for the closed loop system and is used in for the GP optimization
scheme. Thus we optimize over the system at the end of crossing event of  (0)

s .
The system is referred as being transient when xk+1 = f(xk; uks ; wk) 6= xk. Likewise, the system

is said to be in steady state when the kite returns to the same state at the next crossing event,
i.e., the steady state is denoted xs = f(xs; uks ; wk).

5.3 Gaussian processes for constrained optimization

A brief description of Bayesian regression for Gaussian processes (GP) and Gaussian process opti-
mization using an expected improvement metric is given below. Further details for GP regression
can be found in [83] and expected improvement metric can be found in [84].

5.3.1 Gaussian process regression

For a �nite l 2 N, let Dl = fxi; yigi=1:l be a set of input-output data for some unknown function
y = h(x). Let h0 be a zero mean Gaussian process with a given covariance function k(x; x0) (giving
the covariance between the point evaluations h0(x) and h0(x0)). A Bayesian posterior Gaussian
process h can be computed given the prior h0 and data set Dl with its mean �h(x) and covariance
function �h(x; x0) given by

�h(xjDl) = k(x; x1:l)(K1:l + �2
nIl)

�1(y1:l) (5.8)

and
�(xjDl) = k(x; x)� k(x; x1:l)(K1:l + �2

nIl)
�1k(x; x1:l)T (5.9)

where K1:l denotes a l � l matrix with the (i; j)th component given by k(xi; xj), Il denotes a l � l
identity matrix and �2

n is the covariance of a noise process, modeling the input-output relation
y = h(x) + �2

n� (for a standard normal random variable �). k(x; x1:l) denotes a 1 � l matrix for
which the (1; j)th component is k(x; xj). A similar extension to Rn�valued Gaussian processes is
given by considering the kernel k(x; x0) to be a matrix valued kernel [85].

A squared exponential R�valued kernel of the following form is used below

kSE(x; x0) = �2
y exp(�

(x� x0)T��1(x� x0)
2

)

where � is a symmetric positive de�nite matrix determined by known constants, called hyper-
parameters for the Gaussian process. The parameters � = f�y;�; �ng can be optimized over, using
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the measurements Dl through a likelihood maximization scheme (although not a necessary step
for simple Bayesian inference and the GP optimization scheme de�ned next, as long as reasonable
estimate for the hyper-parameters is �xed).

5.3.2 Gaussian process optimization

The Gaussian process optimization schemes [84, 77, 78, 79, 72] consider a maximization problem
on a given domain set X and an unknown objective function F : X ! R [ f�1g. Including
the f�1g in the range of F allows the consideration of constrained problems. While objective
function is unknown, given a �nite sample set of observations Dl = f(xi; F (xi)) : i = 1; : : : ; lg and
a Gaussian process prior F 0 as considered in Section 5.3.1, a Bayesian posterior, Gaussian process
F 0jDl can be considered as a surrogate model representing F . Since the mean of the Bayesian
posterior acts like a least squares regressor �tting to the observation in Dl, the surrogate model
represents F with higher accuracy at the sample points xi than in other places. The posterior also
has lower variance at fxigi=1:l than at points away from the sampled data.

A Gaussian process optimization scheme then constructs a metric to select a candidate sampling
point x� to meet a dual objective, �rstly to improve the objective value at the new sample point
and thus optimizing the function F , secondly to explore new regions for improving the model in
order to not miss any maximizers due to inaccuracies in F 0jDl. Thus a metric J is designed to
balance between information gained by sampling at x� and the improvement in objective value
achieved by sampling at x�.

x� = arg max
x2X

J((F 0jDl)(x)) (5.10)

Since the goal is to maximize F with the fewest such samples, the bias in the designed metric
is not on exploration but on maximization and exploration is done only to degree that is necessary
to avoid missing maximizer due to poorly sampled information. Several such metric have been
considered in the works mentioned above. Two common variants of such metrics are given by the
GP-upper con�dence method (GP-UCB) [86] and the Expected Improvement metric [84] (which
is used in Section 5.4).

In applications requiring experimental sampling, the candidate point x� has to ensure that it
does not violate the constraint upto a certain level of con�dence. This is often called a safe GP
optimization algorithm and relies on choosing points within a certain trusted region of the model
F 0jDl. This is the approach followed in [79, 72] and in Section 5.4.

Without considering trust region constraints required for safe learning, convergence of GP
optimization schemes to the global optimum was shown in [87, Theorem 2] for the EI metric
as being O(n�maxf�;1g=d) where n is the number of sample points, � is a smoothness parameter
for the RKHS space of the kernel (for smooth, i.e. in�nitely di�erentiable kernels � tends to 1
and the convergence rate is O(n�1=d)), and d is the dimension of the space X . Similarly for the
GP-UCB approach regret bounds of the form O(

p
n(n; d)) have been shown [88] under di�erent

assumptions on the regularity of the RKHS space, where (n; d) is a factor that gets larger as the
d (dimension of X ) grows.

In Section 5.4 we utilize the Expected improvement metric (denoted JEI) is computed as follows
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for a Gaussian process F 0jDl

JEI(F 0jDl; x) = E[maxf(F 0jDl)(x)� Fmax; 0g] = �F (x)[v(x)�(v(x)) + �(v(x))]; (5.11)

where v(x) = (�F (x) � ymax)=�F (x) and Fmax = maxfF (xi) : xi 2 Dlg. The GP optimization
scheme then relies on �nding a candidate point x� = arg maxx2X JEI(x), performing an experiment
to sample F (x�) and constructing Dl+1 = Dl[f(x�; F (x�))g. Finally update the Bayesian posterior
model to F 0jDl+1. The process is then repeated till maxx2X JEI(x) converges to 0, implying the
Fmax has converged to maximizer.

5.4 Learning and optimization with transient measurements

The approach with steady state measurements applied to the AWE system is �rst presented in
Section 5.4.1, followed by the algorithm for incorporating transient measurements and dynamic
constraints into a GP optimization scheme, in Section 5.4.2.

5.4.1 Steady state optimization

For an AWE system, a maximization of the unknown function F given by (5.7) is considered,
where F represents the average tether force over a lemniscate loop for the closed loop system. A
unknown constraint function G, (5.6), representing the minimum altitude attained during a loop
in considered. Assuming that the wind is constant through out the experiment, a measurement
for is taken by applying a set point us and waiting for the system to reach its steady state xs. The
objective and constraints functions are then all implicitly dependent on a single variable us and thus
taking the steady state measurements for F andG, a initial data setDl = f(us)i; F ((us)i); G((us)i) :
i = 1; : : : ; lg is considered for some �nite l. Separate Gaussian process surrogate models are then
constructed for the objective and constraint functions, denoted as F 0jDl and G0jDl respectively.
The constraint function is included into the GP optimization scheme by formulating it as a chance
constraint over the Gaussian process thus giving a candidate selection problem,

u�s = arg maxu2X JEI(F 0jDl; u) (5.12a)
s:t: P[(G0jDl)(u) � 0] � 1� � (5.12b)

�G0(u) � ��2
y (5.12c)

for some constant tuning constants � 2 (0; 1) and � 2 (0; 1). (5.12a) gives the candidate for
maximizing the expected improvement according to the surrogate F 0jDl, (5.12b) restricts the points
admissible as candidates to a subset of X where the surrogate G0jDl predicts with high con�dence
(1 � � for � ! 0) that the constraint G � 0 is satis�ed. The �2

y is the variance for the prior
Gaussian process and for � < 1, (5.12c) restricts the candidate points to a subset of X such that
the variance is at-least reduced by a factor � for the posterior by the data present in Dl. Thus
(5.12c) provides a trust region in which the surrogate model for G can be trusted. As � tends to
0, the trust region shrinks to only points where the function ahs already been sampled, and as �
tends to 1, the trust region expands to the entire space X . By tuning � and � we can thus tune
the aggressiveness of the sampler in order to control the amount and number of violations that
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will be tolerated in the experiments.
The expected improvement metric JEI is a non smooth and discontinuous function in u and

thus optimization over JEI is done by using a Monte-Carlo approach of sampling values of JEI
for a number of candidate u points and choosing a candidate that maximizes JEI while satisfying
(5.12b) and (5.12c).

Algorithm 5 Steady State Optimization
1: Initialization. Start with l samples of feasible solutions (Dl)
2: Training. Update the posteriors for the Gaussian process models G0jDl and F 0jDl
3: EI maximization Find u�s as a maximizer for (5.12)
4: Update Set Dl+1 = Dl [ F (u�s), Fmax = maxfFmax; F (u�s)g, l = l + 1, ubest = u�s if F (u�s) >
Fmax and G(u�s) > 0

5: if JEI(u�s) < � then
6: Use ~u = ubest
7: else
8: Use ~u = u�s
9: Go to 2, and repeat

Algorithm 5 gives a non terminating version of the GP optimization such that it maximizes the
objective function under the unknown constraints and then continues to use the best solution ubest
as an output ~u, once the expected improvement has fallen below a small threshold �. The output
of the algorithm, ~u, is used to update the set point, us = ~u, after each optimization iteration.
The algorithm thus also acts as a higher level optimizing controller that continuously monitors the
performance and updates the set points to the lower level controller for the AWE system.

Section 5.5 provides simulation results for this steady state scheme under constant wind and
changing wind conditions. The approach shows fast convergence to the optimum, under constant
wind conditions, as the assumptions for this approach are met. Under changing wind conditions,
the assumptions are violated, and performance degradation and constraint violation are observed.

The transient measurement based algorithm presented next increases the frequency at which
the optimization provides a feedback ~u to the low level controller and thus mitigates the issue
observed here under changing wind conditions.

5.4.2 Optimization with transient measurements

A transient version of the GP optimization algorithm is constructed by incorporating the unknown
dynamics xk+1 = f(xk; uks ; wk) from (5.5) as part of the optimization problem.

Recalling the notation from Section 5.2.3, the system is said to be in steady state xs when
xs = f(xs; us; wk) for a wind condition wk assumed constant for the period of one lemniscate loop
(this is a much more relaxed assumption than the steady state, constant wind counterpart as a
loop lasts over a time scale of about 10 seconds in practice). The transient dynamics for the kth

loop are given as xk+1 = f(xk; uks ; wk).
The surrogate models for the dynamics, tether force and altitude constraint, f , F and G are

learned as functions of xk; uks and wk, thus being able to predicting the transient behavior for the
system at any state, input and wind combination.
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The expected improvement maximization problem is then posed as,

x�s; u
�
s = arg max(x;u)2X JEI(F 0jDl; (x; u; wk)) (5.13a)

s:t: P[(G0jDl)((x; u; wk)) � 0] � 1� � (5.13b)
P[(G0jDl)((xk; u; wk)) � 0] � 1� � (5.13c)
P[jjx� (f 0jDl)((x; u; wk))jj � �s] � 1� � (5.13d)
�G0((x; u; wk)) � ��2

y (5.13e)

�G0((xk; u; wk)) � ��2
y (5.13f)

P[jjx� (f 0jDl)((xk; u; wk))jj � �r] � 1� � (5.13g)

The discussion for the constraint in (5.13) is presented as follows:

(i) The ��2
y in (5.13b) and (5.13c) play the same role as in the steady state case of reducing

the search space for (x; u) 2 X to points the surrogate model has been learned with a high
con�dence and thus can be relied upon. Thus (5.13b) and (5.13c) play the role of providing
a trust region for the optimization.

(ii) (5.13d) imposes as a high con�dence chance constraint, that the pair (x; u) is chosen such
that it satis�es the steady state equation x� f(x; u; wk) to a high accuracy �s.

(iii) (5.13b) imposes that the steady state pair (x; u) chosen is such that it satis�es the altitude
constraint G with high con�dence.

(iv) (5.13c) similarly imposes that the u chosen is such that it does not lead to a constraint
violation in the transient, given the current state of the system xk.

(v) Finally, (5.13g), imposes the chosen steady state to be close to the current state xk. This
enforces a continuity in search from one iteration to the next. Without such a constraint
the optimizer would pick target steady states jumping to far away points on each iteration
and none of them would ever be reached. Thus the optimization will not make any progress
as there is no continuity in what the optimizer tries to do from one iteration to the next.
This constraint heuristically imposes a continuity plan for the optimizer between successive
iterations.

(vi) Extra trust region constraints are not imposed on f 0jDl as the process shares the same data
set with G0jDl, for which the trust region constraints are included.

Algorithm 6 then presents the GP optimization utilizing (5.13) as its candidate selection scheme.
The output ~u is used as before to set the controlled set point us = ~u, however this update is
made at the end of every lemniscate loop, taking into account a new measurement of the state,
objective, constraint and wind. Thus the model is updated much more frequently compared to the
steady state optimization scheme, acquiring more data regarding the system quickly and adapting
in its decisions to the changing wind conditions (thus providing a faster rate of feedback to the low
level controller). Simulation results in Section 5.5 show the transient optimization algorithm to be
signi�cantly more robust to the changing wind conditions while also optimizing the performance
to its maximum.
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The Fmax used for the expected improvement computation is a predicted value from the sur-
rogate model F 0jDl and is computed as,

Fmax = max
(x;s)2X

�F (x; u; wk); s.t. (5.13b); (5.13d); (5.13e) (5.14)

and
xbest; ubest = arg max

(x;s)2X
�F (x; u; wk); s.t. (5.13b); (5.13d); (5.13e) (5.15)

Thus (5.14) predicts a best value for F at a steady state pairing (x; u), feasible for the constraint G
with high con�dence, at wind condition wk and within the trust region of the altitude constraint.

Algorithm 6 Transient Optimization
1: Initialization. Start with l samples of feasible solutions (Dl)
2: Training. Update the posteriors for the Gaussian process models f 0jDl, G0jDl and F 0jDl.

Find Fmax using (5.14) and ubest from (5.15)
3: EI maximization Find x�s; u�s as a maximizer for (5.13)
4: Update Dl+1 = Dl [ F (xk; u�s; wk), l = l + 1
5: if JEI(u�s) < � and P[G0(xk; ubest; wk) > 0] � 1� � then
6: Use ~u = ubest
7: else
8: Use ~u = u�s
9: Go to 2, and repeat

5.5 Results

The dynamics model and controller described in Sections 5.2.1 and 5.2.2 are implemented as
continuous time simulations to generate data corrupted with noise for testing the algorithms. The
set points updated by the optimization schemes are applied to the low level controller in this
continuous time simulation with a real time implementation, i.e., the simulation does not stop for
the optimizer to �nish computation. The two run in parallel processes on a computer and when
the result for the optimizer is ready, it is passed to the controller immediately which updates its
set points on the next crossing event for ’(0)

s .
For constant wind conditions, we start both Algorithms 5 and 6 with l = 15 initial training

points in the feasible set. This is possible from prior experience of the operator. For Algorithm
5, set points are repeated for 10 loops, until the kite reaches a steady trajectory. On the other
hand, for Algorithm 6 we take measurements after every loop. Both algorithms show convergence
(within 20-30 samples) to within 5% of the optimum calculated using a numerical optimal control
solver GPOPS-II, see [89], which makes use of the model and has full control throughout the
trajectory and not just at the switching surfaces. The wind dependence of the objective value
has been normalised so that the results are comparable across di�erent wind conditions. The
normalization is done by dividing the tether force by w2

k. This approximately gets rid of the wind
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Figure 5.3: Convergence of steady state optimization (Algorithm 5) in constant wind condition and
200m altitude constraint. Red circles represent measured values and black ones represent Fmax
(predicted)

speed squared dependence in the force term, as the speed of the kite relative to the wind is known
to be proportional to the wind speed.

Figure 5.3 shows the performance of the steady state optimization (Algorithm 5) in constant
wind. Table 5.1 compares with Algorithm 6 for the same conditions. Both algorithms converge close
to the optimum, however Algorithm 6 using transient predictions and frequent updates can avoid
large constraint violations and converges much faster to the optimum. Also Algorithm 6 guarantees
constraint satisfaction both in predicted stationary orbit and during transients. The zero constraint
violation in Algorithm 6 is due to the fact that the algorithm remains conservative and the minimum
altitude achieved over all the iterations in maintained strictly above the zmin = 200 threshold.

Method Final value Max Violation (m) Loops
Algorithm 1 (2 surfaces) 71.17 29. 450
Algorithm 1 (4 surfaces) 72.60 4.77 300
Algorithm 2 (2 surfaces) 71.05 0.00 65

GPOPS-II 74.61 0.00 -

Table 5.1: Performance comparisons in constant wind
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Figure 5.4: Maximum force tracking with steady state optimization (Algorithm 5) under varying
wind conditions.

Algorithm 5 was mainly developed under the assumption of constant wind and is not well suited
for handling varying wind conditions. This is due to the large di�erence between the time at which
the decision is made and the time at which the system reaches the corresponding steady state.
Algorithm 6 overcomes this limitation by sampling in transients and thus increasing the frequency
at which decisions are revised.

