Supplementary Material

This section presents the complete proofs of lemmas presented in the article.

A Detailed Proof of Lemma 4.2

Lemma 4.2 If there exists a partition in S such that at least half of its buckets are full, then for the set Z produced by STAR-T-GREEDY we have

$$f(Z) \geq (1 - e^{-1}) \left(1 - \frac{4m}{wk} \right) \tau. \quad (2)$$

Proof. Let i^* be a partition such that half of its buckets are full. Let $B_{i^*,j}$ be a full bucket that minimizes $|B_{i^*,j} \cap E|$. In STAR-T, every partition contains $w\lceil k/2^r \rceil$ buckets. Hence, the number of full buckets in partition i^* is at least $wk/2^{i^*} + 1$. That further implies

$$|B_{i^*,j} \cap E| \leq 2^{i^*+1} m/wk. \quad (6)$$

Taking into account that $B_{i^*,j}$ is a full bucket, we conclude

$$|B_{i^*,j} \setminus E| \geq |B_{i^*,j}| - \frac{2^{i^*+1} m}{wk}. \quad (7)$$

From the property of our Algorithm (line 5) every element added to $B_{i^*,j}$ increased the utility of this bucket by at least $\tau/2^{i^*}$. Combining this with the fact that $B_{i^*,j}$ is full, we conclude that the gain of every element in this bucket is at least $\tau/|B_{i^*,j}|$. Therefore, from Eq. (7) it follows:

$$f(B_{i^*,j} \setminus E) \geq \tau \left(1 - \frac{2^{i^*+1} m}{|B_{i^*,j}| wk} \right). \quad (8)$$

Taking into account that $2^{i^*+1} \leq 4 |B_{i^*,j}|$ this further reduces to

$$f(B_{i^*,j} \setminus E) \geq \tau \left(1 - \frac{4m}{wk} \right). \quad (9)$$

Finally,

$$f(Z) = f(GREEDY(k, S \setminus E)) \geq (1 - e^{-1}) f(OPT(k, S \setminus E))$$

$$\geq (1 - e^{-1}) f(OPT(k, B_{i^*,j} \setminus E)) \quad (10)$$

$$= (1 - e^{-1}) f(B_{i^*,j} \setminus E) \quad (11)$$

$$\geq (1 - e^{-1}) \left(1 - \frac{4m}{wk} \right) \tau, \quad (12)$$

where Eq. (10) follows from $(B_{i^*,j} \setminus E) \subseteq (S \setminus E)$, Eq. (11) follows from the fact that $|B_{i^*,j}| \leq k$, and Eq. (12) follows from Eq. (9). \qed

B Detailed Proof of Lemma 4.3

We start by studying some properties of E that we use in the proof of Lemma 4.3.

Lemma B.1 Let B_i be a bucket in partition $i > 0$, and let $E_i := B_i \cap E$ denote the elements that are removed from this bucket. Given a bucket B_{i-1} from the previous partition such that $|B_{i-1}| < 2^{i-1}$ (i.e. B_{i-1} is not fully populated), the loss in the bucket B_i due to the removals is at most

$$f(E_i \mid B_{i-1}) < \frac{\tau}{2^{i-1}|E_i|}. \quad (13)$$
Proof. First, we can bound \(f(E_i \mid B_{i-1}) \) as follows
\[
f(E_i \mid B_{i-1}) \leq \sum_{e \in E_i} f(e \mid B_{i-1}).
\] (13)

Consider a single element \(e \in E_i \). There are two possible cases: \(f(e) < \frac{\tau}{2^i} \), and \(f(e) \geq \frac{\tau}{2^i} \).

In the first case, \(f(e \mid B_{i-1}) \leq f(e) < \frac{\tau}{2^i} \). In the second one, as \(|B_{i-1}| < 2^{i-1} \) we conclude \(f(e \mid B_{i-1}) < \frac{\tau}{2^i} \), as otherwise the streaming algorithm would place \(e \) in \(B_{i-1} \). These observations together with (13) imply:
\[
f(E_i \mid B_{i-1}) < \sum_{e \in E_i} \frac{\tau}{2^{i-1}} = \frac{\tau}{2^{i-1}} |E_i|.
\]

\(\square \)

Lemma B.2 For every partition \(i \), let \(B_i \) denote a bucket such that \(|B_i| < 2^i \) (i.e. no partition is fully populated), and let \(E_i = B_i \cap E \) denote the elements that are removed from \(B_i \). The loss in the bucket \(B_i^{[\log k]} \) due to the removals, given all the remaining elements in the previous buckets, is at most
\[
f\left(E_{[\log k]} \mid \bigcup_{j=0}^{[\log k]-1} (B_j \setminus E_j) \right) \leq \sum_{j=1}^{[\log k]} \frac{\tau}{2^{j-1}} |E_j|.
\]

Proof. We proceed by induction. More precisely, we show that for any \(i \geq 1 \) the following holds
\[
f\left(E_i \mid \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right) \leq \sum_{j=1}^{i} \frac{\tau}{2^{j-1}} |E_j|.
\] (14)

Once we show that (14) holds, the lemma will follow immediately by setting \(i = [\log k] \).

