Plastic activity in nanoscratch molecular dynamics simulations of pure aluminum

Till Junge, J.F. Molinari, G. Anciaux
MD modeling of friction
 Brief History of Friction Modeling
 MD scratching

Parametric study
 General setup
 Parameter space

Single phase polycrystals
 Real polycrystals
 MD polycrystals

Results
 Stored plastic energy E_{pl}
 Microscopic friction coefficient μ
 Thermal sensitivity s
Outline

MD modeling of friction
 Brief History of Friction Modeling
 MD scratching

Parametric study

Single phase polycrystals

Results
MD modeling of friction

Brief History of Friction Modeling

Roughness Hypothesis
Leonardo da Vinci (1495), Later Coulomb, Amontons

Observation

\[F = \mu N \quad \forall A_{\text{app}} \]

Da Vinci Friction Experiments
MD modeling of friction

Brief History of Friction Modeling

Roughness Hypothesis
Leonardo da Vinci (1495), Later Coulomb, Amontons

Observation

\[F = \mu N \quad \forall A_{\text{app}} \]

Geometric Solution
MD modeling of friction

Brief History of Friction Modeling

Shear Hypothesis
Bowden and Tabor (1942)

Observation

\[A_{\text{app}} \neq A_{\text{real}}(N) \]

Contact Area Dieterich et al. (1996)

calcite at 30 MPa
MD modeling of friction

Brief History of Friction Modeling

Shear Hypothesis
Bowden and Tabor (1942)

Observation

\[A_{\text{app}} \neq A_{\text{real}}(N) \]

Continuum Mechanics Solution
MD modeling of friction

Brief History of Friction Modeling

Towards the atomic scale: Luan and Robbins (2005)

Observation

Continuum mechanics break down at contacts

Atomic force microscopy Luan, Robbins (2005)

Spijker et al. (2011)
MD modeling of friction

Brief History of Friction Modeling

Towards the atomic scale: Luan and Robbins (2005)

Observation
Continuum mechanics break down at contacts

Continuum Mechanics Solution
?
(Scale too small)

Molecular Dynamics Solution
?
(problems too big)
MD modeling of friction

Brief History of Friction Modeling

Involved Mechanisms

- Elasticity
- Plasticity
- Heating
- Asperity Locking
- Lattice Vibrations
- ...

Plasticity in friction is poorly investigated on the atomic scale.
MD modeling of friction

Brief History of Friction Modeling

Involved Mechanisms

- Elasticity
- **Plasticity**
- Heating
- Asperity Locking
- Lattice Vibrations
- ...

Plasticity in friction is

- poorly investigated
- atomic scale
MD modeling of friction

MD scratching

Molecular dynamics scratching simulation at \(\sim 0 \text{K} \)

Advantages

▶ Very few a priori assumptions (Semi-empirical potentials)
▶ Deep understanding because of complete knowledge of each atom in the simulation box
▶ Dislocation nucleation and motion handled accurately
MD modeling of friction

Computation of plastic work E_{pl} — Part I: MD Simulation

Setup

- fixed boundary conditions for bottom atoms
- prescribed indenter path $x(t)$

During simulation

- Evaluate force $F(t)$ acting on the indenter at every time step,
- Save positions $r_i(t)$ and velocities $\dot{r}_i(t)$ periodically
Energy influx

\[E_{\text{in}}(t) = \int_0^t F(\tau) \cdot \nu \, d\tau \]
MD modeling of friction

Computation of plastic work E_{pl} — Part II: Energy Balance

Energy influx

$$E_{in}(t) = \int_{0}^{t} F(\tau) \cdot v \, d\tau$$

Stored as

$$E(t) = E[\mathbf{r}_1, \ldots, \mathbf{r}_N, \mathbf{\dot{r}}_1, \ldots, \mathbf{\dot{r}}_N](t)$$
$$= E_{pot}[\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \ldots](t)$$
$$+ E_{kin}[\mathbf{\dot{r}}_1, \mathbf{\dot{r}}_2, \mathbf{\dot{r}}_3, \ldots](t)$$
MD modeling of friction

Computation of plastic work E_{pl} — Part II: Energy Balance

Stored Energy

$$E = E_{pot}[r_1, r_2, r_3, \ldots] + E_{kin}[\dot{r}_1, \dot{r}_2, \dot{r}_3, \ldots]$$

Potential Energy

- empirical interatomic potential function
- e.g., EAM:

$$E_{pot_i} = \frac{1}{2} \sum_{i \neq j} V(r_{ij}) + \sum_i \Phi \left(\sum_{i \neq j} \rho(r_{ij}) \right)$$

Kinetic Energy

- Classical mechanics:

$$E_{kin_i} = \frac{1}{2} m_i \dot{r}_i^2$$

- summed over all atoms
MD modeling of friction

Computation of plastic work E_{pl} — Part II: Energy Balance

Stored Energy

$$E = E_{pot} [r_1, r_2, r_3, \ldots] + E_{kin} [\dot{r}_1, \dot{r}_2, \dot{r}_3, \ldots]$$