Table 5.2 summarizes performance results in varying wind conditions. Algorithm 6 can track
the optimal power without signi�cant violations and is able to converge to di�erent optimal set-
points as the exogenous conditions vary. Figure 5.5 shows the progress of the transient algorithm
under varying wind conditions (and Figure 5.4 for the steady state one), while Figure 5.7 shows
the tracked trajectory under these conditions. Figure 5.6 shows the evolution of the system states
and set points with time and wind. Algorithm 5 performs slightly better because it incorporates
a large constraint violation (15.35m) for which the power production (or towing force) is much
favorable.
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Decision space Final value Max Violation (m) Loops
Algorithm 1 (2 surfaces) 75.09 15.35 320
Algorithm 2 (2 surfaces) 73.84 2.90 47

GPOPS-II 74.61 0.00 -

Table 5.2: Performance comparisons in varying wind

Figure 5.5: Power and Altitude tracking for 200m altitude constraint and varying wind condition
using transient optimization (Algorithm 6)
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Figure 5.6: System states, set-points and wind measurements through the iterations of Algorithm
6

Figure 5.7: Trajectory of kite with Algorithm 2 in varying wind conditions
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5.6 Conclusions

Two algorithms for optimizing the towing force produced by an AWE system under minimum
altitude constraints were presented. Both methods use a model free Gaussian process optimization
based approach to progressively learn the system dynamics, objective and constraint functions.
The second method can utilize transient measurements to converge faster to the optimum and
better adapt to changing wind conditions. The results are compared to an o�-line optimal control
numerical solver (with knowledge of the model and full input control) and the optimal values found
by the GP optimization methods were found to be with 5% of the predicted values by the optimal
control solver.



Chapter 6

A Nonlinear Adaptive Controller for
Airborne Wind Energy Systems

A direct-adaptive, nonlinear path following controller for a kite based airborne wind energy sys-
tem is presented in presence of system and environmental parametric uncertainties. For a given
reference geometric path, necessary conditions for closed-loop convergence of the kite to a tube
centered around the reference path are provided. An adaptive control law for the case of unknown
wind vector and kite parameters is presented. The e�ectiveness of the approach is demonstrated
via numerical simulations for multiple shapes of geometric paths and for varying tether length
references.

6.1 Introduction

A common operating mode for kite based Airborne Wind Energy (AWE) systems is the \pumping
cycle". This operation requires the kite to reel out at a desired rate as it ies a high energy
extraction manoeuvre, then reel back in with a low energy consumption manoeuvre to produce a
net positive energy generation cycle (see, e.g., [56, 57]).

While the desired trajectory for the vehicle can be pre-computed using numerical optimal
control solvers ([58, 59, 60]), the motion control of the system presents numerous challenges due
to the nonholonomic properties of the system and the limited control inputs available. In fact,
since the main driving force is provided by the wind, the vehicle can only follow time-pro�les
along the reference trajectory that are coherent with the wind. Due to this reason, most of the
control schemes as explored in [90],[81],[63],[64], focus on tracking motion of the vehicle in a plane
perpendicular to the tether and control the tether length in a decoupled fashion. This alone, cannot
guarantee closed loop bounded tracking of an optimal/desired trajectory. Nonlinear MPC schemes
for trajectory tracking have also been explored in literature (e.g., [61, 62]) which require real-time
estimation of wind speed and vehicle parameters.

Motivated by these observations, a path-following controller, where the reference is not a time-
parametrised trajectory but rather a parameterized geometric trajectory is proposed. The path
parameter is then driven by the controller resulting in feasible trajectories coherent with the wind
�eld. The controller is also extended to the case of unknown wind velocity vector and vehicle
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Figure 6.1: Coordinate frames, Kite and Reference Path States

parameters a direct-adaptive control scheme that guarantees bounded errors for path tracking
and bounded parameter estimation via dynamic parameter update law. In both cases, necessary
conditions for convergence of the vehicle position to an arbitrary small neighbourhood of the desired
trajectory are provided.

The organization of the chapter is as follows. In Section 6.2 a kinematic model for the kite is
introduced. Section 6.3 discusses the main result, controller design, for the nominal and adaptive
cases. Section 6.4 gives the results from the numerical tests of the controller. Section 6.5 sum-
marizes the results presented. A collection of the exact expressions and background computation
required for the controller are presented in the Appendix.

6.2 Kite model

6.2.1 Coordinate frames

Coordinate frames consistent with those used in [64] are presented below. Fig. 6.1 shows a graphical
illustration for the same.

An inertial frame fGg is attached to the ground, with basis vectors (x; y; z), and a moving
frame fKg is attached to the body of the kite, with basis vectors (er; ep; ek). Let p denote the
position of the origin of the kite frame written in the ground frame, and let (L; #; ’) denote its
polar coordinate representation. Here, L represents the tether length and # and ’ denote the
elevation and azimuth angle, respectively.

For any �xed tether length the kite moves on a sphere. An intermediate right handed coordinate
frame fNg centered in p with basis vectors (eN ; eE ; eD) is considered, with eN pointing in the
direction of the sphere’s apex and eD pointing towards the sphere’s center. Using this intermediate
frame, and assuming always non-zero velocity, we denote by  the angle that the kite’s velocity
vector projected on the eN � eE plane, tangent to the sphere, forms with eN . Then, the kite frame
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fKg is obtained by rotating the frame fNg about eD by the angle .
Let RGN , RNK denote the rotation transformation matrices from the ground frame fGg to local

north frame fNg, and from the local north fNgto the kite’s body �xed frame fKg, respectively,
i.e.,

RGN =

0

@
� sin � cos’ � sin’ � cos# cos’
� sin# sin’ cos’ � cos# sin’

cos# 0 � sin#

1

A

RNK =
� �RNK 0

0 1

�
; �RNK =

�
cos  � sin 
sin  cos 

�
:

6.2.2 Kinematic model

The model presented below is similar to the model used in [81], but extended to a variable tether
length setting and expressed in di�erent coordinate frames. The kinematic model of the kite can
be written as

�
L 0
0 L cos#

�� _#
_’

�
= �RNK

�
1 0 �E
0 0 0

�
RTNKR

T
GNvw � �RNK

�
Ez
0

�
(6.1)

_L = z _z = uz
_ = kvs(#; ’;E; vw)�

where E is an aerodynamic parameter of the kite, called glide ratio, and vw is the wind velocity
vector in the ground frame and vs is some nonlinear function involving the state, parameter and
wind velocity, that a�ects the steering gain for the vehicle. The control inputs of the physical system
are the reel-out rate z and kite deection � for turning. The controller is designed taking (uz; _) as
virtual inputs to the kite. A proportional controller is used to get the input � that approximately
tracks the resulting  demanded by our controller and thus the e�ect to the complicated steering
gain is addressed using this cascading of controllers for the steering.

6.2.3 Reference path

The reference path is described by specifying its projection on the y� z plane of the ground frame
fGg and denoted as the smooth parameterized curve (Yref (�); Zref (�)) for a scalar parameter � .
Note that for any tether length there exists a trajectory that, projected in the y� z plane of fGg,
satis�es the desired assignment. Also note that � is a parameter controlled by the controller and
as a result the speed with which the reference moves along the path is controlled through � .

The desired path is assumed to have no stationary points, i.e., jj@(Yref (�);Zref (�))
@� jj 6= 0 for any

� 2 R, or in other words, as � changes the point should move along the curve with a non-zero
speed. Two such path projections, used in our numerical studies, for a \�gure of eight" lemniscate
trajectory and an ellipsoidal trajectory are shown in (6.38),(6.39).

The length of the tether is controlled specifying the desired velocity of the tether zref (t), which
is time parameterized unlike the Yref ; Zref .
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In view of these observations, the output of the system is de�ned as

y =

0

@
L 0 0
0 L cos# 0
0 0 1

1

A

0

@
#
’
z

1

A ; yref =

0

@
L 0 0
0 L cos#ref 0
0 0 1

1

A

0

@
#ref
’ref
zref

1

A (6.2)

6.3 Controller design

6.3.1 Error de�nition

This section introduces the error space utilized for the design of the path following controller.
Similar to [91, 92], we consider the tracking error vector

e = RTNK(y � yref )� � (6.3)

for a given vector � 2 R3 with non-zero norm. Note that as the norm of the error vector goes to
zero, the distance y � yref converges to k�k, which can be made arbitrarily small.

6.3.2 Error dynamics

Taking the derivative for the error as de�ned in (6.3), we get error dynamics in the form,

_e = _ ~Se + f(x) + f�(x)�+ g(x)u+R(�) ~S�o _� (6.4)

where x = (#; ’; ; L; z; _zref ; �)T is the system state, u = ( _z; _; _�)T is the control input and
� = (E; vw;d)T is a vector of unknown system parameters. The bilinear dependence on E � vw in
(6.1) is denoted and estimated as an independent parameter d. The exact expressions for ~S; f; f�; g
are presented in the appendix in (6.43). We use

� = R(�)�o (6.5)

where �o is a constant vector in R3 with non-zero norm and R(�) shown in (6.40) is a rotation
matrix with state dependent �. From the expression for the determinant of g presented in (6.44)
it can be seen that using � = � �  + �=2, g(x) is guaranteed to be invertible at all times. � is
again a state dependent term de�ned in (6.42). Without the state varying �, g(x) will lose rank
for certain states and the system will lose feedback linearizability at those states. For the state
varying � chosen above, we can show, _� to be of the form,

_� = W (x)Tu (6.6)

where W (x) is a vector in R3. The error dynamics thus take the form,

_e = f(x) + f�(x)�+ (g(x) + h(x))u (6.7)

where h(x) = R(�) ~S�oW (x)T +
�
0 ~Se 0

�
.

This brings the error dynamics in the class of systems for which we will prove local convergence
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of the closed loop system to an ultimate bound in the following theorem, for cases of known and
unknown system parameter vector �.

6.3.3 Main result

We consider systems of the form,

_e = f(x) + f�(x)�+G(x)u (6.8)

where x 2 Rn, u 2 Rm are the system states and inputs respectively. e = l(x) 2 Rm is some
nonlinear output of the system state. G(x) is possibly non-invertible at certain states, but can be
written in the form,

G(x) = g(x) + h(x) (6.9)

with g(x) always guaranteed to be invertible and jjgjj 2 [a; b] for some �nite positive constants a; b
and jjhjj � � for a �nite positive constant �. f; f�; g are known functions satisfying jjdf(x )

dt jj �
�1jjejj jjujj, jj

df�(x )
dt jj � �2jjejj jjujj, jjdgdt jj � �3jjejj jjujj and jjf�jj < �4 where �1;�2;�3;�4 are

scalar positive and �nite constants.
� is a vector of system parameters in Rp. When the parameters � are unknown we use an

online estimate of the parameter denoted by �� and design for an update rule _�� assuming � to be
unknown constants. We also denote any o�ine a priori estimates of the parameters by �̂. In the
nominal case when � is known we simply set �� = �̂ = � and _�� = 0 in our adaptive control law.

Note, since f(x); f�(x); g(x); h(x) are functions of only x we will drop the explicit notation
and denote the function evaluated at x as f; f�; g; h. Also we use the following vector operations:
Tanh(�) acting on a vector � represents an element-wise tanh(�) operating on the elements of �.
Cosh(�);Sech(�) are diagonal matrices with diagonal entries being the corresponding element-wise
operations on elements of vector �.

Theorem 6.1. For a system of the form (6.8), a control law,

u = q +N � Tanh(�) (6.10)

with

_� = Cosh2(�)N�1g�1� (6.11)
� = �Krr�m+ � (6.12)
r = f + f���+ gu+Ke (6.13)

m = _f + _f���+ _gu+Khu+ f� _�� (6.14)
� = �k�gM Tanh(�) (6.15)

and parameter update law
_�� = K�fT� (e +K�1r)� �(��� �̂); (6.16)

enforces e; r;�; �� to converge to a bounded set tuned using the tuning variables in the control
scheme, v.i.z., K;Kr; k�; N;K�; �.
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Proof: Consider the error vector de�ned in (6.3) with

_e = f + f��+ gu+ hu: (6.17)

We would like f + f�� + gu to be close to �Ke, for a diagonal positive de�nite constant matrix
K � 0, with bounded inputs u. We thus proceed in a backstepping fashion by de�ning the
backstepping variable

r = f + f���+ gu+Ke (6.18)

and driving it to zero. Note that, since we only have the estimate �� of the parameter vector �, such
variable is de�ned using the estimate, and later we will design a suitable estimator to compensate
for the e�ect of such discrepancy. Combining (6.17) with (6.18) in the nominal case of known
parameters, i.e., �� = �, results in

_e = �Ke + r + hu (6.19)

whereas in the case of unknown parameters we have

_e = �Ke + r + f�(�� ��) + hu: (6.20)

Di�erentiating the backstepping variable r results in

_r = _f + _f���+ _gu+K _e + f� _��+ g _u (6.21)

where the terms _f , _f�, and _g denote the time derivatives of functions f , f�, and g, respectively.
Plugging (6.20) into (6.21),

_r = m�K2e +Kr + g _u+Kf�(�� ��) (6.22)

where the term m is de�ned as

m = _f + _f���+ _gu+Khu+ f� _��:

Now considering the Lyapunov function,

V1 =
1
2

(eTe + rTK�2r) (6.23)

_V1 = eT _e + rTK�2 _r
= �eTKe + eThu+ (eT +K�1rT )f�(�� ��)

+rTK�2(m+Kr + g _u) (6.24)

In what follows, we proceed by de�ning a suitable input _u to enforce the desired decrease of the
lyapunov function. Although, the term eThu in the inequality (6.24) cannot be cancelled, we design
_u explicitly enforcing a bounded u. This can be achieved by de�ning

u = q +N � Tanh(�)



106Chapter 6. A Nonlinear Adaptive Controller for Airborne Wind Energy Systems

with �rst time derivative
_u = N Sech2(�) _� (6.25)

where the constants q and N are design parameters and � is an internal state of the controller.

Therefore, designing _u such that

g _u = �Krr�m+ �;

for some term �, is equivalent to choosing

_� = Cosh2(�)N�1g�1(�Krr�m+ �); (6.26)

The term �, in the following, is used to maintain the internal state of the controller � bounded
and avoid numerical integration problems.In fact, an unstable internal state � will eventually drive
Sech(�) to 0, and the _� resulting from

gN Sech2(�) _� = �Krr�m+ �

will be numerically infeasible to integrate. Toward this goal, we update the Lyapunov function
introducing an extra term,

V2 = V1 +
1
2
k�1

� TanhT (�) Tanh(�) (6.27)

where k� > 0 is a positive scalar constant. Computing the �rst time derivative combining with
(6.24) and (6.26) results in

_V2 = _V1 + k�1
� TanhT (�)N�1g�1(�Krr�m+ �)

= �eTKe� rTK�2(Kr �K)r + eThq
+eThN Tanh(�) + rTK�2�
+k�1

� TanhT (�)N�1g�1(�Krr�m+ �)
+(eT +K�1rT )f�(�� ��):

Choosing
� = �k�gM Tanh(�) M = min(N; I)

where M is the element wise minimum of the matrices N and I (the identity matrix), such that,

0 < N�1M � I 0 < M � I
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results in

_V2 = �eTKe� rTK�2(Kr �K)r + eThq
+eThN Tanh(�)� k�rTK�2gM Tanh(�)
�k�1

� TanhT (�)N�1g�1Krr
�k�1

� TanhT (�)N�1g�1m
�TanhT (�)N�1M Tanh(�)
+(eT +K�1rT )f�(�� ��): (6.28)

Known parameter case. For the case of known parameter � we have _�� = 0; �� = � Using the
norm inequalities,

_V2 � �eTKe� rTK�2(Kr �K)r
�TanhT (�)N�1M Tanh(�)
+jjejj jjhjj jjqjj+ jjejj jjhjj jjN jj
+jjrjj jjK�2jj jjgjj
+k�1

� jjN
�1jj jjg�1jj jjKrjj jjrjj

+k�1
� jjN

�1jj jjg�1jj jjmjj (6.29)

By earlier assumptions on bounds for jj _f jj; jj _f�jj; jj _gjj; jjhjj

jjmjj � jj _f jj+ jj _f�jj jj��jj+ jj _gjj jjujj+ jjKjjjjhjjjjujj
� �1jjejj+ �2jjejj jj��jj+ �3jjejj+ jjKjj� (6.30)

Implying,

_V2 � �k1jjejj2 � k2jjrjj2 � k3jjTanh(�)jj2

+jjejj(� (jjqjj+ jjN jj) + k4(�1 + �2jj��jj+ �3))
+jjrjj(k�2

1 jjgjj+ k4 k6 ) + k4jjKjj� (6.31)

where

k1 := �min(K)
k2 := �min(K�2(Kr �K))
k3 := �min(N�1M)
k4 := k�1

� jjN
�1jj jjg�1jj

k5 := jjKrjj

where for a generic matrix A, the term �min(A) denotes the minimum singular value of A and where
the constant terms K;Kr; N; k�, with the restriction Kr > K, are design parameters introduced
earlier. Note that, in the Lyapunov inequality (6.31), as the terms e and r grow, the quadratic
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negative terms will eventually dominate the positive linear and bounded terms, resulting in the
standard ultimately bounded behaviour of e and r. Similar applies to the term �, although here,
since the Tanh(�) is not a radially unbounded function, an excessive magnitude of the positive
terms might cause � to be unbounded and therefore care should be taken in selection of the design
parameters.