Base case \(i = 1 \). Since \(B_0 \) is not fully populated and the maximum number of elements in the partition \(i = 0 \) is 1, it follows that both \(B_0 \) and \(E_0 \) are empty. Then the term on the left hand side of (14) for \(i = 1 \) becomes \(f(E_1) \). As \(|B_0| < 1 \) we can apply Lemma B.1 to obtain
\[
f(E_1) = f(E_1 \mid B_0) \leq |E_1| \cdot \frac{\tau}{2^0}.
\]

Inductive step \(i > 1 \). Now we show that (14) holds for \(i > 1 \), assuming that it holds for \(i - 1 \). First, due to submodularity we have
\[
f\left(E_{i-1} \mid \bigcup_{j=0}^{i-2} (B_j \setminus E_j) \right) \geq f\left(E_{i-1} \mid \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right),
\]
and, hence, we can write
\[
f\left(E_i \mid \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right) \leq f\left(E_i \mid \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right) + f\left(E_{i-1} \mid \bigcup_{j=0}^{i-2} (B_j \setminus E_j) \right) - f\left(E_{i-1} \mid \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right)
\]
\[
= f\left(E_i \cup \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right) + f\left(E_{i-1} \mid \bigcup_{j=0}^{i-2} (B_j \setminus E_j) \right) - f\left(E_{i-1} \cup \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right).
\] (15)

Due to monotonicity, the first term can be further bounded by
\[
f\left(E_i \cup \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right) \leq f\left(E_i \cup B_{i-1} \cup \bigcup_{j=0}^{i-2} (B_j \setminus E_j) \right),
\] (16)
where Eq. (19) implies where to obtain the identity we used that \(E_{i-1} \cup (B_{i-1} \setminus E_{i-1}) = E_{i-1} \cup B_{i-1} \).

By substituting the obtained bounds (16) and (17) in (15) we obtain:

\[
f \left(E_i \bigg| \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right) \leq f \left(E_i \bigg| B_{i-1} \cup \bigcup_{j=0}^{i-2} (B_j \setminus E_j) \right) + f \left(E_{i-1} \bigg| \bigcup_{j=0}^{i-2} (B_j \setminus E_j) \right),
\]

\[
\leq f (E_i \setminus B_{i-1}) + f \left(E_{i-1} \bigg| \bigcup_{j=0}^{i-2} (B_j \setminus E_j) \right), \tag{18}
\]

where the second inequality follows by submodularity.

Next, Lemma B.1 can be used (as \(|B_{i-1}| < 2^{i-1}\)) to bound the first term in (18):

\[
f \left(E_i \bigg| \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right) \leq \frac{\tau}{2^{i-1}} |E_i| + f \left(E_{i-1} \bigg| \bigcup_{j=0}^{i-2} (B_j \setminus E_j) \right). \tag{19}
\]

To conclude the proof, we use the inductive hypothesis that (14) holds for \(i-1\), which together with (19) implies

\[
f \left(E_i \bigg| \bigcup_{j=0}^{i-1} (B_j \setminus E_j) \right) \leq \frac{\tau}{2^{i-1}} |E_i| + \sum_{j=1}^{i-1} \frac{\tau}{2^{j-1}} |E_j| = \sum_{j=1}^{i} \frac{\tau}{2^{j-1}} |E_j|,
\]

as desired. \(\Box\)

Lemma 4.3 If there does not exist partition of \(S\) such that at least half of its buckets are full, then for the set \(Z\) produced by STAR-T-GREEDY we have

\[
f(Z) \geq \left(1 - e^{-1/3}\right) \left(f \left(B_{[\log k]} \right) - \frac{4m}{wk} \tau \right),
\]

where \(B_{[\log k]}\) is a bucket in the last partition which is not fully populated minimizing \(|B_{[\log k]} \cap E|\) and \(|E| \leq m\).

Proof. Let \(B_i\) denote a bucket in partition \(i\) which is not fully populated (\(B_i \leq \min\{2^i, k\}\), and for which \(|E_i|\), where \(E_i = B_i \cap E\), is of minimum cardinality. Such bucket exists in every partition \(i\) due to the assumption of the lemma that more than a half of the buckets are not fully populated.