Potential Energy

- empirical interatomic potential function
- e.g., EAM:

$$E_{pot_i} = \frac{1}{2} \sum_{i \neq j} V(r_{ij}) + \sum_i \Phi \left(\sum_{i \neq j} \rho(r_{ij}) \right)$$

Kinetic Energy

- Classical mechanics:

$$E_{kin_i} = \frac{1}{2} m_i \dot{r}_{i}^2$$

- summed over all atoms

But we won’t use this!
MD modeling of friction

Computation of plastic work E_{pl} — Part III: Minimizing Potential Energy

Main Idea
Monitor variation of potential energy at 0 K: $\Delta E_{pot}(0 \text{ K}) = E_{pl}$

Problem
MD snapshots $\{r_i, \dot{r}_i\}(t)$ are close to static equilibrium ($\sim 0 \text{ K}$)
MD modeling of friction

Computation of plastic work E_{pl} — Part III: Minimizing Potential Energy

Main Idea
Monitor variation of potential energy at 0 K: $\Delta E_{pot}(0 K) = E_{pl}$

Problem
MD snapshots $\{r_i, \dot{r}_i\}(t)$ are close to static equilibrium ($\sim 0 K$)

Solution
Molecular Statics:

$$E_{pot}^{\text{min}}(t) = \min_{R=(r_1, \ldots, r_N)} E_{pot}(R(t))$$

$$E_{pl}(t) = E_{pot}^{\text{min}}(t) - E_{pot}^{\text{min}}(0)$$
MD modeling of friction

Computation of plastic work E_{pl}

Using molecular statics (MS)

MD simulation

MS quenching

Potential Energy

Plastic energy E_{pl}

Paper in review

T. Junge et al., *Plastic activity in nanoscratch molecular dynamics simulations of pure aluminium*, submitted for publication
MD modeling of friction

Computation of plastic work E_{pl}

Plastic count vs. stored plastic energy

Compare:
Outline

MD modeling of friction

Parametric study
 General setup
 Parameter space

Single phase polycrystals

Results
Parametric study

General setup

Setup

- fixed boundary conditions for bottom atoms
- prescribed indenter path $x(t)$

During simulation

- Evaluate force $F(t)$ acting on the indenter at every time step,
- Save positions $r_i(t)$ and velocities $\dot{r}_i(t)$ periodically
Parametric study

Parameter space

Space is split in three groups

In common:
- substrate thickness and width
- scratch path length
- every scratch performed at the same five indentation depths: \(\Delta y \in \{0, 1, 2, 5, 10\} \text{ Å} \)
- rigid indenter
- Mendelev EAM Aluminum potential

Substrate thickness
\[h \in \{22.9, 45.8, 91.5, 183.1, 366.1\} \text{ Å} \]
at \(v = 10 \text{ m/s} \)

Scratch speed
\[v \in \{2.5, 5, 10, 20, 40, 80, 1000\} \text{ m/s} \]
at \(h = 45.8 \text{ Å} \)

Microstructure
- 40 or 200 grains
- 2 different random seeds
- \(h = 91.5 \text{ Å}, v = 10 \text{ m/s} \)

M. I. Mendelev et al., Philosophical Magazine 88 (12), 1723-1750
Outline

MD modeling of friction

Parametric study

Single phase polycrystals
 Real polycrystals
 MD polycrystals

Results
Single phase polycrystals

Real polycrystals

Single phase aluminum

Sources:
T. Quested, DoITPoMS, Micrograph 712
Voronoi tessellation

- Voronoi nuclei randomly positioned
- Periodic boundary conditions in all directions
- Random lattice orientation assigned to each cell
Single phase polycrystals

MD polycrystals

Annealing and relaxation of microstructure (heuristic)

Similar:
Single phase polycrystals

MD polycrystals

Final structure

- split microstructure, insert indenter
- fix bottom layer and indenter
- constrained minimisation of potential energy
Outline

MD modeling of friction

Parametric study

Single phase polycrystals

Results

- Stored plastic energy E_{pl}
- Microscopic friction coefficient μ
- Thermal sensitivity s
Results

Stored plastic energy E_{pl}

Effect of substrate thickness h

![Graph showing the effect of substrate thickness on stored plastic energy.](image)

- $h = 22.9\,\text{Å}$
- $h = 91.5\,\text{Å}$
- $h = 366.1\,\text{Å}$
Results

Stored plastic energy E_{pl}

Effect of scratch speed v

![Graph showing the effect of scratch speed on stored plastic energy E_{pl}]
Results

Stored plastic energy E_{pl}

Relative plastic contribution E_{pl}/W_{sc} decreases with speed

![Graph showing the relative plastic contribution E_{pl}/W_{sc} decreases with scratch speed v in [m/s].]
Results

Stored plastic energy E_{pl}

Effect of microstructure is non-trivial/counterintuitive

![Graph showing the change in energy $\Delta E_{min}(x)$ with indenter position in [nm]. The graph includes lines for m.c. and 45.6 Å.]
Results