Further increasing k1; k� and k2 allows us to reduce the ultimate bound on e and r axes.

Unknown parameter case. For the case of unknown parameter �, we consider the Lyapunov
function,

V3 = V2 +
1
2

(�� ��)TK�1
� (�� ��) (6.32)

_V3 = _V2 � (�� ��)TK�1
�

_�� (6.33)

Using (6.28),

_V3 = �eTKe� rTK�2(Kr �K)r + eThq
+eThN Tanh(�)� k�rTK�2gM Tanh(�)
�k�1

� TanhT (�)N�1g�1Krr
�k�1

� TanhT (�)N�1g�1m
�TanhT (�)N�1M Tanh(�)

+(�� ��)T (fT� (e +K�1r)�K�1
�

_��): (6.34)

Choosing the parameter update law,

_�� = K�fT� (e +K�1r)� �(��� �̂) (6.35)

where K� and � are positive de�nite, diagonal matrices, we obtain

_V3 = �eTKe� rTK�2(Kr �K)r + eThq
+eThN Tanh(�)� k�rTK�2gM Tanh(�)
�k�1

� TanhT (�)N�1g�1Krr
�k�1

� TanhT (�)N�1g�1m
�TanhT (�)N�1M Tanh(�)
��(�� ��)T (��� �̂): (6.36)

The last term in _V3 = ��(� � ��)T (�� � �̂) is always negative de�nite outside a box in Rp de�ned
by the values of � and �̂ and this keeps the estimates ��, bounded. The norm of m will now have
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the bound

jjmjj � jj _f jj+ jj _f�jj jj��jj+ jj _gjj jjujj+ jjKjjjjhjjjjujj
+jjf�jj2 jjK�jj (jjejj+ jjK�1jj jjrjj) + jj�jj jj�� �̂jj

� �1jjejj+ �2jjejj jj��jj+ �3jjejj+ jjKjj�
+�2

4jjK�jj jjejj+ �2
4jjK�jj jjK�1jj jjrjj

+jj�jj jj�� �̂jj (6.37)

Since the jjmjj is still bounded linearly in terms of jjejj; jjrjj, _V3 also takes the same form as (6.31)
with a added constant jj�jj jj�� �̂jj. Thus with some reasonable a priori estimate of parameters �̂
such that jj�� �̂jj is bounded, the controller will converge to a bounded ellipsoid in the (e; r;�; ��)
space. The boundary of the ellipsoid satis�es the equation _V3 = 0 ( _V2 = 0, when � is known).
As long as for the chosen tuning variables and apriori estimate �̂, the ellipsoid boundary satis�es
the strict inequality jjTanh(�)jj1 < 1, the convergence of states (e; r;�; ��) to the ellipsoid is
guaranteed. �

6.4 Numerical results

We test the control scheme described in Theorem 6.1 for our kite system, with the path following er-
ror system dynamics as described in (6.4) under constant but unknown wind vector vw = (10; 0; 0),
constant unknown glide ratio E = 5 with apriori guesses v̂w = (9; 0; 0); Ê = 6; d̂ = (45; 0; 0).

The controller tuning parameters were chosen as, �o = (�0:1;�0:1; 0)T , K = diag(4; 4; 10),
Kr = diag(20; 20; 20), k� = 10, � = 0:1, K� = diag(0:5; 0:5; 0:5; 0:5; 0:5; 0:01; 0:01), q = (0; 0; 0),
N = diag(2; 50; 20), where diag(x) represents a diagonal matrix with diagonal entries given by x.

The kite is initialized at an initial condition close to the ground, to show the behaviour of the
controller for a large starting error and a long transient phase. The reel-out reference rate is set
to be 0.5 m/s during traction and at -1 m/s during the reel-in phase. The reference path sizes are
di�erent during the two phases and we switch the reference paths when the phases are switched.
The kite is set to be in the reel out phase initially. When the tether length exceeds 50 meters, we
switch to retraction mode and reel-in till the tether length becomes less than 35 meters, at which
point we switch back to the traction phase, completing a full pumping cycle.

Figure 6.5 shows the evolution of the states for the kite as it ies �gures of eight during
several pumping cycles. The tether length tracks the di�erent reference slopes during the cycle
and maintains tracking of the kite reference position. The minimum elevation angle # decreases as
the tether length increase and vice versa. This occurs because we have demanded a reference path
with a constant minimum height characteristic which is desirable to higher power generation.

Figures 6.2,6.3,6.4 show path tracking for di�erent reference paths in the traction and retraction
phase. In the paths tested the controller shows fast convergence of the errors to a small bound
with good tracking performance.

The virtual control inputs given by the controller u = ( _z; _; _�) are shown in Fig.6.6. None of the
virtual controllers become saturated at any time as we had allowed for a maximum of amplitude
of 2,50,20 for _z; _; _� , respectively. Thus the internal states of the controller � also remain bounded
(Fig.6.7).
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Figure 6.2: Path following of lemniscate �gures in traction phase

The estimates for the parameters show bounded values as well. Note that the controller only
guaranteed closed loop stability of the system and does not require or guarantee the convergence
of the estimates to their true values. This is seen in Fig. 6.8

6.5 Conclusion

An adaptive path following controller for kite systems with parameter mismatch and with unknown
wind velocity vector was presented. Under mild assumptions, the controller steers kite to a tube
centered around a prede�ned geometric path. The tube diameter is determined by the choice of
the design parameters of the controller. The e�ectiveness of the proposed strategy is demonstrated
via numerical results on multiple geometric desired paths and pumping cycle ights.
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Figure 6.3: Path following of lemniscate in full pumping cycle

Figure 6.4: Path following of ellipsoidal orbits in traction phase



112Chapter 6. A Nonlinear Adaptive Controller for Airborne Wind Energy Systems

Figure 6.5: Kite state evolution through the pumping cycle

Figure 6.6: Control inputs through the pumping cycle
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Figure 6.7: Internal states of the controller �

Figure 6.8: Parameter estimates �� = (�vw; �d; �E). Vector components of �vw; �d in red, blue and green
colors.
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6.6 Appendix

The �gure of eight trajectory as tracked in �gures 6.2,6.3 has the following projection on the y� z
plane,

Yref =
a cos �

1 + sin2 �
Zref = h+

a sin � cos �
1 + sin2 �

(6.38)

with a being the width of the lemniscate and h the height of the center of the lemniscate. We use
the values for (a; h) = (15; 15) during the reel out phase and use a larger �gure with (a; h) = (20; 20)
during the reel in phase to have a di�erent retraction path.

The ellipsoidal trajectory as tracked in 6.4 has the following projection on the y � z plane,

Yref = a cos � Zref = h+
a
e

sin � (6.39)

with a being the width of the major axis for the ellipse, e being its eccentricity and h the height
of its center.

For the reference reel-out rate zref (t) we use a constant positive reel out rate co = 0:5 and
a constant reel-in rate co = �1. The reference length Lref (t) can then be written as, Lref (t) =
Lref (0) + co � t where Lref (0) is the initial tether length of the kite.

R(�) =

0

@
cos� � sin� 0
sin� cos� 0

0 0 1

1

A ; ~S =

0

@
0 1 0
�1 0 0
0 0 0

1

A (6.40)

T = jj
�

sin#ref’ref@�#ref � cos#ref@�’ref
@�#ref

�
jj (6.41)

� = \
�

sin#ref’ref@�#ref � cos#ref@�’ref
@�#ref

�
(6.42)



6.6 Appendix 115
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det(g) = LT�o1 (6.44)
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Chapter 7

Contributions of the thesis

Chapter 2 presents a generalized representer theorem for variational problems with loss function-
als and regularizers de�ned over arbitrary separable Hilbert spaces. The relation between adjoints
for closed, densely de�ned operators and kernel methods in RKHS is highlighted, and simpli�ed
assumptions on subspace valued maps are presented to allow for non-r-regular maps. This ex-
tends previous work on the topic from [6, 8, 9] to allow for unbounded linear operators, like the
di�erential operator to be considered in the loss functionals of the variational problem. Further-
more, considering loss functionals over arbitrary Hilbert spaces allows the consideration of loss
functionals over the space of square integrable random vectors and stochastic processes as done
in Section 2.4.2, allowing for representer theorems for such problems. The non-r-regular subspace
valued maps allow for examples of ‘1�regularization to be considered over in�nite dimensional
spaces, and an example for this is presented in Section 2.4.3. Section 2.4.1 shows the application
of the generalized representer theorem to deep neural networks for end-to-end learning to provide
an explicit in�nite dimensional linear representer for the neural network solution. The linear rep-
resenter for the neural network is shown to be determined by �nitely many signed vector measures
and thus transforms the problem from optimization over a space of functions to optimization over
a space of signed measures. For the case of optimization in the space of RKHS functions given by
smooth kernels, a gradient-based method is used to solve for a locally optimal solution.

Chapter 3 presents a manifold learning approach to obstacle avoidance in autonomous driving.
A variational problem for learning manifolds with star-shaped interiors is presented over a Hilbert
space of periodic functions. The variational problem can be solved using both, kernel methods
and with �nite basis approximations with the techniques presented in Chapter 2. A collection of
learned star-shaped sets are used to represent the free space in which a vehicle can move, and a
corresponding inequality constraint is included in optimal control problems for obstacle avoidance
in autonomous driving. The formulation with star-shaped sets allows for a reduction in the number
of constraints required from O(N) constraints [34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 35, 36, 47]
to O(1) number of constraints required in the presence of N obstacles. This constant complexity
helps to deal e�ectively with a large number and dynamically changing number of obstacles, which
otherwise would have required an online reformulation of the optimization problem. Having a �xed
structure for the optimization problem irrespective of the number of obstacles in the environment
allows for a simpler implementation that is suitable for running on embedded systems. The use
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of the manifold constraints for obstacle avoidance is presented at di�erent levels of planning and
control by including it in a dynamic programming approach for corridor planning (Section 3.3.1),
an N -phase free-end-time optimal control problem for optimal trajectory planning (Section 3.3.2)
and a real-time obstacle avoidance and path following model predictive control scheme (MPC) in
Section 3.3.3. The convergence and recursive feasibility of the MPC scheme is shown under mild
assumptions on obstacle behavior and vehicle dynamics.

Chapter 4 presents a variational formulation for a continuous time, �nite horizon model pre-
dictive controller for path following in an Airborne Wind Energy system. A convergent vector �eld
control inspired terminal constraint is introduced to guarantee recursive feasibility and convergence
of the path following error to zero. As the exogenous wind condition determines the ight speed
for the vehicle, the vehicle speed is uncontrollable. As a result, a virtual vehicle is introduced on
the desired geometric path with controlled speed. The virtual and real vehicles are then driven
into consensus by the model predictive controller to achieve path following of the given geometric
path. By using a vector �eld based terminal constraint, the region of attraction for the MPC
scheme is expanded to allow for control with short prediction horizons, which makes the numeri-
cal implementation for the MPC scheme amenable for real-time application. A multiple shooting
based implementation is provided for a real-time path following MPC controller.

Chapters 5 and 6 address problems pertaining to uncertainty in the wind and aerodynamic
characteristics for optimization and control in airborne wind energy systems. Chapter 5 presents
a method for data-driven performance optimization in the airborne wind energy system using
Gaussian process surrogate models for the system objective, constraints and dynamics. The closed-
loop performance is optimized by experimental sampling of candidate controller set-points, selected
using the surrogate models. An information gain and bias trade-o� metric called the expected
improvement (Section 5.3.2) is used to search the candidate optimization points in a data e�cient
manner. Additional sampling constraints are introduced in the optimization problem to allow
transient measurements to be used to update the model and candidate set points at a faster rate
(Section 5.4). The performance under varying wind condition is shown to improve under the faster
feedback provided by the Gaussian process optimization scheme with transient measurements,
under constant and varying wind conditions (Section 5.5).

Chapter 6 presents a nonlinear direct adaptive control scheme for path following in AWE
systems given parametric uncertainties of wind velocity and aerodynamic coe�cients in the system
dynamics. The path following error system for the AWE is shown to be a�ne in the control inputs
and uncertain parameters. The system is not feedback linearizable, but under bounded control
inputs, is shown to be approximately feedback linearizable. The online parameter update laws
and an approximate feedback linearizing controller is shown to drive the path following error to a
small neighborhood of zero. The inputs are bounded using a sigmoidal bounding transform for the
inputs. The parameter estimates are shown to remain in a bounded neighborhood around some
prior estimates provided to the controller.

The thesis thus uses Chapter 2, 3 and 4 to demonstrate the use of variational problems in
learning and control and presents two di�erent techniques for adaptive optimization and control of
dynamical systems under uncertainty in Chapters 5 and 6 respectively. Chapter 8, points to some
open questions and future directions for the work presented.



Chapter 8

Open research questions and future
directions

It was shown in Chapter 2 that the di�erential operator is a closable, densely de�ned operator on a
Sobolev space with a closed, densely de�ned adjoint operator (Example 2.3). Using the generalized
representer theorem for the solving learning and control problems involving constraints given as
ordinary and partial di�erential equations is thus made possible over an RKHS space embedded
in such Sobolev spaces. The properties of kernels for such RKHS embedding in Sobolev spaces
need further exploration and along with its relation to non-positive kernels as studied in [93, 94].
Further, a study of properties of the di�erential and integral operators over the Hilbert space
of square integrable stochastic processes can help develop numerical collocation methods based
on the representer theorem for numerical stochastic optimal control and model predictive control
approaches. Working with the de�nition for adjoints over Banach spaces it may further be possible
to extend the generalized representer theorem to Banach spaces and reproducing kernel Banach
spaces [95].

Chapter 3 presented the use of manifold learning for obstacle avoidance in autonomous driving.
The algorithm presented generalizes to Rn in a straightforward manner, and its application to ob-
stacle avoidance and robust optimal control can be further considered. The multiphase nature of
the optimal control formulation considered for trajectory generation and path following in Sections
3.3.2 and 3.3.3 leads to increased numerical complexity for the problem, and alternative formula-
tions for the optimal control problem should be considered for faster numerical implementation.

The convergent vector �eld-terminal constraints in Chapter 4 are explicitly presented for the
AWE dynamics. The idea can be further generalized to general dynamical systems for which a
sliding mode or vector �eld controller can be designed. The issue of characterizing some systems
and a general design method for the terminal constraints can be further looked into.

Finally, the Gaussian process optimization scheme presented in Chapter 5, with transient mea-
surements being used can be combined with recent safe Gaussian process optimization techniques
from [79, 96, 97].
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Appendix A

Some notes on functional analysis

A.1 Topology

The notion of topology is fundamental to de�ning the notion of continuity and convergence over
spaces. As such continuity makes sense only with respect to a given topology and has no meaning
if a topology is not speci�ed (topologies are often left unspeci�ed when they are understood to
be a standard underlying topology for the given space). Convergence on the other hand can have
two variants: (i) convergence in terms of a topology and (ii) convergence without reference to any
topology. In fact a topology independent notion of convergence can then be used to establish a
topology (see for example [98]).

De�nition A.1. (Topology)
For an arbitrary set Z, let � be a collection of subsets of Z such that

1. Both ? and Z belong to �

2. Any union of elements in � belongs to �

3. Any intersection of �nitely many elements in � belongs to �

Then the tuple (Z;�) is called a topological space with topology �. The elements of � are
called open sets .

A comprehensive reference for topological spaces can be found in [99].

A.2 A note on dual norm

Let Z be a Banach space and Z? be the topological dual, i.e., the space of continuous linear
functionals on Z.

De�nition A.2. (Dual norm)
The norm in the dual space is de�ned as jjhjjZ? := supfjh(x)j : jjxjjZ � 1g.

The above de�nition for the dual norm is shown to provide the continuity bound for any linear
functional h 2 Z? in Lemma A.1 below.
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Lemma A.1. 8x 2 Z, h 2 Z?, jh(x)j � jjhjjZ? jjxjjZ

Proof: Note that for jjxjjZ = 0, the inequality is trivially satis�ed since jjxjjZ = 0 implies x = 0
in a Banach space which in turn implies h(x) = 0 (by linearity of h).

For jjxjjZ 6= 0, note that jjhjjZ? � jh(x=jjxjjZ)j (since x=jjxjjZ is a norm 1 vector and jjhjjZ?
by de�nition is the supremum of a set containing jh(x=jjxjjZ)j). By linearity of h, jh(x=jjxjjZ)j =
jh(x)j=jjxjjZ and thus jjhjjZ? � jh(x)j=jjxjjZ =) jh(x)j � jjhjjZ? jjxjjZ . �

A.3 A note on reexive Banach spaces

A more comprehensive note on reexive Banach spaces can be found in the corresponding section
of [17] or [22, Chapter 3, Section 11].

Let Z be a Banach space and Z? denote its dual Banach space. Since Z? is also a Banach space,
one can �nd its dual Banach space Z?? and so on. This naturally leads to the question of what
such a sequence of duals looks like. Does the dualization terminate at some point by returning to
Z. In particular, is Z?? isomorphic to Z? Or does this lead to an in�nite sequence of dual Banach
spaces? Reexivity (Z?? iso= Z) addresses this question.