First,

\[
f \left(\bigcup_{i=0}^{[\log k]} (B_i \setminus E_i) \right) \geq f \left(B_{[\log k]} \right) - f \left(E_{[\log k]} \bigg| \bigcup_{i=0}^{[\log k]-1} (B_i \setminus E_i) \right) \tag{20}
\]

\[
\geq f \left(B_{[\log k]} \right) - \sum_{i=1}^{[\log k]} \frac{\tau}{2^{i-1}} |E_i|, \tag{21}
\]

where Eq. (20) follows from Lemma D.1 by setting \(B = B_{[\log k]}, R = E_{[\log k]}\) and \(A = \bigcup_{i=0}^{[\log k]-1} (B_i \setminus E_i)\). We consider buckets that are not fully populated, Lemma B.2 is used to obtain Eq. (21). Next, we bound each term \(\frac{\tau}{2^{i-1}} |E_i|\) in Eq. (21) independently.

From Algorithm 1 we have that partition \(i\) consists of \(w\lfloor k/2^i \rfloor\) buckets. By the assumption of the lemma, more than half of those are not fully populated. Recall that \(B_i\) is defined to be a bucket of
partition i which is not fully populated and which minimizes $|E_i|$. Let \tilde{E}_i be the subset of E that intersects buckets of partition i. Then, $|E_i|$ can be bounded as follows:

$$|E_i| \leq \frac{|\tilde{E}_i|}{w k / 2^{i/2}} \leq \frac{2^{i+1} |\tilde{E}_i|}{w k}.$$

Hence, the sum on the left hand side of Eq. (21) can be bounded as follows:

$$\log k \sum_{i=1}^{\log k} \left| \frac{\tilde{E}_i}{w k} \right| \leq 4 |E| \frac{w k}{w k} \tau.$$

Putting the last inequality together with Eq. (21) we obtain

$$f \left(\bigcup_{i=0}^{\log k} (B_i \setminus E_i) \right) \geq f \left(B_{\log k} \right) - 4 |E| \frac{w k}{w k} \tau.$$

Observe also that

$$\sum_{i=0}^{\log k} |B_i \setminus E_i| \leq \sum_{i=0}^{\log k} |B_i| \leq k + \sum_{i=0}^{\log k} 2^i \leq 3k,$$

which implies

$$f \left(\text{OPT}(3k, S \setminus E) \right) \geq f \left(\bigcup_{i=0}^{\log k} (B_i \setminus E_i) \right) \geq f \left(B_{\log k} \right) - 4 |E| \frac{w k}{w k} \tau.$$

Finally,

$$f(Z) = f(\text{GREEDY}(k, S \setminus E)) \geq \left(1 - e^{-1/3}\right) f \left(\text{OPT}(3k, S \setminus E) \right) \geq \left(1 - e^{-1/3}\right) \left(f \left(B_{\log k} \right) - 4 |E| \frac{w k}{w k} \tau \right) \geq \left(1 - e^{-1/3}\right) \left(f \left(B_{\log k} \right) - 4 m \frac{w k}{w k} \tau \right),$$

as desired.

\section*{C Detailed Proof of Lemma 4.4}

\textbf{Lemma 4.4} If there does not exist partition of S such that at least half of its buckets are full, then for the set Z produced by STAR-T-GREEDY,

$$f(Z) \geq (1 - e^{-1}) \left(f(\text{OPT}(k, V \setminus E)) - f(B_{\log k}) - \tau \right),$$

where $B_{\log k}$ is any bucket in the last partition which is not fully populated.

\textbf{Proof.} Let $B_{\log k}$ denote a bucket in the last partition which is not fully populated. Such bucket exists due to the assumption of the lemma that more than a half of the buckets are not fully populated. Let X and Y be two sets such that Y contains all the elements from $\text{OPT}(k, V \setminus E)$ that are placed in the buckets that precede bucket $B_{\log k}$ in S, and let $X := \text{OPT}(k, V \setminus E) \setminus Y$. In that case, for every $e \in X$ we have

$$f \left(e \mid B_{\log k} \right) < \frac{\tau}{k},$$

due to the fact that $B_{\log k}$ is the bucket in the last partition and is not fully populated.
We proceed to bound \(f(Y) \):

