Co-production of Hydrogen and Electricity from Lignocellulosic Biomass:

Process Design and Thermo-economic Optimization

Presented at ECOS 2011
Novi Sad, Serbia
4-7 July 2011

Laurence TOCKa,
François Maréchala

aIndustrial Energy Systems Laboratory
Ecole Polytechnique Fédérale de Lausanne
Context

- Climate change mitigation & sustainable energy supply
 - H₂ as an alternative energy carrier

H₂ production & Power plants
- Natural gas reforming & coal gasification
 - Fossil fuel usage & CO₂ emissions

Alternative:
Thermo-chemical biomass-based processes for H₂ & É production
Objective

- Thermo-chemical biomass conversion
 - Renewable resources usage
 - CO₂ emissions reduction

Diagram

Biomass → Biomass decomposition (200-1200°C) → Syngas (CO+H₂) → Water gas shift → (CO₂+H₂) → H₂ purification → H₂ → GT

Objectives

- Development of a comprehensive comparison framework
 - Consistent comparison & optimization with regard to energetic, economic & environmental considerations
- Assess the competition between H₂ and electricity only generation processes and polygeneration processes with/without CO₂ capture

<table>
<thead>
<tr>
<th></th>
<th>H₂ prod.</th>
<th>ε [%]</th>
<th>kg₃CO₂/MWh₃H₂</th>
<th>$/MWh₃H₂</th>
<th>Coal IGCC</th>
<th>ε [%]</th>
<th>kg₃CO₂/MWh₃</th>
<th>$/MWh₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>no CC</td>
<td>56-76</td>
<td></td>
<td>280-626</td>
<td>23-36</td>
<td>38-47</td>
<td>682-846</td>
<td>41-61</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>52-68</td>
<td></td>
<td>24-79</td>
<td>27-49</td>
<td>31-40</td>
<td>65-152</td>
<td>54-79</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>52-68</td>
<td></td>
<td>24-79</td>
<td>27-49</td>
<td>31-40</td>
<td>65-152</td>
<td>54-79</td>
<td></td>
</tr>
</tbody>
</table>

- Potential process improvement by energy recovery and heat valorization for the polygeneration of H₂, captured CO₂, heat & power

IPCC 2005
Methodology

- Systematic framework: Thermo-environomic modeling and optimization
 - Flowsheeting
 - Energy integration techniques
 - Performance evaluation: Costing & Life cycle assessment
 - Multi-objective optimization

Biomass conversion process

- Without/with CO₂ capture (compression to 110bar)
- H₂ production: É import or energy self-sustained conditions (selfsufficient)
- É generation by burning H₂-rich fuel or pure H₂

Process Performance - Indicators

- Performance indicators
 - Overall energy efficiency ε_{tot}
 - Expressed on the basis of the lower heating value of dry substance
 \[
 \varepsilon_{tot} = \frac{\Delta h_{H_2, out}^0 \cdot \dot{m}_{H_2}^- + \dot{E}^-}{\Delta h_{biomass}^0 \cdot \dot{m}_{biomass}^+ + \dot{E}^+}
 \]
 - Natural gas equivalent efficiency ε_{eq}
 - \dot{E} substituted by a natural gas fuel equivalent: NGCC/HP
 \[
 \varepsilon_{eq} = \frac{\Delta h_{H_2, out}^0 \cdot \dot{m}_{H_2}^- + \frac{1}{\eta_{NGCC}} \frac{\Delta h_{NG}^0}{\Delta k_{NG}} \dot{E}^-}{\Delta h_{biomass}^0 \cdot \dot{m}_{biomass}^+}
 \]
 - H_2 productivity
 - H_2 yield
 \[
 Y_{H_2} = \frac{g_{H_2}}{kg_{biomass}}
 \]
 - Conversion efficiency
 \[
 \varepsilon_{tot} = \frac{\Delta h_{H_2, fuel}^0 \cdot \dot{m}_{H_2, fuel}^-}{\Delta h_{biomass}^0 \cdot \dot{m}_{biomass}^+}
 \]
• Energy Integration – H₂ production (Ê import)
 - Without / with CO₂ capture

- CO₂ capture: Energy consumption for solvent regeneration

- Study influence of heat recovery and cogeneration systems including steam network, gas turbines and heat pump
Multi-objective optimization

- **Objectives**
 - Max ε_{tot}
 - Min investment
 - Decision variables: T_{syn}, P_{syn}, T_{HTS}, T_{LTS}, P_{WGS}, S/C
 - Constraints: Thermo-economic model

- **Optimization improves performance**
 - ε_{tot} ↑ , investment ↑
 - ε_{tot} ↑ , CO_2 capture rate ↓
 - Compromise ε_{tot} & capture

ECOS 2011 – Co-production of H_2 & \dot{E} from wood
L. Tock / EPFL-LENI
Process Performance

- Energy Integration – Compromise configurations
 - H₂ production: È import
 - H₂ production: self-sufficient

- Energy integration improved by modification operating conditions
- CO₂ capture integration improved by introduction of heat pump transferring heat to higher T for valorization in steam cycle
Energy Integration – Compromise configurations

- **H₂ production: È import**
 - ε_{tot} 60%
 - ε_{eq} 38%
 - 65% capt.