Note at the outset that not all Banach spaces are reexive, i.e., Z??
iso
6= Z and thus this question

doesn’t resolve to a trivial yes or no answer. The answer is a trivial yes (i.e. Z is reexive) when Z

is a �nite dimensional Banach space or when Z is a Hilbert space. In general, however, Z
iso
� Z??;

i.e. every x 2 Z corresponds to a x?? 2 Z?? with a natural inclusion map i : Z ! Z?? such that
i(x) = (x?? : Z? ! R) given by x??(h) = h(x) for all h 2 Z?.

Using [22, Corollary 6.7] however one can show that not only is i : Z ! Z?? a natural isomorphic
inclusion but is actually an isometric inclusion, i.e., for all x 2 Z and x?? = i(x), jjx??jjZ?? = jjxjjZ
(irrespective of whether Z is reexive or not). The proof for this isometry is rewritten here for
reference. Note that the proof in the case of a general Banach space is fairly deep with arguments
leading back to the Hahn-Banach theorem, we thus break the proof down into smaller lemmas
(which actually are corollaries of the Hahn-Banach theorem) and present the proof top-down, i.e.
present arguments for the theorem �rst invoking the lemma and then proving the lemma required.

Theorem A.1. jjx??jjZ?? = jjxjjZ

Proof: Recall that jjhjjZ? := supfjh(x)j : jjxjjZ � 1g and jjx??jjZ?? := supfjx??(h)j : jjhjjZ? �
1g = supfjh(x)j : jjhjjZ? � 1g. By Lemma A.1; jh(x)j � jjhjjZ? jjxjjZ and thus jjx??jjZ?? =
supfjh(x)j : jjhjjZ? � 1g � supfjjhjjZ? jjxjjZ : jjhjjZ? � 1g = jjxjjZ , i.e. jjx??jjZ?? � jjxjjZ . By
Lemma A.2 below, for every x 2 Z there exists a hx 2 Z? such that hx(x) = jjxjjZ and jjhxjjZ? = 1.
Thus jjx??jjZ?? = supfjh(x)j : jjhjjZ? � 1g = jhx(x)j = jjxjjZ (the supremum being attained for
hx 2 Z?). �

Note that existence of such an hx 2 Z? is somewhat simpler to see when Z is an Hilbert space since
we can de�ne hx(y) = hx=jjxjjZ ; yi as the functional (when jjxjjZ 6= 0) and note that hx(x) = jjxjjZ
and also jhx(y)j is maximum with y = x=jjxjj (for jjyjjZ � 1) implying jjhxjjZ? = 1. For jjxjjZ = 0
note that any linear functional with norm 1 (jjhjjZ? = 1) trivially satis�es this requirement hx(x) =
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jjxjjZ (since hx(x) = jjxjjZ = 0). This result is formalized by Lemma A.2 for a general Banach
space where the result may not be as simple to see.

Lemma A.2. (9 hx 2 Z?: hx(x) = jjxjjZ , jjhxjjZ? = 1)
For every x 2 Z, there exists a hx 2 Z? such that hx(x) = jjxjjZ and jjhxjjZ? = 1.

Proof: Let M = f�x : � 2 Rg be the subspace of Z spanned by x. Let g : M ! R denote the
linear functional in M? given by g(�x) = �jjxjjZ . Note that jjgjjM? = supfjg(�x)j : j�jjjxjjZ �
1g = supfj�jjjxjjZ : j�jjjxjjZ � 1g = 1. By Lemma A.3 it is known that there will exist a hx 2 Z?

such that hx restricted toM, denoted hxjM, is such that hxjM = g and jjhxjjZ? = jjgjjM? . Then
for all x 2 M, we have hxjM(x) = g(x) = jjxjjZ and jjhxjjZ? = jjgjjM? = 1. Thus there exists a
hx 2 Z? such that hx(x) = jjxjjZ and jjhjj?Z = 1. �

Lemma A.3. Let p : Z ! [0;1) be a semi-norm on Z. Let M � Z be a linear subspace of Z
and g 2M? be a bounded linear functional on M, then

1. 8x 2 M?, jg(x)j � p(x) =) there exists a h 2 Z? such that hjM = g and 8x 2 Z,
jh(x)j � p(x).

2. there exists a h 2 Z? such that hjM = g and jjhjjZ? = jjgjjM? .

Proof: For the �rst statement, note that jg(x)j � p(x) implies g(x) � p(x) for all x 2 M. Then
by the Hahn Banach theorem there exists an extension h 2 Z? such that h(x) � p(x) for all x 2 Z
and hjM = g. Since p is a semi-norm we have h(�x) � p(�x) = p(x) and h(�x) = �h(x) (by
linearity of h). Thus both h(x) � p(x) and �h(x) � p(x) for all x 2 Z and thus jh(x)j � p(x).

For the second statement, note that p : Z ! [0;1) de�ned as p(x) = jjgjjM? jjxjjZ is a semi-
norm (rather a norm) on Z. Then from the �rst statement there exists a h 2 Z? such that hjM = g
and for all x 2 Z, jh(x)j � jjgjjM? jjxjjZ . Then jjhjjZ? = supfjh(x)j : jjxjjZ � 1g = jjgjjM? . �

Theorem A.1 essentially establishes the isometry of Z?? to Z even when Z may not be reexive.
It does not however address the question of what the necessary and su�cient conditions are for Z
to be reexive. Theorem A.2 (restatement of [22, Theorem 4.2]) states this necessary and su�cient
condition.

Theorem A.2. (Conditions for reexivity)
Let �(�; �) denote the weak� topology. A Banach space Z is reexive if and only if

� Z? is reexive, or equivalently

� �(Z?;Z) = �(Z?;Z??)

A.4 Adjoints for bounded operators

The following discussion follows along the corresponding sections in [17].
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De�nition A.3. (Adjoint on Banach spaces)
Let Z1 and Z2 be two Banach spaces. Let Z?1 and Z?2 be the corresponding dual spaces. Then
for a bounded (continuous) linear operator L : Z1 ! Z2 the adjoint is de�ned as the bounded
(continuous) linear operator, L? : Z?2 ! Z?1 that satis�es

8x 2 Z1; h 2 Z?2 ; h(Lx) = (L?h)(x) (A.1)

On Hilbert spaces the simpli�ed de�nition for the adjoint can be written as follows

De�nition A.4. (Adjoint on Hilbert space)
Let Z1, Z2 be Hilbert spaces. Let L : Z1 ! Z2 be a bounded linear operator then the adjoint is
the bounded linear operator L? : Z2 ! Z1 satisfying,

8x 2 Z1; y 2 Z2; hLx; yiZ2 = hx; L?yiZ1 (A.2)

The existence and uniqueness of the adjoint operator for bounded linear operators in Hilbert
spaces and Banach spaces is shown in [17, Theorem 5.4.2] and [17, Proposition 9.1.3] respectively.
It is also shown that L??jZ1 = L.

A.5 Adjoints for unbounded, densely de�ned operators

De�nition A.5. (Dense subset)
In a topological space, (Z;�Z) a subset D is said to be dense in Z if for all z 2 Z and all open
neighborhoods of z, N (z) 2 �Z , there exists a d 2 D such that d 2 N (z). In a metric space
(Z; dZ) this is equivalent to saying that each z 2 Z, there exists a sequence dn 2 D such that
limn!1 dZ(dn; z) = 0 (i.e. dn approaches z arbitrarily close in distance).

Remark A.1. In a metric space (Z; dZ), if D is a dense subset of Z then the closure of D with
respect to dZ , denoted D, is equal to Z, i.e., D = Z.

De�nition A.6. (Densely de�ned operator)
Let Z1, Z2 be topological spaces and let D be a dense subset of Z1. Then a linear operator
L : D ! Z2 is said to be densely de�ned on Z1 and denoted L : Z1 ! Z2.

Remark A.2. We denote the domain of an operator L : Z1 ! Z2 as dom(L). In the de�nition
above, dom(L) = D.

De�nition A.7. (Adjoint of densely de�ned operators in Hilbert spaces)
Let A : H1 ! H2 be a densely de�ned operator. Let dom(A?) := fk 2 H2 : f : dom(A) !
R : f(h) = hAh; kiH2 is bounded linear functional on dom(A)g. Then for all h 2 dom(A) and
k 2 dom(A?) there exists a unique f 2 H1 such that hAh; kiH2 = hf; hiH1 (by Riesz representer
theorem). The adjoint is de�ned as the operator A? : dom(A?) � H2 ! H1.

By [22, Chapter 10, Proposition 1.6], if the operator A : H1 ! H2 is closable and densely de�ned
then the adjoint L? is also densely de�ned, i.e., dom(A?) is a dense subset of H2.
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De�nition A.8. (Extension of an operator)
Let A;B be operators from sets Z1 to Z2. Then A is said to be an extension of B and denoted
B � A, if dom(B) � dom(A) and for all h 2 dom(B), Ah = Bh.

De�nition A.9. (Closed and closable operator)
An operator A : Z1 ! Z2 is called closed if its graph �(A) := f(h;Ah) 2 Z1 � Z2 : h 2 dom(A)g
is a closed set in the topology of Z1 � Z2. It is called closable if there exists an extension with
domain being Z1 that is closed.

De�nition A.10. (Continuous extension of closable operator)
Let Z? be a dense subset of Z?. For a closable operator J : Z? ! Z there exists a closed extension
to Z? such that for any h 2 Z? and a Cauchy sequence hn 2 Z? such that limn!1 jjhn�hjjZ? = 0,
Jh = limn!1 Jhn.

A.6 Self Adjoint operators

Using the general de�nition of the adjoint in Banach spaces, a self adjoint operator in LZ?;Z can
be de�ned as follows,

De�nition A.11. (Self adjoint bounded operator on Banach spaces)
Let J : Z? ! Z be a bounded linear operator and J? : Z? ! Z?? denote the corresponding

adjoint. J is said to be self adjoint if J?(Z?)
iso
� Z and 8y 2 Z?, J?(y) iso= J(y), i.e., J? = J .

On Hilbert spaces the above de�nition simpli�es to the following,

De�nition A.12. (Self adjoint bounded operator on Hilbert spaces)
Let J : H ! H be a bounded linear operator and J? : H ! H denote the corresponding adjoint.
J is said to be self adjoint if 8y 2 Z?, J?(y)=J(y), i.e., J? = J .

Lemma A.4. (Self adjoint densely de�ned operator on Banach space)
Let J : Z? ! Z be a bounded operator with dom(J) = Z?. Let Z? be a dense subset in Z?, i.e.,
J is densely de�ned on Z?, then the adjoint J? : Z? ! Z?? is densely de�ned on Z?.

A.6.1 Hilbert space induced by self-adjoint, positive semi-de�nite operators

De�nition A.13. (Self adjoint operator)
Let J : Z? ! Z be a bounded linear operator and J? : Z? ! Z?? denote the corresponding

adjoint. J is said to be self adjoint if J?(Z?)
iso
� Z and 8y 2 Z?, J?(y) iso= J(y), i.e., J? = J .

De�nition A.14. (Positive (semi)de�nite operators)
An operator J : Z? ! Z is said to be positive semide�nite if 8h 2 Z?, h(Jh) � 0. Further, the
operator is called positive de�nite if 8h 2 Z?, h 6= 0, h(Jh) > 0. We denote a positive semide�nite
operator as J � 0 and a positive de�nite operator as J > 0.
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De�nition A.15. (Partially ordered set of self adjoint, positive semide�nite operators)
Let S+(Z) = fJ 2 LZ?;Z : J = J?; J � 0g be a collection of all positive semide�nite, self adjoint
continuous linear operators from Z? to Z. We say J1 � J2 when J1� J2 � 0. For positive de�nite
operators we use the notation S++(Z) = fJ 2 LZ?;Z : J = J?; J > 0g.

Theorem A.3. (Hilbert space induced by self adjoint, positive semide�nite operators)
Let J 2 S+(Z) be a self adjoint, positive semide�nite operator and let H0 = J(Z?). Let J�1�
denote the pre-image set J�1� = fh 2 Z? : Jh = �g. Let (J�1�)(�) denote the set (J�1�)(�) =
fh(�) : h 2 J�1�g for any �; � 2 Z. Then,

1. for all �; � 2 H0, (J�1�)(�) is a non empty singleton set

2. h�; �iH0 : H0 �H0 ! [0;1) de�ned as h�; �iH0 = (J�1�)(�) is an inner product on H0

3. The completion of H0 under the inner product induced norm jj � jjH0 is a Hilbert space,
denoted H = J(Z?).

Proof: Let H0 = J(Z?) be the range of J . Then for any � 2 H0 there exists a h 2 Z? such that
� = Jh and thus the pre-image set J�1� is non-empty for any � 2 H0. Then for any �; � 2 H0

note that for all h 2 J�1� and g 2 J�1�, h(�) = h(Jg)
(1)
= g(Jh) = g(�), the equality in

(1)
=

following from the self adjoint property of J . Thus for any h1; h2 2 J�1� and any g 2 J�1�,
h1(�) = h1(Jg) = g(Jh1) = g(�) = g(Jh2) = h2(Jg) = h2(�) and (J�1�)(�) = fh(Jg) : h 2
J�1�; g 2 J�1�g is a singleton set.

We can thus de�ne a bilinear symmetric operation on H0, h�; �iH0 : H0 � H0 ! R given by
h�; �iH0 = (J�1�)(�) = (J�1�)(�) = h�; �iH0 . Further since J is positive semide�nite, then the
symmetric bilinear operation is positive semide�nite, i.e., 8� 2 H0, h�; �iH0 � 0. To see this,
note that h�; �iH0 = (J�1�)(�) and for any h 2 J�1�, (J�1�)(�) = h(Jh) � 0 (by positive
semide�niteness of J). Also by linearity of h, h(Jh) = 0 if and only if Jh = 0, i.e., � = 0. Thus
h�; �iH0 = 0 () � = 0. Thus h�; �iH0 : H0 � H0 ! [0;1) de�nes a valid inner product on
H0 � Z.

The completion under the inner product norm of H0 is the space H such that all Cauchy
sequences in H0 converge in H. For any �; � 2 H, there thus exist Cauchy sequences �n; �n such
that limn!1 jj�n � �jjH0 = 0 and limn!1 jj�n � �jjH0 = 0, i.e. H0 is dense in H. The inner
product h�; �iH = limn!1h�n; �niH0 is well de�ned since h�n; �niH0 forms a Cauchy sequence on
R. Further for any Cauchy sequence �n in H, there exists a Cauchy sequence � 0n in H0 such that
limn!1 jj� 0n� �njjH = limn!1 jj� 0n� �njjH0 = 0. Since � 0n must converge in H, so must �n and thus
H is complete under the norm jj � jjH, thus forming a Hilbert space. �

Using the fact that H0 is dense in H, we can treat the inner product and norm on H as being
identical to the inner product and norm on H0. Thus henceforth we will not distinguish between
the two spaces for the inner product and norm computations.

De�nition A.16. (Continuous embedding of a Hilbert space)
A Hilbert space H is said to be continuously embedded in a Banach space Z if H � Z and there
exists a natural inclusion i : H ! Z given by i(x) = x for all x 2 H and a constant � 2 [0;1)
such that for all x 2 H, jjxjjZ � �jjxjjH.
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Theorem A.4. (Continuous embedding of Hilbert space induced by J 2 S+(Z))
The Hilbert space H = J(Z?) induced by a self adjoint, positive semide�nite operator J 2 S+(Z)
is continuously embedded in Z.

Proof: By the application of Cauchy Schwartz inequality, 8�; � 2 H and 8h 2 J�1�, g 2 J�1�,
jh�; �iHj � jj�jjHjj�jjH = jj�jjHjg(Jg)j1=2 � jj�jjHjjgjj

1=2
Z? jjJgjj

1=2
Z � jj�jjHjjJ jj

1=2
LZ?;Z

jjgjjZ? . Thus for

all � 2 H and g 2 Z?, jh�; JgiHj � jj�jjHjjJ jj
1=2
LZ?;Z

jjgjjZ?
Further (by Theorem A.1) jj�jjZ = jj�jjZ?? = supfg2Z?:jjgjjZ?=1g jg(�)j =

supfg2Z?:jjgjjZ?=1g jg(Jh)j = supfg2Z?:jjgjjZ?=1g jh(Jg)j = supfg2Z?:jjgjjZ?=1g jh�; JgiHj �
jj�jjHjjJ jj

1=2
LZ?;Z

. Thus jj�jjZ � jjJ jj
1=2
LZ?;Z

jj�jjH, implying (H; jj � jjH) is continuously embed-
ded in (Z; jj � jjZ). �

Theorem A.5. (Properties of J induced inner product)
For J 2 S+(Z), the induced inner product h�; �iH = J�1�(�) is such that,

1. 8h; g 2 Z?, hJh; JgiH = h(Jg) = g(Jh)

2. 8h 2 Z?, � 2 H, hJh; �iH = h(�)

Proof: For the �rst statement, note that hJh; JgiH = (J�1Jh)(Jg) = h(Jg) and by symmetry of
inner product hJh; JgiH = hJg; JhiH = g(Jh). For the second statement, note that hJh; �iH =
(J�1Jh)(�) = h(�). Recall that the well de�ned (uniqueness) nature of J�1Jh(�) follows from
Theorem A.3-1. �

Theorem A.6. Let H be a dense subspace in Z, induced by a J 2 S+(Z), then 8h 2 H?, there
exist a unique bounded linear extension to h0 2 Z? such that jjhjjH? = jjh0jjZ? and for all � 2 H,
hJh0; �iH = h(�)

Proof: The existence of the unique, bounded linear extension h0 2 Z? follows from a specialization
of the Hahn-Banach theorem for dense linear subspaces as given by [?, Theorem 3]. Then for any
h 2 H? the unique bounded linear extension h0 2 Z? is such that h(f) = h0(f) for all f 2 H and
for all � 2 Z jh0(�)j � jjhjjH? jj�jjZ . From statement two of Theorem A.5, we know that for all
h0 2 Z? and f 2 H, we have hJh0; fiH = h0(f) = h(f). �



Appendix B

Some notes on probability theory

Section B.1 presents the preliminary notions of sigma algebra, probability measure and a pro-
bability measure space with their conventional de�nitions. Section B.2 de�nes the notion of a
(FjB)-measurable function and Section B.3 reviews the notion of Lebesgue integration of measur-
able functions. Section B.4 de�nes the moments and expectation for measurable functions. Section
B.5 and B.6 review the notions of a density function and the Radon-Nikodym theorem respectively.
Finally, Section B.7 de�nes the notion of a Gaussian measure on separable Banach spaces.