\[
\begin{align*}
 f(Y) & \geq f(\text{OPT}(k, V \setminus E)) - f(X) \\
 & \geq f(\text{OPT}(k, V \setminus E)) - f(\{X \mid B_{\lfloor \log k \rfloor}) - f(B_{\lfloor \log k \rfloor}) \\
 & \geq f(\text{OPT}(k, V \setminus E)) - f(B_{\lfloor \log k \rfloor}) - \sum_{e \in X} f(e | B_{\lfloor \log k \rfloor}) \\
 & \geq f(\text{OPT}(k, V \setminus E)) - f(B_{\lfloor \log k \rfloor}) - \frac{\tau}{k} |X| \\
 & \geq f(\text{OPT}(k, V \setminus E)) - f(B_{\lfloor \log k \rfloor}) - \tau,
\end{align*}
\]

where Eq. (24) follows from \(f(\text{OPT}(k, V \setminus E)) = f(X \cup Y) \) and submodularity, Eq. (25) and Eq. (26) follow from monotonicity and submodularity, respectively. Eq. (27) follows from Eq. (25), and Eq. (28) follows from \(|X| \leq k\).

Finally, we have:

\[
\begin{align*}
 f(Z) = f(\text{GREEDY}(k, S \setminus E)) & \geq (1 - e^{-1}) f(\text{OPT}(k, S \setminus E)) \\
 & \geq (1 - e^{-1}) f(\text{OPT}(k, Y)) \\
 & = (1 - e^{-1}) f(Y) \\
 & \geq (1 - e^{-1}) (f(\text{OPT}(k, V \setminus E)) - f(B_{\lfloor \log k \rfloor}) - \tau),
\end{align*}
\]

where Eq. (29) follows from \(Y \subseteq (S \setminus E) \), Eq. (30) follows from \(|Y| \leq k\), and Eq. (31) follows from Eq. (28). \(\square \)

D Technical Lemma

Here, we outline a technical lemma that is used in the proof of Lemma 4.3.

Lemma D.1 For any submodular function \(f \) on a ground set \(V \), and any sets \(A, B, R \subseteq V \), we have

\[
f(A \cup B) - f(A \cup (B \setminus R)) \leq f(R \mid A).
\]

Proof. Define \(R_2 := A \cap R \) and \(R_1 := R \setminus A = R \setminus R_2 \). We have

\[
f(A \cup B) - f(A \cup (B \setminus R)) = f(A \cup B) - f((A \cup B) \setminus R_1) \\
= f(R_1 \mid (A \cup B) \setminus R_1) \\
\leq f(R_1 \mid (A \setminus R_1)) \\
= f(R_1 \mid A) \\
\leq f(R_1 \cup R_2 \mid A) \\
= f(R \mid A),
\]

where (32) follows from the submodularity of \(f \), (33) follows since \(A \) and \(R_1 \) are disjoint, and (34) follows since \(R_2 \subseteq A \). \(\square \)

E Detailed Proof of Theorem 4.5

Setting \(\tau \) in STAR-T assumes that we know the unknown value \(f(\text{OPT}(k, V \setminus E)) \). In this subsection we show how to approximate that value. First, \(f(\text{OPT}(k, V \setminus E)) \) can be bounded in the following way: \(\eta \leq f(\text{OPT}(k, V \setminus E)) \leq k\eta \), where \(\eta \) denotes the largest value of any of the elements of \(V \setminus E \), i.e. \(\eta = \max_{e \in (V \setminus E)} \), or in \[8\] by considering all the \(O\left(\log_{1+\epsilon} k\right) \) possible values of \(f(\text{OPT}(k, V \setminus E)) \) from the set \(\{1 + \epsilon^i \mid i \in \mathbb{Z}, \eta \leq (1 + \epsilon)^i \leq k\eta\} \). For each of the thresholds independently and in parallel we then run STAR-T, and hence build \(O\left(\log_{1+\epsilon} k\right) \) different summaries. After the stream ends, on each of the summaries we run algorithm STAR-T-GREEDY and report the maximum output over all the runs.
Algorithm 3 Parallel Instances of (STAR-T)

Input: Set \(V, k, w \in \mathbb{N}_+, \eta \in \mathbb{R} \)
1: \(O = \{ (1 + \epsilon)^i | \eta \leq (1 + \epsilon)^i \leq k\eta \} \)
2: Create a set of instances \(\mathcal{I} := \{ \text{STAR-T}(V, k, \eta, w) | \eta \in O \} \), and run all the instances in parallel over the stream.
3: Let \(S = \{ \text{the output of instance } I | I \in \mathcal{I} \} \).
4: return \(S \)

Algorithm 4 Parallel Instances STAR-T- GREEDY

Input: Family of sets \(S \), query set \(E \) and \(k \)
1: \(Z \leftarrow \arg \max_{S \in S} \text{GREEDY}(k, S \setminus E) \)
2: return \(Z \)

As this approach runs \(O(\log_{1+\epsilon} k) \) copies of our algorithm, it requires \(O(\log_{1+\epsilon} k) \) more memory space than stated in Theorem 4.1. Furthermore, since we are approximating \(f(\text{OPT}(k, V \setminus E)) \) as the geometric series with base \((1 + \epsilon)\), our final result is an \((1 + \epsilon)\)-approximation of the value provided in the theorem.