Microscopic friction coefficient μ

Macroscopic friction model

$$\mu \equiv \frac{dF}{dN} \Leftrightarrow F(N; \mu, f_a) = f_a + \mu N$$

Microscopic translation

Large fluctuations at nano-scale \Rightarrow window-average forces:

$$\langle F \rangle_i = \frac{1}{N_w} \sum_{j}^{N_w} F(t_i+j)$$

Least-squares-fit the coefficient

$$\mu = \arg \min_{\hat{\mu}} \left([F(\langle N \rangle, \hat{\mu}) - \langle F \rangle]^2 \right)$$
Results

Microscopic friction coefficient μ

Effect of substrate thickness h

![Graph showing the effect of substrate thickness on friction force and normal force](image)

- For $h = 22.9$ Å, the friction force is around 50 eV/Å.
- For $h = 45.8$ Å, the friction force is around 70 eV/Å.
- For $h = 91.5$ Å, the friction force is around 100 eV/Å.
- For $h = 183.1$ Å, the friction force is around 150 eV/Å.
- For $h = 366.1$ Å, the friction force is around 200 eV/Å.

The graph also shows the normal force $\langle N \rangle$ in eV/Å as a function of thickness h. The coefficient of friction μ increases with increasing thickness h. For example, μ is approximately 0.5 for $h = 22.9$ Å, and it increases to around 2 for $h = 366.1$ Å.
Results

Microscopic friction coefficient μ

Thickness h

- Linearity!
- Coefficient large by continuum standards
- No simulation box size dependence for thick substrates
- Suppressed plasticity for thin substrate leads to lower μ
Results

Microscopic friction coefficient μ

Scratch speed v

- Bell shape with trailing plateau:
 - Found in nano-machining sims
 - Found in steel friction experiments
 \[S. Philippon et al. Wear 257 (7-8) (2004) \]
 - Analytically explained
 \[A. Molinari et al. Journal of Tribology 121/35 (1999) \]
- Suppressed plasticity for high speeds leads to same effect as thin substrate
Results

Microscopic friction coefficient μ

Grain size d

- Coefficient not explained by the grain size
- Not enough grains to average orientation effects?
Results

Microscopic friction coefficient μ

Grain size d

- Coefficient not explained by the grain size
- Not enough grains to average orientation effects?
- Consistently lower friction for polycrystal

<table>
<thead>
<tr>
<th>Grain size d in [Å]</th>
<th>Coefficient of friction μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.3</td>
<td>1.0</td>
</tr>
<tr>
<td>24.6</td>
<td>1.5</td>
</tr>
<tr>
<td>45.6</td>
<td>2.0</td>
</tr>
<tr>
<td>52.3</td>
<td>2.5</td>
</tr>
<tr>
<td>∞</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Results

Thermal sensitivity s

Thermal Sensitivity for different Microstructures

![Graph showing thermal sensitivity for different indentation depths and microstructures. The graph plots the change in thermal energy (ΔE_{therm}) and work of adhesion (ΔW_{sc}) normalized by the work of adhesion (ΔW_{sc}) against indentation depth in Å. The different microstructures are represented by various markers and lines, with labels for 24.3 Å, 24.6 Å, 45.6 Å, and 52.3 Å.](image-url)
Results

Sensitivity s – vertical centrosymmetry distribution

Growing disorder in single crystal

Coarsening of microstructure

Plastic energy is stored

Grain boundary energy is released

Darker means higher disorder
Conclusions

1.) Computation of E_{pl}

- Novel method to analyze and quantify MD friction simulations

![Graph showing the computation of E_{pl}](image)
Conclusions

1.) Computation of E_{pl}

- Novel method to analyze and quantify MD friction simulations
- Showed clear negative rate correlation for high speeds, none for low

![Graph showing correlation between scratch speed and E_{pl}/W_{sc}]
1.) Computation of E_{pl}

- Novel method to analyze and quantify MD friction simulations
- Showed clear negative rate correlation for high speeds, none for low
- Polycrystals can release stored plastic energy during scratching
2.) Regression-based computation of μ

- Recovered simple linear continuum friction model
2.) Regression-based computation of μ

- Recovered simple linear continuum friction model
- Recovered bell-shaped speed dependence observed in machining

![Graph showing coefficient of friction μ vs. velocity v]

- Apparent strong link between E_{pl} and μ
- Sim box size independent for thick substrates
- Plastic zones not resolved!
Conclusions

2.) Regression-based computation of μ

- Recovered simple linear continuum friction model
- Recovered bell-shaped speed dependence observed in machining
- Apparent strong link between E_{pl} and μ

![Graph showing coefficient of friction against velocity and thickness]
Conclusions

2.) Regression-based computation of μ

- Recovered simple linear continuum friction model
- Recovered bell-shaped speed dependence observed in machining
- Apparent strong link between E_{pl} and μ
- Sim box size independent for thick substrates
 Plastic zones not resolved!
Outlook

Coupled Atomistics and discrete dislocations in 3D

Under development at LSMS
Grain size distributions

seed = 1, nb grains = 200

mean = 29.7
quartiles = 25.6, 28.8, 32.6