B.1 Probability Measure Space

De�nition B.1. (�-algebra)
Let 
 be a set and let ? denote an empty set. A �-algebra on 
 is a collection F of subsets of 

satisfying

1. ? 2 F

2. If A 2 F then Ac 2 F

3. If fAn 2 F : 8n = 1 : : :1g then [1n=1An 2 F

The following additional properties can then be derived from the above three axioms

1. Both ? and 
 belong to F

2. For a countable sequence fAn 2 F : n = 1 : : :1g, both [1n=1An and \1n=1An belong to F

3. For any A;B 2 F and A � B, BnA 2 F

A tuple (
;F) of the set 
 and a �-algebra F on it is called a measurable space. A �-additive m

De�nition B.2. (Probability measure)
Given a measurable space (
;F), Probability measure is a map P : F ! [0; 1] that satis�es:

1. 8# 2 F , P(#) 2 [0; 1]
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2. P(?) = 0 and P(
) = 1

3. For any countable collection fAn 2 Fg1n=1 of disjoint measurable sets such that 8n 6= m,
An \Am = ?, P([1n=1An) =

P1
n=1 P(An)

A tuple (
;F ;P) of the event set 
, �-algebra F and a probability measure P on F is called a
Probability Measure space.

B.2 Measurable Functions

De�nition B.3. ( (F j B)-measurable function)
Let (
;F) and (Z;B) be two measurable spaces and let X : 
 ! Z be a function map between
them. X is said to be a (F j B)-measurable function if for all � 2 B, the preimage set X�1(�) :=
f! 2 
 : X(!) 2 �g 2 F .

Often Z is taken to be a topological space with topology �Z and B is taken to be the Borel sigma
algebra generated by the open sets in �Z , denoted as B(Z).

De�nition B.4. (Law of a measurable function)
Let (
;F ;P) be a probability measure space, (Z;B) be a measurable space and X : 
 ! Z be
a (FjB)-measurable function. The law of a measurable function X is de�ned as the probability
measure L(X) : B ! [0; 1], given by (L(X))(�) = P(X�1(�)) for all � 2 B.

De�nition B.5. (Indicator function)
Let (
;F) and (Z;B) be two measurable spaces. Let Z be a set with a commutative binary
operator, � : Z � Z ! Z, de�ned for its members and let there exist unique members in Z, 0Z
and 1Z , such that for all z 2 Z, z � 0Z = 0Z and z � 1Z = z. For any # 2 F , de�ne the indicator

function I# : 
! Z such that I#(!) =

(
1Z if ! 2 #
0Z otherwise

The following lemma shows that any indicator function de�ned for a measurable set # 2 F is
(FjB)-measurable.

Lemma B.1. (Measurability of indicator function)
For all measurable spaces (
;F), (Z;B) and # 2 F , the indicator function I# : 
 ! Z, as given
by De�nition B.5, is a (FjB)-measurable function.

Proof: Note that for any � 2 B, I�1
# (�) =

8
>>>><

>>>>:

? if � \ f0Z ; 1Zg = ?

 if 0Z 2 �; 1Z 2 �
#c if 0Z 2 �; 1Z =2 �
# otherwise

. Since ?;
; # and #c all

belong to F , for all � 2 B, I�1
# (�) 2 F , implying I# is (FjB)-measurable. �

An indicator function I# is often used to restrict the support of other measurable functions X to
a measurable set # of interest by taking a product of the functions X � I#. The following lemma
shows that a function de�ned through such a product is also (FjB)-measurable.
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Lemma B.2. (Measurability of product with indicator function)
Let (
;F); (Z;B) be as de�ned in De�nition B.5. Let X : 
! Z be a (FjB)-measurable function.
Then for every # 2 F , the indicator function I# : 
 ! Z is such that the product of functions
XI# : 
! Z, de�ned as XI#(!) = X(!) � I#(!), is (FjB)-measurable.

Proof: Note that for any � 2 B, (XI#)�1(�) =

(
[X�1(�) \ #] [ #c if 0Z 2 �
X�1(�) \ # otherwise

. Since X�1(�) 2

F (by measurability of X) and #; #c 2 F , both X�1(�)\ # and [X�1(�)\ #][ #c belong to F (by
union and intersection properties of measurable sets). Thus XI# : 
! Z is (FjB)-measurable. �

B.3 Integration of Measurable Functions

For the purpose of establishing an integral of measurable functions we need a fully ordered set
Z with an attainable in�mum element and let Z be a subset of a real vector space (such that
multiplication by real scalars and addition is de�ned on Z). Such a Z is isomorphic to R or a
subset of R. To begin with, we can simply consider, Z = [0;1) � R which has these properties.

De�nition B.6. (Lebesgue integral for fully ordered, in�mum attaining Z)
Let (
;F ;P) be a (probability) measure space and (Z;B) be a measurable space with a well
de�ned addition operation and an attainable in�mum in Z (e.g. (Z;B) = ([0;1);B)). Let # 2 F
be any measurable set and I# be the corresponding indicator function. Let X : 
 ! Z be a
non-negative (FjB)-measurable function. Let � = f#i 2 F : [#i = Z;8i 6= j; #i \ #j = ?g be a
�nite decomposition of disjoint measurable sets for Z and � = f�g be a collection of all possible
�nite decompositions of Z. Then an integral with respect to the measure P is de�ned on # as

Z

#
XdP := sup

�2�

X

#i2�

�
inf
!2#i

XI#(!)
�

P(#i) (B.1)

Since the in�mum is always attainable in Z, the in�mum in (B.1) is well de�ned. Further since the
supremum is considered over all possible measurable set covers for #, the integral value evaluated is
unique and the integral is thus well de�ned. Note that the integral can still evaluate to1 and is still
considered as well de�ned. Further if B is the Borel �-algebra then the de�nition in (B.1) is consis-
tent with the dual de�nition of the integral obtained by interchanging the in�mum and supremum
(i.e.

R
#XdP := sup�2�

P
#i2� [inf!2#i XI#i(!)] P(#i) = inf�2�

P
#i2�

�
sup!2#i XI#i(!)

�
P(#i), see

[100, Exercise 15.2]).
For a more general Z where an in�mum is not always attainable (e.g. Z = R), but Z fully

ordered, we split the set Z using some z0 2 Z into subsets Z+ := fz 2 Z : z � z0g and
Z� := fz 2 Z : z � z0g for which an in�mum and supremum respectively are attainable. Let
B be such that Z+ and Z� are measurable sets and X be (FjB)-measurable. Then consider the
(FjB)-measurable functions X+ := XIX�1(Z+) and X� := �(XIX�1(Z�)) and de�ne the integralR
#XdP :=

R
#X

+dP �
R
#X

�dP. For a consistent de�nition of the integral such that it does
not depend on the value of z0 that we use to split Z, we must ensure �rstly that Z+ and Z�

are measurable sets in B for any z0 2 Z and secondly that the value of
R
#X

+dP �
R
#X

�dP is
independent of z0. Theorem B.1 below shows that B being the Borel �-algebra on Z is necessary
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and su�cient to ensure these two requirements for arbitrary measure spaces (
;F ;P). Thus a
for a general integral de�nition on fully ordered Z we must restrict ourselves to Borel measurable
functions X.

De�nition B.7. (Integration of Borel measurable functions)
Let (
;F ;P) be a (probability) measure space and (Z;B) be a measurable space with Z fully
ordered and B the Borel �-algebra on Z. Let X : 
 ! Z be (FjB)-measurable. For a �xed
z0 2 Z, let Z+ := fz 2 Z : z � z0g and Z� := fz 2 Z : z � z0g be the measurable sets in B and
X+ := XIX�1(Z+) and X� := �(XIX�1(Z�)) be the corresponding (FjB)-measurable functions
with range fz 2 Z : z � z0g. Then using De�nition B.6,

Z

#
XdP =

Z

#
X+dP�

Z

#
X�dP (B.2)

The above integral is well de�ned as long as both
R
#X

+dP and
R
#X

�dP are not 1 at the same
time. Without loss of generality, for Z = R, z0 can be taken to be 0 (by Theorem B.1).

Theorem B.1. (Borel measurability for Integral consistency)
For Lebesgue integral as de�ned by (B.2), the integral value is independent of the choice of z0 if
and only if B is a Borel �-algebra generated by the sets ffz 2 Z : z > z0g : z0 2 Zg

Proof: Note that if B is the Borel �-algebra on Z, then Z+ and Z� are measurable sets in Z
for any z0 and thus X�1(Z+) and X�1(Z�) are measurable sets in F (* X is (FjB)-measurable).
Then by Lemma B.2, X+ := XIX�1(Z+) and X� := �(XIX�1(Z�)) are (FjB)-measurable and the
integral for them can be de�ned as given by (B.1).

The uniqueness of the integral value can be seen by considering splitting around two values
z0; z00 2 Z and without loss of generality z0 < z00. Let Z+

z0 := fz 2 Z : z � z0g, Z�z0 := fz 2 Z : z �
z0g and Z+

z00
:= fz 2 Z : z � z00g, Z

�
z00

:= fz 2 Z : z � z00g. Similarly let X+
z0 = XIX�1(Z+

z0 ), X
�
z0 =

�XIX�1(Z�z0 ) and X+
z00

= XIX�1(Z+
z00

), X
�
z00

= �XIX�1(Z�
z00

). Let
R
#XdP =

R
#X

+
z0dP �

R
#X

�
z0dP

and note that
R
#XdP =

R
#X

+
z0dP �

R
#X

�
z0dP =

R
#X

+
z00
dP �

R
#�XIX�1([z0;z00])dP �

R
#X

�
z0dP =

R
#X

+
z00
dP�

R
#X

�
z00
dP.

Thus B being the Borel �-algebra is su�cient for the integral to be well de�ned and unique,
independent of the choice of z0.

Further if B is not the Borel �-algebra on Z, then there must exist a z0 such that Z+ = fz 2
Z : z � z0g =2 B and thus X+ is not (FjB)-measurable. For such a z0, the integral will not be well
de�ned by B.1. Thus B being a Borel �-algebra is necessary for (B.2) to be well de�ned for any
z0. �

The Lebesgue integral can be further extended to any general Banach space Z (e.g. Rn and
Lp(X ;G; �) function spaces) using the notions of Pettis and Bochner integrals [101, Chapter 1].

B.3.1 Integration of Banach-valued functions

Let Z be a Banach space, B(Z) be the Borel �-algebra on Z and (Z;B(Z)) be a corresponding
measurable space. Let Z? be the dual space containing all linear, continuous functionals on Z.
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Let (
;F ;P) be a probability measure space and let F
;Z be the space of all (FjB(Z))-measurable
functions. The notions of Pettis and Bochner integration for X 2 F
;Z are de�ned as follows.

De�nition B.8. (Pettis Integral)
X 2 F
;Z is said to be Pettis integrable if for each # 2 F , there exists a m# 2 Z such that
for all h 2 Z?, h(m#) =

R
# h(X(!))P(d!) and we denote integration in the Pettis sense with

m# = (P )
R
#XdP.

This is equivalent to the intuitively de�ned component wise integration for Rn-valued functions
as n functionals corresponding to the standard orthonormal basis for Rn span the whole dual space
in Rn.

De�nition B.9. (Bochner integration)
X 2 F
;Z is said to be Bochner integrable if for each # 2 F , there exists a sequence of simple
functions fXn 2 F
;Zg such that limn!1

R
# jjXn(!) � X(!)jjZP(d!) = 0 and we denote the

integration in the Bochner sense with (B)
R
#XdP = limn!1(L)

R
#XndP.

The necessary and su�cient condition for X 2 F
;Z to be Bochner integrable is thatR

 jjXjjZdP < 1 [101, Theorem 1.8]. Furthermore it can be shown that every Bochner inte-

grable function is also Pettis integrable and that the integrals have the same value [101]. Thus
from here on we will consider integrability for Banach-valued functions in the sense of Bochner.
Pettis integrability follows automatically if the function is Bochner integrable and will be used
when convenient with the understanding that the value computed is the same as that for the
Bochner integral. Also we will simply, denote the Bochner integral as

R
# instead of (B)

R
#.

B.4 Expectation and moments of measurable functions

De�nition B.10. (Expectation)
Let (
;F ;P) be a probability measure space and X : 
! Z be a (FjB)-measurable function. The
expectation of X, denoted E[X], is de�ned as E[X] =

R

XdP.

The set of (FjB)-measurable functions satisfying E[ jjXjjZ ] <1 is denoted L1(
;F ;P). In general,
Lp(
;F ;P) = fX 2 F
;Z : E[jjXjjpZ ] <1g.

For X 2 L1(
;F ;P), X is Bochner and thus Pettis integrable. The expectation of X can also
thus be regarded as a map from Z? ! R as E[X] : Z? ! R given by E[X](h) =

R

 h(X(!))P(d!)

and is called the �rst moment of X.
For k 2 N, we de�ne the kth moment and central moments as a tensor, Mk : F k
;Z � Z

?k ! R
as follows.

De�nition B.11. (Moments)
For k 2 N, X1; : : : ; Xk 2 F
;Z and h1; : : : ; hk 2 Z? we de�ne the kth moment tensor
Mk((X1; : : : ; Xk); (h1; : : : ; hk)) =

R

 h1(X1(!)) � h2(X2(!)) � : : : hk(Xk(!))P(d!).

Note thus that M1(X;h) = E[X](h) = h(E[X]). Further for a �xed (X1; : : : ; Xk),
we denote by Mk(X1; : : : ; Xk) : Zk ! R, the section Mk(X1; : : : ; Xk)(h1; : : : ; hk) =
Mk((X1; : : : ; Xk); (h1; : : : ; hk)).
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De�nition B.12. (Central Moments)
For k 2 N, X1; : : : ; Xk 2 F
;Z and h1; : : : ; hk 2 Z? we de�ne the kth central moment ten-
sor Ck((X1; : : : ; Xk); (h1; : : : ; hk)) =

R

 h1(X1(!) � E[X1]) � h2(X2(!) � E[X2]) � : : : hk(Xk(!) �

E[Xk])P(d!).

Similar to the moments by Ck(X1; : : : ; Xk) : Z?k ! R we denote the section
Ck(X1; : : : ; Xk)(h1; : : : ; hk) = Ck((X1; : : : ; Xk); (h1; : : : ; hk)). In particular C2((X1; X2)) : Z?2 !
R is called the covariance between X1 and X2.

De�nition B.13. (Covariance)
For X1; X2 2 F
;Z we de�ne the covariance of X1; X2 as the central moment tensor C2(X1; X2).

B.5 Probability density

De�nition B.14. (Probability density function)
Let (
;F ;P) be a probability measure space. If there exists a (FjB(R))-measurable function
� : 
! [0;1) and a measure � : F ! R such that for all A 2 F , P(A) =

R
A �d�, then � is said to

be the density of P with respect to the measure �.

The question of when such a density function � exists for a measure P is addressed by the
Radon-Nikodym theorem presented in Section B.6.

Quite commonly with 
 = Rn, � is taken to be the Lebesgue measure on Rn. Then the density
with respect to this Lebesgue measure such that P(A) =

R
A �dx refers to the familiar notions of

probability density functions on Rn (e.g. the Gaussian density function).

B.6 Radon-Nikodym Theorem

Let �; � 2M�(
;F) be two signed bounded measures on a �-measurable space (
;F), one question
motivated by the existence of density functions, is to ask when does such a (FjB(R))-measurable
density function � : 
 ! [0;1) exist, such that 8A 2 F , �(A) =

R
A �d� (see for example the

existence question for probability density functions in Section B.5).
The Radon-Nikodym theorem attempts to answer this question. In order to present the theorem

though the following terms need to be de�ned �rst.