Unfortunately, the value \(\eta \) might also not be known a priori. However, \(\eta \) is some value among the \(m + 1 \) largest elements of the stream. This motivates the following idea. At every moment, we keep \(m + 1 \) largest elements of the stream. Let \(L \) denote that set (note that \(L \) changes during the course of the stream). Then, for different values of \(\eta \) belonging to the set \(\{ f(e) | e \in L \} \) we approximate \(f(\text{OPT}(k, V \setminus E)) \) as described above. Here we make a minor difference, as also described in [8]. Namely, instead of instantiating all the copies of the algorithm corresponding to \(\eta \leq (1 + \epsilon)^i \leq km \), we instantiate copies of the algorithm corresponding to the values of \(f(\text{OPT}(k, V \setminus E)) \) from the set \(\{ (1 + \epsilon)^i | i \in \mathbb{Z}, \eta \leq (1 + \epsilon)^i \leq 2k\eta \} \). We do so as an element \(e \) can belong to an instance of our algorithm even if \(f(\text{OPT}(k, V \setminus E)) = 2kf(e) \).

Next, let \(e \) be a new element that arrives on the stream. If \(e \) is not among the \(m + 1 \) largest elements of the stream seen so far, we do not instantiate any new copy of our algorithm. On the other hand, if \(e \) should replace another element \(e' \in L \) because \(e' \) does not belong to the \(m + 1 \) largest elements of the stream anymore, we redefine \(L \) to be \((L \setminus \{ e' \}) \cup \{ e \} \), and update the instances. The instances are updated as follows: we instantiate copies (those that do not exist already) of our algorithm for \(\eta = f(e) \) as described above; and, any instance of our algorithm corresponding to \(\eta = f(e') \), but not to any other element of \(L \), we discard.

To bound the space complexity, we start with the following observation – given an element \(e \), we do not need to add \(e \) to any instance of our algorithm corresponding to \(f(\text{OPT}(k, V \setminus E)) < f(e) \). This reasoning is justified by the following: if \(e \in E \), then it does not matter whether we keep \(e \) in our summary or not; if \(e \notin E \), then \(f(\text{OPT}(k, V \setminus E)) \geq f(e) \). Therefore, those thresholds that are less than \(f(e) \) are not a good estimate of the optimum solution with respect to \(e \). To keep the memory space low, we pass an element \(e \) to the instances of our algorithm corresponding to the of \(f(\text{OPT}(k, V \setminus E)) \) being in set \(\{ (1 + \epsilon)^i | i \in \mathbb{Z}, f(e) \leq (1 + \epsilon)^i \leq 2kf(e) \} \). Notice that, by the structure of our algorithm, \(e \) will not be added to any instance of our algorithm with threshold more than \(2kf(e) \).

Putting all together we make the following conclusions. At any point during the execution, every element of \(L \) belongs to at most \(O(\log_{1+\epsilon} k) \) instances of our algorithm. Define \(e_{\min} := \arg \min_{e \in L} f(e) \). Then by the definition, every element \(a \notin L \) kept in the parallel instances of our algorithms is such that \(f(a) \leq f(e_{\min}) \). This further implies that \(a \) also belongs to at most \(O(\log_{1+\epsilon} k) \) instances corresponding to the following set of values \(\{ (1 + \epsilon)^i | i \in \mathbb{Z}, f(e_{\min}) \leq (1 + \epsilon)^i \leq 2kf(e_{\min}) \} \). Therefore, the total memory usage of the elements of \(L \) is \(O(m \log_{1+\epsilon} k) \).

On the other hand, since all the elements not in \(L \) belong to at most \(O(\log_{1+\epsilon} k) \) different instances of STAR-T, the total memory those elements occupy is \(O((k + m \log k) \log k \log_{1+\epsilon} k) \). Therefore, the memory complexity of this approach is \(O((k + m \log k) \log k \log_{1+\epsilon} k) \).
Additional results for the dominating set problem

In Figure 3 we outline further results for the dominating set problem considered in Section 5.1.

Figure 3: Numerical comparisons of the algorithms Star-T-Greedy, Star-T-Sieve and Sieve-Streaming.