- **H₂ production: self-sufficient**
 - ε_{tot} 40%
 - ε_{eq} 40%
 - 75% capt.

- $\varepsilon_{\text{tot}} \downarrow$: lower H₂ yield since part is burnt (50g$_{\text{H}_2}$/kg$_{\text{BM}}$ (44%))
- $\varepsilon_{\text{eq}} \uparrow$: internal electricity production more efficient than NGCC
Electricity generation
- Pure H₂ burnt in GT

Steam network integration optimized
- Maximal cogeneration
- ε_{tot} competitive with coal IGCC with CO₂ capture
Electricity generation

Production cost

Contributions:

- Resource purchase (>50%)
 - 50$/MWh_{wood}
- Gasifier purchase

* Economic assumptions: Operation: 8000h/y; lifetime 15 y; interest rate 6%, Wood price 50$/MWh_{BM}
Process Performance

- Production cost – influence of resource price
 - Wood price: 10-70$/MWh_BM

É generation

<table>
<thead>
<tr>
<th>Wood price [$/MWh]</th>
<th>Production cost [$/MWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>30</td>
<td>110</td>
</tr>
<tr>
<td>40</td>
<td>130</td>
</tr>
<tr>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>60</td>
<td>170</td>
</tr>
<tr>
<td>70</td>
<td>190</td>
</tr>
<tr>
<td>80</td>
<td>210</td>
</tr>
</tbody>
</table>

- H₂ production

<table>
<thead>
<tr>
<th>Wood price [$/MWh]</th>
<th>Production cost [$/MWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>30</td>
<td>110</td>
</tr>
<tr>
<td>40</td>
<td>130</td>
</tr>
<tr>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>60</td>
<td>170</td>
</tr>
<tr>
<td>70</td>
<td>190</td>
</tr>
<tr>
<td>80</td>
<td>210</td>
</tr>
</tbody>
</table>

- COE: 89-362$/MWh_{\text{e}}
 - competitive if high CO₂ taxes

- CO₂ capture: production cost
 - $\epsilon_{\text{tot}} \downarrow$ up to 10%-points

- Production cost: 65-262 $/MWh_{\text{H}_2}$

* Economic assumptions: Operation: 8000h/y; lifetime 15 y; interest rate 6%, *É* price 270$/MWhe
Environmental impact: \(\dot{E} \) generation

- IPCC method with GWP 100 years, FU 1kJ of biomass

Environmental benefit of capturing CO\(_2\)
Conclusions

- Systematic methodology
 - Thermo-economic & LCA models
 - Multi-objective optimization
 - Conceptual design, optimization & comparison of H₂ and electricity production from wood

- Potential of polygeneration of H₂, captured CO₂, heat & power
 - Appropriate energy integration improving performance

- Process performance
 - H₂: $\varepsilon_{\text{tot}} = 60\%, \ 65\text{-}262$/MWh$_{\text{H₂}}$
 - \dot{E}: $\varepsilon_{\text{tot}} = 39\%, \ 89\text{-}362$/MWh$_{\text{e}}$
 - LCA analysis: benefit using renewable resources and capturing CO₂

| H₂ prod. | ε [%] | kg$_{\text{CO₂}}$/MWh$_{\text{H₂}}$ | $\$/MWh$_{\text{H₂}}$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no CC</td>
<td>56-76</td>
<td>280-626</td>
<td>23-36</td>
</tr>
<tr>
<td>CC</td>
<td>52-68</td>
<td>24-79</td>
<td>27-49</td>
</tr>
</tbody>
</table>

| Coal IGCC | ε [%] | kg$_{\text{CO₂}}$/MWh$_{\text{e}}$ | $\$/MWh$_{\text{e}}$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no CC</td>
<td>38-47</td>
<td>682-846</td>
<td>41-61</td>
</tr>
<tr>
<td>CC</td>
<td>31-40</td>
<td>65-152</td>
<td>54-79</td>
</tr>
</tbody>
</table>

*IPCC 2005

Competitiveness on energy market depends strongly on resource price and imposed CO₂ taxes and technologies!
Thank you for your attention!