De�nition B.15. (Mutually singular measures)
Let �; � be signed measures on a measurable space (
;F). � and � are said to be mutually singular,
denoted � ? �, if there exist measurable sets S�; S� 2 F such that

�(S�) = 0; �(S�) = 0; S� \ S� = ? and S� [ S� = 
 (B.3)

De�nition B.16. (Absolute continuity of measures)
Let �; � be signed measures on a measurable space (
;F). � is said to be absolutely continuous
with respect to �, denoted � << �, if for all # 2 F , �(#) = 0 implies �(#) = 0.
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Theorem B.2. (Radon-Nikodym Theorem)
For any signed measures �; � on (
;F) with � << �, there exists a density function � 2 L1(
;F ; �)
such that for all A 2 F , �(A) =

R
A �d�

For proof, we refer the reader to the proof for [102, Theorem 28.1].
Further it is known that for any signed measure � 2 M�, the band B� = f� 2 M� : �(A) =R

A f�d�; f� 2 L
1(
;F ; �)g is such that B� � (B�)d =M� (by Exercise 27.5 and Theorem 12.2 in

[102]). Thus any measure � 2 M� in terms of � 2 M� can be written as � = � + � with � 2 B�
and � 2 (B�)d, i.e., � << � and � ? � .

B.6.1 Conditional Expectation

De�nition B.17. (Conditional Expectation)
For a probability measure space (
;F ;P), let G � F be a sub �-algebra. Given a (FjB)-measurable
function X : 
! Z the conditional expectation, denoted E[XjjG], is a (GjB)-measurable function
satisfying,

8# 2 G
Z

#
(E[XjG]�X)dP (B.4)

The notion of conditional expectation represents a fair policy under partial information contained
in G, i.e., if one were to get a random return of X with probability P without knowing completely
which � 2 F occurred, but only a partial observation on which # � � in G occurred, is available,
a fair price (zero expected loss) is given by E[XjG].

The (GjB)-measurable function E[XjG] is not unique, however any two versions of E[XjG]
are P � a:s: equal ([100, Section 34]). Further it is easy to see that E[Xjf?;
g] = E[X] and
E[XjF ] = X.

B.7 Gaussian Measures

The presentation here is restricted to Gaussian measures on separable Banach spaces, for a more
detailed presentation on locally convex spaces, the reader is referred to [26, Chapter 2].

We �rst introduce the Gaussian measure and density on R and use that notion to de�ne a
Gaussian measure on any (possibly in�nite dimensional) separable Banach space.

De�nition B.18. (Gaussian density on R)

For known scalar constants m 2 R and �2 2 (0;1), let pm;�(x) = 1p
2��

e�
(x�m)2

2�2 be the probability
density with respect to the Lebesgue measure on R for a measure � : B(R) ! [0; 1] such that
8A 2 B(R), �(A) =

R
A pm;�(x)dx. � is called a non-degenerate Gaussian measure on R and pm;�

the Gaussian density function.

However, not all Gaussian measures are absolutely continuous with respect to the Lebesgue measure
and have a Gaussian density function, if we are to consider the useful notion of Dirac measures
as degenerate Gaussian measures. Thus in general we de�ne the Gaussian measure (including the
degenerate case) as follows,
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De�nition B.19. (Gaussian measure on R)
A probability measure � : B(R) ! [0; 1] is called a Gaussian measure on R, if it has a Gaussian

density pm;�(x) = 1p
2��

e�
(x�m)2

2�2 , for some known scalar constants m 2 R and �2 2 (0;1), or if it
is a Dirac measure �m, centered at some m 2 R.

De�nition B.20. (Gaussian measure on Banach spaces)
Let Z be a separable Banach space and B(Z) be the Borel �-algebra on Z. Let (R;B(R)) be
the measurable space on the real line and let Z? be the dual space to Z. A probability measure
� : B(Z) ! [0; 1] is said to be Gaussian if for all h 2 Z? the law � � h�1 : B(R) ! [0; 1] is a
Gaussian measure on R.

De�nition B.21. (Mean and Covariance functions)
Let (Z;B(Z)) be a measurable Banach space. Given a measure � : B(Z) ! [0; 1] for any h 2
Z?, the law � � h�1 : B(R) ! [0; 1] is said to have a mean function m� : Z? ! R de�ned
as m�(h) = E[h] =

R
Z hd� and covariance function �� : Z? � Z? ! R de�ned as ��(h; g) =

E[hg]�m�(h)m�(g) =
R
Z(h(�)�m�(h))(g(�)�m�(g))�(d�).

Theorem B.3. (Fernique theorem - integrability of Gaussian measure)
Let � be a Gaussian measure on a separable Banach space Z. Then there exists a real positive
scalar � > 0 such that Z

Z
e�jjxjj

2
Z�(dx) <1 (B.5)

We refer the reader to [103, Theorem 2.3.1, Corollary 3.3.2] for the proof. As corollaries to the
Fernique theorem we get the boundedness of all moments for a Gaussian measure and continuity
of the mean and covariance functions.

Corollary B.1. (Bounded moments)
Let � be a Gaussian measure on a separable Banach space Z. Then for every 1 � p <1,

Z

Z
jjxjjpZ�(dx) <1 (B.6)

Proof: Since jjxjjpZ � c�;pe�jjxjj
2
Z for some �nite constant c�;p, we have

R
Z jjxjj

p
Z�(dx) �

c�;p
R
Z e

�jjxjj2Z�(dx) <1. �

Corollary B.2. (Integrability of Z?)
Let � be a Gaussian measure on a separable Banach space Z. Then for every 1 � p <1 and for
all h 2 Z?, Z

Z
jh(x)jp�(dx) <1 (B.7)

Proof: Note that by continuity of h 2 Z?, jh(x)j � jjhjjZ? jjxjjZ and thus
R
Z jh(x)jp�(dx) �

jjhjjpZ?
R
Z jjxjj

p
Z�(dx) <1. �
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Corollary B.3. (Continuous embedding of Z?)
There exists a continuous inclusion i : Z? ! L2(Z;B(Z); �) such that 8h 2 Z?, i(h) = h and there
exists a constant � 2 (0;1) such that 8h 2 Z?, i(h) = h and jjhjjL2(Z;B(Z);�) � �jjhjjZ? .

Proof: Note that jjhjjL2(Z;B(Z);�) =
�R
Z jh(�)j2d�(�)

�1=2 and by continuity of h 2 Z?,
jh(�)j � jjhjjZ? jj�jjZ . Thus jjhjjL2(Z;B(Z);�) =

�R
Z jh(�)j2d�(�)

�1=2 �
�R
Z jjhjj

2
Z? jj�jj

2
Zd�(�)

�1=2 =
jjhjjZ?

�R
Z jj�jj

2
Zd�(�)

�1=2. By Corollary B.1,
�R
Z jj�jj

2
Zd�(�)

�1=2 < 1 and thus there exists a
� =

�R
Z jj�jj

2
Zd�(�)

�1=2 2 (0;1) such that jjhjjL2(Z;B(Z);�) � �jjhjjZ? . �

Corollary B.4. (Continuity of mean and covariance functions)
Let � be a Gaussian measure on a separable Banach space Z. The mean function m� : Z? ! R
is continuous (i.e. there exists a �nite constant �m 2 (0;1) such that for all h 2 Z?, jm�(h)j �
�jjhjjZ?). The covariance function �� : Z? � Z? ! R is continuous (i.e. there exists a �nite
constant �� 2 (0;1) such that for all h; g 2 Z?, j��(h; g)j � ��jjhjjZ? jjgjjZ?)

Proof: Note that jm�(h)j = j
R
Z h(x)�(dx)j �

R
Z jh(x)j�(dx) � jjhjjZ?

R
Z jjxjjZ�(dx) (by con-

tinuity of h). Since
R
Z jjxjjZ�(dx) < 1, there exists a constant �m =

R
Z jjxjjZ�(dx) 2 (0;1)

such that m�(h) � �mjjhjjZ? . Similarly j��(h; g)j = j
R
Z h(x)g(x)�(dx) � m�(h)m�(g)j �R

Z jh(x)jjg(x)j�(dx) + jm�(h)jjm�(g)j � jjhjjZ? jjgjjZ?
R
Z jjxjj

2
Z�(dx) + �2

mjjhjjZ? jjgjjZ? . SinceR
Z jjxjj

2
Z�(dx) < 1, there exists a constant �� = (

R
Z jjxjj

2
Z�(dx) + �2

m) 2 (0;1) such that
j��(h; g)j � ��jjhjjZ? jjgjjZ? . �

Theorem B.4. (Representer for the mean function)
Let � be a Gaussian measure on a separable Banach space Z. There exists a representer m 2 Z
for the mean function m� : Z? ! R such that for all h 2 Z?, h(m) = m�(h).

Proof: By [104, Proposition 3.14], there exists a m 2 Z such that for all h 2 Z?, m�(h) = h(m)
if m� : Z? ! R is continuous with respect to the weak? topology �(Z?;Z). Further by [104,
Theorem 3.28] for separable Banach spaces, weak? continuity is equivalent to continuity along weak?

convergent sequences. For a sequence fn 2 Z? converging in the weak? topology to f 2 Z?, there
exists a �nite constant M 2 (0;1) such that for all n, jjfnjjZ? < M [104, Proposition 3.13(iii)].
Then by the Lebesgue dominated convergence theorem, limn!1m�(fn) = limn!1

R
Z fnd� =R

Z fd� = m�(f), implying m� is continuous along each weak? convergent sequence and thus by
[104, Proposition 3.14], there exists a m 2 Z such that for all h 2 Z?, m�(h) = h(m). �



Appendix C

Function spaces

C.1 Banach space of continuous, bounded functions Cb(X ;Y)

We refer the reader to [105, Section IV.6.1] for the proofs of theorems presented below and to [106]
for a summarized version of the results.

Let X be a normal (T4-separable) topological space, that is, the points in X are all closed and
two disjoint closed sets can be separated by open neighborhoods. All metric spaces are known to
be normal. Let Y be a Banach space.

Theorem C.1. The space of continuous, bounded functions Cb(X ;Y) from a normal topological
space X to a Banach space Y with the norm jjf jjCb(X ) = supfjjf(x)jjY : x 2 Xg is a Banach space.

Proof: By Lemma [105, Lemma 1.4.18], Cb(X ;Y) is a vector space on the real �eld and by [105,
Corollary 1.7.7], the vector space is closed, implying that Cb(X ;Y) is a Banach space. �

Theorem C.2. Let X be a normal topological space. The dual space to Cb(X ), Cb(X )? is isometric
to the space of regular bounded and �nitely additive measure on B(X ). For any measure � 2
Cb(X )?, f 2 Cb(X ), �(f) =

R
X f(x)d�(x), jj�jjCb(X )? = supfj�(f)j : jjf jjCb(X ) � 1g and j�(f)j �

jj�jjCb(X )? jjf jjCb(X ).

The above theorem is a restatement of [105, Theorem 2, IV.6.2]

De�nition C.1. (Regular bounded and �nitely additive measure)
On the measurable space (X ;B(X )) a real valued measure � is called,

1. bounded, if for all E 2 B(X ), j�(E)j <1. Thus every �nite additive measure is bounded.

2. �nitely additive , if for any �nite collection of disjoint sets E1; : : : ; En 2 B(X ), �([Ei) =P
iEi. Thus any �nite additive measure is bounded and �nitely additive.

3. regular, if for every � > 0 and E 2 B(X ) there exists a closed set F and an open set G such
that F � E � G and for every C � GnF , C 2 B(X ), �(C) < �. Thus all radon measures are
regular.
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C.2 Lp(Z;B(Z); �) spaces

We refer the reader to [107, Chapter 9] for a more comprehensive overview of Lp spaces and the
proofs of theorems below.

De�nition C.2. (Lp(Z;B(Z); �) space)
Let (Z;B(Z)) be a measurable space and Y be a Banach space. For p 2 [1;1] � R and a �-
additive nonnegative measure � : B(Z)! [0;1], a normed space of measurable functions from Z
to Y, called a Lp(Z;B(Z); �) space, is given by

Lp(Z;B(Z); �) = ff : Z ! Y :
Z

Z
jjf(�)jjpYd�(�) <1g

and

jjf jjLp(Z;B(Z);�) =
�Z

Z
jjf(�)jjpYd�(�)

�1=p

Theorem C.3. (Lp(Z;B(Z); �) is a Banach space)
For any nonnegative �-additive measure �, (Lp(Z;B(Z); �); jj � jjLp(Z;B(Z);�)) is a complete, normed
space, i.e. Banach space.

Proof: See proof for [107, Theorem 9.6]. �

Note that the case for p = 1 is excluded in the above theorem and the dual index for p = 1,
p0 = 1 gives only a subset of the dual space in the case for p =1.

Theorem C.4. (Dual to Lp(Z;B(Z); �))
For a �-�nite measure � : B(Z) ! [0;1] and p 2 [1;1), the dual space of continuous linear
functionals on Lp(Z;B(Z); �) is given by Lp0(Z;B(Z); �) where p0 is the dual index (see de�nition
below) for p.

Proof: See [107, Theorem 9.19] �

De�nition C.3. (Dual index)
The dual index p0 for p 2 [1;1] is de�ned as the number p0 2 [1;1] such that 1

p + 1
q = 1. The dual

index for p = 1 is p0 =1 and vice versa.

Theorem C.5. (Holder’s inequality)
For any measure space (Z;B(Z); �), p 2 [1;1] and p0 the dual index to p,

8h 2 Lp
0
(Z;B(Z); �); f 2 Lp(Z;B(Z); �); jjhf jjL1(Z;B(Z);�) � jjhjjLp0 (Z;B(Z);�)jjf jjLp(Z;B(Z);�)

Theorem C.6. For a positive �nite measure and 1 � p � q < 1, Lq(Z;B(Z); �) �
Lp(Z;B(Z); �) and

8f 2 Lq(Z;B(Z); �); jjf jjLp(Z;B(Z);�) � (�(Z))1=p�1=q jjf jjLq(Z;B(Z);�)

Corollary C.1. For a probability measure � and 1 � p � q <1,

8f 2 Lq(Z;B(Z); �); jjf jjLp(Z;B(Z);�) � jjf jjLq(Z;B(Z);�)
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C.3 Reproducing Kernel Hilbert Spaces

Let Z be a separable Banach space, B(Z) the Borel �-algebra and � be a Gaussian measure on Z.

De�nition C.4. (Reproducing Kernel Hilbert Spaces (RKHS))
Let Z be a separable Banach space and � be a Gaussian measure on Z. Let J : Z? ! Z be the
positive semide�nite linear operator given by

J(h) =
Z

Z
�h(�)d�(�) (C.1)

and let H = J(Z?) be the Hilbert space induced by the semide�nite operator (as de�ned in Section
A.6.1). The Hilbert space induced by J is called a Reproducing Kernel Hilbert Space (RKHS) or
sometimes as the Cameron-Martin space for the Gaussian measure �.

Note that the RKHS is often also de�ned as the Hilbert space on which the evaluation operator
is continuous (i.e. bounded) and has a \reproducing property", [18]. The approach here follows
from the literature on stochastic processes and Gaussian measures as presented in [26] or [108] and
further properties such as the bounded evaluation operators are shown to be a consequence of the
above de�nition.

Theorem C.7. (Existence and uniqueness of RKHS in the Gaussian measure space)
Let Z be a Banach space, B(Z) the Borel �-algebra and � be a Gaussian measure on Z. Then there
exists a unique positive semi-de�nite, self adjoint operator J : Z? ! Z as de�ned in (C.1), such that
H = J(Z?) is a continuously embedded Hilbert subspace of Z and 8h; g 2 Z?, E[hg] = hJh; JgiH.

Proof: First we show that the operator J de�ned by (C.1) is a bounded, self adjoint, positive
semide�nite linear operator, i.e., J 2 S+(Z) and thus by Theorem A.4 it induces a Hilbert space
H = J(Z?) with the inner product, hx; yiH = (J�1x)(y) = (J�1y)(x), and H is continuously
embedded in Z.

Consider the map J : Z? ! Z given by J(h) =
R
Z �h(�)d�(�). It is easy to verify that J is

linear, i.e., J(h+ g) = J(h) + J(g) (by linearity of integration).
To see that J is bounded, note that, jjJ(h)jjZ = jj

R
Z �h(�)�(d�)jjZ �

R
Z jj�h(�)jjZ�(d�) =R

Z jj�jjZ jh(�)j�(d�) �
R
Z jjhjjZ? jj�jj

2
Z�(d�) =

�R
Z jj�jj

2
Z�(d�)

�
jjhjjZ? . Note that by Corollary B.1R

Z jj�jj
2
Z�(d�) <1. Thus there exists a constant � =

R
Z jj�jj

2
Z�(d�) in (0;1) such that 8h 2 Z?,

jjJ(h)jjZ � �jjhjjZ? implying J is bounded.
Further now since jj

R
Z �h(�)�(d�)jjZ < 1, by Fubini’s theorem we have for any g 2 Z?,

g(Jh) = g(
R
Z �h(�)d�(�)) =

R
Z g(�)h(�)d�(�) = h(Jg). Thus J is self adjoint and we have for all

h 2 Z?, h(Jh) =
R
Z h(�)2d�(�) � 0 implying J � 0.

Thus we have shown that J as de�ned by (C.1) belongs to S+(Z) and by Theorems A.3 and
A.4, the Hilbert space H induced by J is a continuously embedded Hilbert subspace of Z. Further,
by Theorem A.5, E[hg] =

R
Z h(�)g(�)d�(�) = g(Jh) = hJh; JgiH.

To show that J is the unique operator satisfying 8h; g 2 Z?, E[hg] = hJh; JgiH, we proceed
by contradiction. Let there exist another operator J 0 2 S+(Z) such that E[hg] = hJ 0h; J 0giH,
then we have E[hg] = h(Jg) = h(J 0g). Thus 8h; g 2 Z? h((J � J 0)g) = 0 implying 8g 2 Z?,
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(J � J 0)g = 0 implying J = J 0. Thus J given by (C.1) is the unique operator in S+(Z) satisfying
E[hg] = hJh; JgiH. �

Lemma C.1. The following properties hold for J(h) =
R
Z �h(�)d�(�),

1. Jh = 0 () h ��a:e:= 0

2. f1 = f2 () f1 = Jh1, f2 = Jh2 and h1
��a:e:= h2

3. jjJhjjH = jjhjjL2(Z;B(Z);�)

4. jjJhjjZ � jjJ jjLZ?;Z jjhjjZ? with jjJ jjLZ?;Z =
R
Z jj�jj

2
Zd�(�)

5. jjJ jj�1=2
LZ?;Z

jjhjjL2(Z;B(Z);�) = jjJ jj�1=2
LZ?;Z

jjJhjjH � jjhjjZ? � jjJhjjH = jjhjjL2(Z;B(Z);�)

Proof: For the �rst statement note that h ��a:e:= 0 implies jjf jjH = jjJhjjH = h(Jh)1=2 =
(
R
Z h(�)2d�(�))1=2 = 0 =) Jh = 0. On the other hand, J(h) = 0 implies jjJhjjH = 0, i.e.,

h(Jh) =
R
Z h(�)2d�(�) = 0 =) h ��a:e:= 0. The second statement follows from the �rst, by

considering ~h = h1�h2 and noting that ~h ��a:e:= 0 implies h1
��a:e:= h2. The third statement follows

from the inner product de�nition, jjJhjjH = (h(Jh))1=2 =
�R
Z h(�)2d�(�)

�1=2 = jjhjjL2(Z;B(Z);�).
The fourth statement was already shown in Theorem C.7, where J was shown to be bounded.

For the �nal statement, using Cauchy-Schwarz inequality, note that jh(�)j �
jjhjjZ? jj�jjZ . Then jjJhjjH = h(Jh)1=2 =

�R
Z h(�)2d�(�)

�1=2 �
�R
Z jjhjj

2
Z? jj�jj

2
Zd�(�)

�1=2 =
�R
Z jj�jj

2
Zd�(�)

�1=2 jjhjjZ? = jjJ jj1=2LZ?;Z jjhjjZ? , i.e. jjJ jj�1=2
LZ?;Z

jjJhjjH � jjhjjZ? .
For the other side of the inequality, note by Holder’s inequality that jjJhjjH =

�R
Z h(�)2d�(�)

�1=2 =
�
jjh2jjL1(Z;B(Z);�)

�1=2 �
�
jjhjj2L2(Z;B(Z);�)

�1=2
= jjhjjL2(Z;B(Z);�) =

jjJhjjH. �

The reproducing kernel Hilbert space H is a continuously embedded subspace in Z. When the
subspace H is dense in Z, for the natural inclusion i : H ! Z, i(f) = f along with the spaces,
(i;H;Z) forms an abstract Wiener space [26, Theorem 3.9.6]. [109, Theorem 7] shows that an
RKHS space induced on a separable Banach space by a non-degenerate Gaussian measure forms
an Abstract Wiener space.

C.3.1 Kernels, Adjoints and Covariance operators in RKHS

Finally we would like to establish the relation of the RKHS as de�ned above with the commonly
understood notion of RKHS in terms of positive de�nite kernel functions as de�ned in [18] and
clarify the relation of J and the kernel to the covariance operator of the measure �.

For the relation of J to the kernel functions we �rst establish the relation of adjoints for linear
operators acting on the RKHS above to J .
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Theorem C.8. (Adjoints for Hilbert space-valued operators from J)
Let Y be a separable Hilbert space, Z a separable Banach space. Let H = J(Z?) be a dense
RKHS subspace of Z, induced by J 2 S+(Z) and L : H ! Y be a bounded linear operator with
dom(L) = H. Let L0 : Z ! Y be the unique, bounded linear extension of L to Z as justi�ed by
[?, Theorem 3]. For every y 2 Y, let My : Z ! R denote the bounded linear functional given by
My(�) = hL0�; yiY . Then the adjoint L? is given by

8y 2 Y; L?y = J(My) =
Z

Z
�My(�)d�(�) (C.2)

Proof: By de�nition of the adjoint we have for all y 2 Y and f 2 dom(L) = H, My(f) =
hLf; yiY = hf; L?yiH. Since My 2 Z?, by Theorem A.5, note that for any f 2 H, My(f) =
hJMy; fiH. Thus we have 8f 2 H, hL?y � J(My); fiH = 0, implying L?y = J(My) =R
Z �My(�)d�(�) =

R
Z �hL

0�; yiYd�(�). �

Below we show the application of Theorem C.8 for a few commonly used dense embeddings of
RKHS in Banach spaces.

C.3.2 Kernel for evaluation operator Lx on RKHS embedding in Cb(X ;Y)

Theorem C.9. (RKHS Kernel for Cb(X ;Y))
Let Y be a Hilbert space, Z = Cb(X ;Y) be the Banach space of Y-valued continuous and bounded
functions with a metric space domain X . Let � be a non-degenerate Gaussian measure on B(Z).
Let J 2 S+(Z) be the operator given by (C.1) inducing an RKHS, H = J(Z?). Let fLx : Z !
Y : x 2 Xg be the collection of bounded evaluation operators such that Lxf = f(x). Then the
following properties hold,

1. LxjH : H ! Y is a bounded linear evaluation operator with domain restricted to H such
that 8f 2 H, (LxjH)f = Lxf = f(x).

2. There exists an unique operator-valued function K : X � X ! LY;Y such that (LxjH)? =
K(x; �), i.e., 8y 2 Y, (LxjH)?y = K(x; �)y.

Proof: Note that for all f 2 H � Cb(X ;Y), we have jj(LxjH)f jjY = jjLxf jjY � jjf jjZ and
from Lemma C.1-4 and 5, jjf jjZ � (jjJ jjLZ?;Z )jjf jjH. Thus for all f 2 H, jj(LxjH)f jjY �
(jjJ jjLZ?;Z )jjf jjH, implying the linear operator LxjH is bounded on H.

Now for (LxjH)? from (C.2), note that (LxjH)?y = J(My) =
R
Z �hLx�; yiYd�(�) is a function in

H, then for any x; s 2 X , we can de�ne K : X �X ! LY;Y as K(x; s) =
R
Z Ls�hLx�; �iYd�(�). �

The following properties for the kernel function K are then straightforward to verify from the
de�nition of K,

Lemma C.2. (Properties of the evaluation kernel on Cb(X ;Y))

1. K(x; x) > 0 (i.e. K(x; x) is a positive de�nite operator)
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2. K(x; s) = K(s; x)?

3.
R
X
R
X hf(s);K(x; s)f(x)iYd�(x)d�(s) � 0 for all f 2 L2(X ;B(X ); �) (Mercer’s property)

4. hK(x; s)y; ziY = hK(x; �)y;K(s; �)ziH

5. jj(LxjH)?jjLY;H = jjK(x; �)jjLY;H = jjK(x; x)jj1=2LY;Y

6. jjK(x; s)jjLY;Y � jjK(x; x)jj1=2LY;Y jjK(s; s)jj1=2LY;Y

7. hLxf; ziY = hf;K(x; �)ziH (The reproducing property)

Proof: For the �rst and second statement, note that, for any x; s 2 X and y1; y2 2 Y
we have hy1;K(x; s)y2iY = hy1;

R
Z Ls�hLx�; y2iYd�(�)iY =

R
ZhLs�; y1iYhLx�; y2iYd�(�) =

hy2;
R
Z Lx�hLs�; y1iYd�(�)iY = hy2;K(s; x)y1iY . This shows that K(x; s)? = K(s; x) (second

statement) and that for any y 6= 0 2 Y, hy;K(x; x)yiY =
R
ZhLx�; yi

2
Yd�(�) > 0 (�rst statement).

For the third statement (Mercer’s property),
R
X
R
X hf(s);K(x; s)f(x)iYd�(x)d�(s) =

R
X
R
X
R
ZhLs�; f(s)iYhLx�; f(x)iYd�(�)d�(x)d�(s) =

R
Z
�R
X hLx�; f(x)iYd�(x)

�2 d�(�) � 0
The fourth to seventh statement follows directly from the de�nition of the kernel section K(x; �)

being the adjoint for the evaluation operator Lx. �

Another question that arises is for what condition does a function K : X � X ! LY;Y correspond
to kernel for an evaluation operator densely de�ned in an RKHS. This was addressed by Mercer’s
theorem [110] for real valued function spaces and by an extension to Cn-valued functions in [111].

Theorem C.10. (Second moment (Covariance) operator J)
h(Jg) = E[hg] computes the second moment for any measure �. For evaluation operators Lx; Ls,
E[Lxf; Lsf ] = K(x; s) gives the second moment for vectors in Y. For zero mean Gaussian measures
this is the same as the covariance operator and thus the kernel K(x; s) gives the covariance for the
evaluated vectors in Y for a zero mean Gaussian process.

C.4 The space of signed measures: M�(X ;BX )

Below is a summary of material presented in [30, Chapter 14]. We will call the space (X ;BX ) a
�-measurable space if BX is a �-algebra on X .

De�nition C.5. (Signed measure)
On a �-measurable space (X ;BX ), a mapping � : BX ! [�1;1] that satis�es the additivity
property for any countable collection of disjoint measurable sets fAn 2 BX : n 2 N;8i 6= j; Ai\Aj =
?g, i.e., �([nAn) =

P
n �(An) and �(?) = 0 is a called �-additive signed measure, or simply as a

signed measure. (�1 and 1 are included in the range). The space (X ;BX ; �) is called the signed
measure space.

De�nition C.6. (�-positive and negative subsets)
On a signed measure space (X ;BX ; �), a measurable set A 2 BX is called �-positive (negative) if
for all BX -measurable subsets B � A, �(B) � 0 (�(B) � 0). The set A is called strongly �-positive
(negative) if for all measurable subsets B � A, �(B) > 0 (�(B) < 0).
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For a signed measure space the [102, Lemma 27.1] tells us that for any A 2 BX such that �(A) > 0
(�(A) < 0) there must exist a subset B 2 BX , B � A such that B is strongly �-positive (negative).
From this lemma the Hahn decomposition theorem [102, Theorem 27.2] follows.

Theorem C.11. (Hahn decomposition)
In a signed measure space (X ;BX ; �) there exist disjoint �-positive and �-negative sets X+ and
X� such that X = X+ [ X�.

Proof: For (X ;BX ; �) such that for all A 2 BX , �(A) = 0, the result holds trivially since any
subset X+ � X and X� = XnX+ gives such a decomposition. Thus without loss of generality we
assume that there exists at-least one A 2 BX such that �(A) � 0 or �(A) � 0. Further if for all
A 2 BX , �(A) � 0 (or 8A 2 BX , �(A) � 0) the result is trivial X+ = X and X� = ? (or X� = X
and X+ = ?).

Thus we assume there exist some A;B 2 BX such that �(A) > 0 and �(B) < 0. Then
by [102, Lemma 27.1] we know there must exists at-least one strongly �-positive A+ � A. Let
P = fA 2 BX : A is strongly �-positiveg and l = supf�(A) : A 2 Pg. For any countable sequence
fAn 2 P : n 2 Ng such that limn!1 �(An) = l, we have X+ = [n2NAn which is strongly �-positive.
Then X� = XnX+ must be �-negative. To see this note that if X� is not �-negative then there
would exist a subset B 2 X� such that �(B) > 0, but then �(X+ [ B) = �(X+) + �(B) > l,
but this contradicts the requirement that l is the supremum. Thus X� and X+ gives the required
decomposition. �

As a corollary, for a signed measure space (X ;BX ; �) such that there exist A;B 2 BX with �(A) > 0
and �(B) < 0, we have a unique decomposition X = X+ [ X� [ X 0 with X+ strongly �-positive,
X� strongly �-negative and X 0 a �-null set (i.e., �(X 0) = 0). From the Hahn decomposition, the
Jordan decomposition of measures follows.

Lemma C.3. (Jordan decomposition of measures)
For a signed measure � on (X ;BX ) there exists a decomposition � = �+ � �� where both �+ and
�� are nonnegative �-additive measures and at-least one of them is a �nite measure.

Proof: Let X = X+ [ X� [ X 0 be the unique Hahn decomposition for X . De�ne the measures
�+(A) = �(A \ X+), ��(A) = �(A \ X�). Noting that �(A \ X 0) = 0, we have �+(A) + ��(A) =
�(A \ X+) + �(A \ X�) + �(A \ X 0) = �((A \ X+) [ (A \ X�) [ (A \ X 0)) = �(A). �

A norm on M�(X ;BX ) is given by jj�jj = supfj�j(A) : A 2 BX g.
Vector valued analogues of the same can be found in [32]
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Stochastic processes

Let Z be a separable Banach space of functions from a set X to a Banach space Y. Let (Z;B(Z); �)
be a probability measure on Z. We will call a (B(Z)jB(Z))-measurable function X : Z ! Z a
stochastic process. Such a stochastic process is also referred to as a random �eld sometimes in
literature. In particular the identity mapping X�(�) = � is a stochastic process characterized by
the measure �. For any stochastic process X : Z ! Z in general, the measure characterizing X is
the push forward measure � �X�1 : B(Z)! [0; 1].

In particular this can be applied to generate a space of Gaussian processes when � is a Gaussian
measure on the space of functions Z and X is restricted to a space of bounded a�ne functions, as
shown below.

D.1 A Banach space of Gaussian processes: Z�
De�nition D.1. (Gaussian process)
Let Z be a Banach space of functions from X to Y and � : B(Z)! [0; 1] be a Gaussian probability
measure on Z. A (B(Z)jB(Z))-measurable function X : Z ! Z is called a Gaussian process if the
push forward measure � �X�1 : B(Z)! [0; 1] is a Gaussian measure on Z.

Lemma D.1. (A�ne functions on Z are Gaussian processes)
Let Z be a Banach space of functions from X to Y and � : B(Z)! [0; 1] be a Gaussian probability
measure on Z. Let A 2 LZ;Z be a bounded linear operator and b 2 Z be a given vector in Z.
Then the measurable function X(�) = A� + b is a Gaussian process.

Proof: The pre-image X�1(z) = A�1z� b is given by the preimage map A�1 (A is not necessarily
invertible, the notation is used for a preimage map here). By de�nition of Gaussian measures on
Z, � � X�1 is a Gaussian measure if, and only if, for any functional h 2 Z?, � � X�1 � h�1 is a
Gaussian measure on R. Further for any # 2 B(Z), #b = # � b is a Borel measurable set, i.e.,
#b 2 B(Z). Under a change of variable Zb = Z � b, if � is Gaussian on Z, �b(�) = �(� � b) is
a Gaussian measure on Zb. For each h 2 Z?, hb = h � X � h(b) = h � A belongs to Z?b and
h�1
b z = A�1h�1(z).

Now, note that � � X�1 � h�1(z) = �(A�1h�1z � b) = �b(A�1h�1z) = �b(h�1
b z). Thus � �

X�1 � h�1(z) = �b(h�1
b (z)) is a Gaussian measure on R, since �b is a Gaussian measure on Zb and
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hb 2 Z?b , implying X is a Gaussian process. �

The Feldman-Hajek theorem [26, Chapter 6] states that two Gaussian measures on Z can either
be equivalent or mutually singular and nothing else. Not all Gaussian measures are equivalent
on in�nite dimensional Z. Thus a�ne transformations as used above do not in general lead to
equivalent Gaussian measures, except under certain conditions on A (see [26, Chapter 6]). So no
claim on equivalence of the push forward Gaussian measures are made, in general.

The general Banach space of measurable functions X : Z ! Z is given by the notion of
a Lebesgue-Bochner space. We show below that a set of bounded a�ne transformations on Z
provides an example of an L1 Lebesgue-Bochner space of Gaussian processes.

Lemma D.2. (A vector space of Gaussian processes)
Let A1; A2 2 LZ;Z , b1; b2 2 Z and X1(�) = A1� + b1, X2(�) = A2� + b2 be two Gaussian processes
on Z. Then for any scalar �1; �2 2 R, �1X1 + �2X2 is a Gaussian process on Z. The set
Z� = fA� + b : A 2 LZ;Z ; b 2 Zg is a vector space of Gaussian processes on Z.

Proof: For any �1; �2 2 R, A1; ; A2 2 LZ;Z and b1; b2 2 Z, A = �1A1 + �2A2 2 LZ;Z and
b = �1b1 + �2b2 2 Z. Thus X = �1X1 + �2X2 = A� + b is a Gaussian process by Lemma D.1. �

Lemma D.3. (A norm on Z�)
Let Z� = fA� + b : A 2 LZ;Z ; b 2 Zg is a vector space of Gaussian processes on the Gaussian
probability measure space (Z;B(Z); �). A norm on Z� is given as jjXjjZ� =

R
Z jjX(�)jjZd�(�).

Proof: The properties of the norm for jj � jjZ� can be veri�ed as follows. For any X1; X2 2 Z�,
jjX1 +X2jjZ� =

R
Z jjX1(�)+X2(�)jjZd�(�) �

R
Z jjX1(�)jjZd�(�)+

R
Z jjX2(�)jjZd�(�) = jjX1jjZ� +

jjX2jjZ� . For any a 2 R, jjaXjjZ� = ajjXjjZ� . Further jjXjjZ� = 0 implies
R
Z jjX(�)jjZd�(�) = 0

implying X(�) = 0, �-almost everywhere. �

Lemma D.4. (A Banach space of Gaussian processes: Z�)
Let Z be a separable Banach space and � : B(Z) ! [0; 1] be a Gaussian probability measure on
Z. Then the space (Z�; jj � jjZ�) is a Banach space.

Proof: From Lemma D.2 and D.3, (Z�; jj � jjZ�) is a normed vector space. To check completeness
of the normed space, for any Cauchy sequence fXn : n 2 Ng in Z�, jjXn � XmjjZ� ! 0 impliesR
Z jj(An � Am)� + bn � bmjjZd�(�) ! 0 implies jj(An � Am)� + bn � bmjjZ ! 0 for , �-almost

all �. Also limn;m!1 jj(An � Am)� + bn � bmjjZ = limn;m!1 jj � (An � Am)� + bn � bmjjZ and

jj � (An � Am)� + bn � bmjjZ �
���� jj(An � Am)�jjZ � jj(bn � bm)jjZ

���� ! 0 for �-almost all �,

implying jjAn �AmjjLZ;Z ! 0 and jjbn � bmjjZ ! 0. Thus for every Cauchy sequence in Z� there
must exist corresponding Cauchy sequences fAn 2 LZ;Zg and fbn 2 Zg. Since LZ;Z and Z are
complete spaces, Xn converges to a Gaussian process X(�) = A� + b with A = limAn 2 LZ;Z and
b = lim bn 2 Z, i.e. X 2 Z�. Thus (Z�; jj � jjZ�) is a complete normed vector space, i.e. Banach
space. �

Theorem D.1. (Dual to Z�)
The dual space to Z� is given by the space Z?� = fh : Z ! Z? : 8X 2 Z�;

R
Z jh(�)X(�)jd�(�) <

1g, with the dual action given as E�[hX] =
R
Z h(�)X(�)d�(�). The dual norm is given as

jjhjjZ� = supfjE�[hX]j : jjXjjZ� = 1g.
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Proof: See proof for [112, Theorem 42].
�

D.2 An RKHS of Gaussian processes: H�;�

Consider a Banach space of Gaussian processes Z� as given by Section D.1. For a Gaussian
measure � : B(Z�) ! [0; 1], we can then de�ne an RKHS H�;� = J(Z�) with J : Z?� ! Z� given
as J(h) =

R
Z� �h(�)d�(�) as was done for a general Banach space in Theorem C.7.

D.2.1 Kernels for RKHS of bounded, continuous stochastic processes

Let Z = Cb(X ) and Z� be the Banach space of Gaussian processes de�ned on (Z;B(Z); �) as per
Lemma D.4. For a Gaussian measure � on Z�, let H�;� be the RKHS of Gaussian processes in Z�.

The evaluation operator Lx : Z ! Y, Lxf = f(x) is a bounded linear operator for Z = Cb(X ).
The push forward measure � � L�1

x : B(Y) ! [0; 1] is a Gaussian measure on Y and Y��L�1
x

(denoted as Y� for notational convenience) is the corresponding Banach space of Y-valued Gaussian
measurable functions. Lx : Z� ! Y�, given as LxX(�) = X(Lx�) is then a bounded linear operator
as shown below.

Lemma D.5. (Lx : H�;� ! Y� is a bounded linear operator)
Let H be the RKHS induced by � on Z. jjLxXjjY� � jjLxjjLH�;� ;Y� jjXjjZ� and jjLxjjLH�;� ;Y� =
jjLxjjLH;Y , i.e. Lx : H�;� ! Y� is a bounded linear operator.

Proof: jjLxXjjY� =
R
Y jjX(y)jjYd(� � L�1

x (y)) =
R
Z jjLxX(�)jjYd�(�) �

jjLxjjLH;Y
R
Z jjX(�)jjZd�(�) = jjLxjjLH;Y jjXjjZ� . From Theorem C.9, jjLxjjLH;Y < 1 and

thus we have Lx : H�;� ! Y� to be bounded. �

Theorem D.2. (Kernel for H�;�)
For a Hilbert space Y, there exists a positive semide�nite kernel function K : X � X ! LY�;Y�
such that K(x; �)y = L?xy for all y 2 Y�

Proof: Since Lx : Z� ! Y� is a bounded linear operator on the Banach space Z� for which
the RKHS H�;� is de�ned, by Theorem C.9, there exists a positive semide�nite kernel function
K : X � X ! LY�;Y� such that K(x; �)y = L?xy for all y 2 Y�. �

D.3 Stochastic integral and di�erential equations

D.3.1 Wiener Process

Let T be some constant in [0;1], (T =1 is admissible) and H = L2;1
0 ([0; T ];Rn) be the separable

Hilbert space of once di�erentiable functions with square integrable derivatives and boundary
condition f(0) = 0 for all f 2 Z and inner product hf1; f2iH =

R T
0 hDf1(s); Df2(s)iRnds with

Df = @f=@t.
Let Z = Cb;0([0; T ];Rn) be the Banach space of continuous and bounded functions satisfying

the boundary condition f(0) = 0 for all f 2 Z.
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It is known then that with the natural inclusion i : H ! Z given as i(f) = f for all f 2 H, H
is dense in Z under the inner product norm. Thus the closure of H under the inner product norm
is Z and (i;H;Z) forms an abstract Wiener space. For details we refer the reader to [113, Chapter
1]. It is also known that the Hilbert space in any abstract Wiener space coincides with the RKHS
space induced by a Gaussian measure on the separable Banach space [26, Theorem 3.9.5].

Thus for any Gaussian measure � : B(Z) ! [0; 1], the induced RKHS H is dense in Z. The
classical Wiener measure is a Gaussian measure �Wiener : B(Z) ! [0; 1] corresponding to a zero
mean and covariance C : Z? � Z? ! R such that for all linear operators Lt;s, de�ned below,
the push forward Gaussian measure Lt;s#�Wiener has the covariance matrix C(t; s) = jt � sjIn
and for any �nite collection of times t1 � t2 � � � � tn, the push forward probability measures
Lt1;0#�Wiener; Lt2;t1#�Wiener; : : : ; Ltn�1;tn#

�Wiener are independent Gaussian measures. The iden-
tity map W : Z ! Z de�ned as W (�) = � on the probability measure space (Z;B(Z); �Wiener) is
then a stochastic Markov process, classically known as the Wiener process.

As is the case for any abstract Wiener space (i;H;Z) and the corresponding Gaussian mea-
sure �, �(H) = 0. Thus for the case of the Wiener process, �Wiener(L2;1

0 ([0; T ];R)n) = 0, i.e.,
the set of di�erentiable paths of the Wiener process is a zero measure set w.r.t. �Wiener. Also
�Wiener(Cb;0([0; T ];Rn)) = 1, thus the paths of the Wiener process are continuous and bounded,
�Wiener-almost surely.

Let P : Z ! Rn be any bounded linear function, then the push forward probability measure
space (Rn;B(Rn); P#�Wiener) is given by the push forward measure P#�Wiener = �Wiener � P�1.
For any t 2 [0; T ], let Lt : Z ! Rn denote the bounded linear evaluation operator Ltf = f(t).
Then the push forward probability measure Lt#�Wiener de�nes probability measure on (Rn;B(Rn))
and we denote by Wt or W (t) the random vector Wt : Rn ! Rn given by Wt(x) = x. Wt can be
interpreted as the random vector denoting the values taken by the paths of the Wiener process W
at time t. As mentioned earlier the measure �Wiener is de�ned such that for all times t � s � 0,
Lt;s : Z ! Rn := Lt � Ls is such that Lt;s#�Wiener is a Gaussian measure with mean zero and
covariance (t� s)In (In being the n� n identity matrix).

D.3.2 Ito Integral

Let fGtg be the natural time �ltration generated by possible paths of a process W up-to time t,
i.e., Gt = �(fWs : s 2 [0; t]g). Let W be a process adapted to this �ltration.

The Ito Integral is essentially a generalized Lebesgue-Stieltjes integral (clari�ed below) with
the integrands and integrator functions being stochastic processes and refer the reader to [114] for
a comprehensive treatment.

The Lebesgue-Stieltjes can be written analogous to the Lebesgue integral de�ned with respect
to a probability measure in Section B.3 as follows,

De�nition D.2. (Lebesgue-Stieltjes integral for monotone integrator functions)
Let [a; b] � R be some interval in R, X be Banach space and f : [a; b] ! X be a (B(R)jB(X ))-
measurable function.

Let g : [a; b]! R be a monotone non-decreasing, right continuous function and let �g : B(R)!
R be the non-negative Borel measure such that for any interval [a; b], �g([a; b]) = g(b)� g(a) (the
Caratheodory’s extension theorem is used to show that de�ning �g over every interval in R as
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�g([a; b]) = g(b)� g(a) is su�cient to de�ne an unique Borel measure �g over B(R) that agrees on
every interval). The Lebesgue-Stieltjes integral of f with respect to the function g is de�ned as
the Lebesgue integral with respect to the measure �g, i.e.,

Z b

a
fdg =

Z

[a;b]
fd�g (D.1)

De�nition D.3. (Lebesgue-Stieltjes integral for non-monotone integrator functions)
Let [a; b] � R be some interval in R, X be Banach space and f : [a; b] ! X be a (B(R)jB(X ))-
measurable function. Let g : [a; b] ! R be a function of bounded variation, i.e., for any interval
[a; b] � R, let P[a;b] be the set of all �nite disjoint interval partitions of [a; b] of the form � = fa =
a0 < a1 < � � � < an�1 < an = bg (for some n 2 N) and the total variation de�ned as V ([a; b]; g) :=�

supP[a;b]

Pn�1
i=0 jg(ai+1)� g(ai)j

�
is bounded (i.e. V ([a; b]; g) < 1). To de�ne the Lebesgue-

Stieltjes integral with respect to such a g over an interval [a; b] � R, let g+(x) = V ([x; a]; g) and
g�(x) = g+(x)�g(x) be the two monotonically non-decreasing functions. Using De�nition D.2 for
integrals with respect to monotone functions, the integral with respect to g is then de�ned as

Z b

a
fdg =

Z b

a
fdg+ �

Z b

a
fdg� (D.2)

The Lebesgue-Stieltjes can be extended further to any Banach valued integrator function g as
done by [115].

Let X ;Z be some Banach spaces, g : [a; b] ! Z be a Banach-valued function on the interval
[a; b] � R. The total variation for a Banach valued function on any interval [a; b] is given by
V ([a; b]; g) = supP[a;b]

Pn�1
i=0 jjg(ai+1) � g(ai)jjZ . Given a third Banach space Y as a bounded

bilinear form B : Z � X ! Y, a notion of bounded semi-variation is given by VB([a; b]; g) :=
sup�2P[a;b];jjxijjX�1 jj

Pn�1
i=0 B(g(ai+1) � g(ai); xi)jjY . For a function g of bounded semi-variation

over the interval [a; b], the Lebesgue-Stieltjes integral with respect to g can be de�ned as

De�nition D.4. (Lebesgue-Stieltjes integral for Banach valued integrator functions)
Let [a; b] � R be some interval in R, X ;Z;Y be three Banach spaces, f : [a; b] ! X be a
(B(R)jB(X ))-measurable function and g : [a; b] ! Z be a function of bounded semi-variation
with respect to a bounded bilinear map B : Z � X ! Y. For some partition � 2 P[a;b], let
S(�; f; g) =

Pn�1
i=0 B(g(ai+1) � g(ai); f(ai)) and let �(�) = supai2� jai+1 � aij be the maximum

interval length in the partition �. If there exists a vector l 2 Y such that for every � > 0 if there
exists a � 2 P[a;b] of maximum length �(�) satisfying jjl � S(�; f; g)jjY < �, then f is said to be
Lebesgue-Stieltjes integrable with respect to g on the interval [a; b] and the integral value is l.

8� > 0; 9� 2 P[a;b] :
����

����

Z b

a
fdg � S(�; f; g)

����

����
Y
< � (D.3)

In the context of a Rn-valued classical Wiener process the Ito integral can be de�ned as a special
case of the above notion of a Lebesgue-Stieltjes integral for Banach valued integrator functions. Let
� be a Gaussian measure on (Rn;B(Rn)) and Z be a Banach space of measurable functions from Rn
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to Rn. Let F : Z ! LZ;Z be a Banach valued function LZ�;Z� being the Banach space of bounded
linear operators from Z to itself with the standard induced operator norm. Let W : [0; T ] ! Z
be the standard Wiener process de�ned on the interval [0; T ] with W (0) = 0, �Wiener-almost
surely. Let B : LZ;Z � Z ! Z be the bounded bilinear map given by B(A; z) = Az. Then it
is easy to verify that W has bounded semi-variation with respect to B (since for any A 2 LZ;Z ,
jjA(W (ti+1) �W (ti))jjZ = E[jjA(W (ti+1) �W (ti))jjRn ] � E[jjAjjRn�n jj(W (ti+1) �W (ti))jjRn ] =
E[jjAjjRn�n ]E[jj(W (ti+1)�W (ti))jjRn ] = 0 as E[jj(W (ti+1)�W (ti))jjRn ] = 0 for the Wiener process).
For any partition � 2 P[0;T ], S(�; F;W ) =

Pn�1
i=0 F (ti)(W (ti+1) � W (ti)) and the Ito integral

R T
0 FdW is the Lebesgue-Stieltjes integral with respect to W as de�ned in D.4.

Let X : [0; T ] ! Z be a stochastic process of bounded semi-variation with respect to the
bilinear map B de�ned above. Let W : [0; T ] ! Z be the standard Wiener process. Let � :
Rn ! Rn and � : Rn ! Rn�n be two Borel measurable functions. Then � �X : [0; T ] ! Z and
� �X : [0; T ]! LZ;Z are functions of bounded variations under some appropriate restrictions on
�;�. X is said to be driven by the Wiener process W if it satis�es for all intervals [0; T ],

Z T

0
dX =

Z T

0
�(X)dt+

Z T

0
�(X)dW (�Wiener � a:s:) (D.4)

This is written in its di�erential form as

dX = �(X)dt+ �(X)dW (D.5)

and X is said to be a solution to the di�erential equation (D.5).

D.3.3 Fokker-Planck Equation

The Fokker-Planck equation over a Hilbert space X can be written as the PDE describing a function
� : [0;1)�X ! R satisfying,

@�
@t

= �divX (��) + trace(r2
x��) (D.6)

for given functions � : X ! X (called the drift function) and � : X ! LX ;X (called the di�usion
function). The gradient operator rX : C1(X )! LX ;R(X ) maps a function � 2 C1(X ) to a linear
functional �eldrX� : X ! LX ;R such that limh!0 jj�(x+h)��(x)�(rx�)hjjX =jjhjjX = 0 for all x 2
X . The divergence operator div : C1(X ;X )! C1(X ;R) is de�ned as div(f) =

Pn
i=1rX (hf; eiiX ).

The Hessian operator is the tensor �eld valued operator r2
X : C1(X )! LX ;X (X ) such that for any

h1; h2 2 X , hh1; (r2
X�)h2iX = rX ((rX�)h2)h1. trace : LX ;X ! R in a Hilbert space is de�ned as

trace(L) =
Pn

i=1hei; LeiiX for an orthonormal basis fei : i = 1; : : : ; ng for a n-dimensional Hilbert
space X (in general n can be 1 and the same de�nition is admissible taking n =1).

Let PX be the set of all probability density functions with respect to some measure on X . With
initial condition of �(0; �) 2 PX and � 2 S+(X ) being a positive semide�nite operator in LX ;X ,
the solution � to (D.6) is such that for all time t 2 [0;1), �(t; �) 2 PX . As a result the equation is
often used to describe the evolution of probability density functions in time.

In particular, it is known that (D.6) describes the density evolution for the push forward
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measure at time t for the stochastic di�erential equation,

dXt = �(Xt)dt+
p

2�(Xt)dWt (D.7)

for the standard Wiener process Wt.
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