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Abstract The paper gives a highly personal sketch of some current trends in
statistical inference. After an account of the challenges that new forms of data bring,
there is a brief overview of some topics in stochastic modelling. The paper then turns
to sparsity, illustrated using Bayesian wavelet analysis based on a mixture model and
metabolite profiling. Modern likelihood methods including higher order approxima-
tion and composite likelihood inference are then discussed, followed by some thoughts
on statistical education.
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1 Introduction

Statistical methodology develops largely in response to the demands of the society in
which it is rooted, and the scientific challenges of the age. Thus it is difficult to discuss
challenges for statistics without reference to the major preoccupations of our time. On
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168 A. C. Davison

a grand scale, a partial list might include the collapse of some nation states, population
growth, health risks due to spread of infectious diseases and, looming behind these,
the elephant in the living-room—environmental change and its consequences. On a
smaller scale, there seems to be consensus that the main scientific and engineering
challenges for the next quarter-century will be to understand the working of the genome
and to use this knowledge for the general good, and to develop technologies that will
enable us to live sustainably rather than wildly beyond what our planet can afford.

Statistics is woven from problems and data from substantive disciplines, from the
mathematical ideas used to construct stochastic models intended to extract information
from the data and, increasingly, from computing technologies, which provide envi-
ronments within which mathematical ideas may be turned into statistical tools. These
threads provide the warp for this paper, which first briefly discusses the abundance
of data now available, before turning to stochastic modelling. In Sect. 4 the topic of
sparsity is illustrated using Bayesian wavelet analysis and metabolite profiling, before
a discussion in Sect. 5 of two topics in likelihood inference, higher order asymptotics
and composite likelihood. Section 6 gives some thoughts on the university teaching
of statistics, followed by a brief conclusion. Efron (2003) gives a wide perspective on
the past and future of statistics, based on the same three threads.

The paper has no pretence to be inclusive: even if I were competent to write an
overview of current statistical thought, there is not the space to do so. Rather this is a
cartoon of some topics of current interest.

2 Data

One of the most striking changes of recent years is the increasing abundance of data.
During my doctoral work around 25 years ago I studied a database of around 13
million numbers, but this was then exceptionally large; those of my fellow students
whose research stemmed directly from an applied problem had data sets consisting of
a few hundred or perhaps a few thousand numbers. Nowadays there is such a profusion
of data that it is difficult not to feel overwhelmed. The main reason is the steady drop
in price and increase in capacity of electronic equipment: for example, almost any
laboratory can now record images using a webcam or video camera, high-throughput
genomic analysis has become the norm in the biological sciences, and the resulting
sea of data can be cheaply stored on a large hard disc and made available over the
internet. Domains that have profited from this include:

– the biosciences, with the availability of huge quantities of genomic, proteomic,
metabolomic and other-‘omic’ data;

– chemistry, through gas chromatography/mass spectrometry and related techniques,
and in the increasingly detailed understanding of molecular interactions, protein
folding and the like;

– physics—for example, detection of new elementary particles at installations such
as CERN depends on the extraction of a few unusual events from a mind-boggling
number of observed fission tracks;

– forensic science, which is increasingly a probabilistic enterprise;
– finance, now an enormous industry based largely on stochastic models;
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– commerce, where transaction modelling and credit scoring have transformed, not
always for the better, how banks and retailers interact with their clients;

– transport engineering, as traffic flow on major routes can be regulated based on
real time data and stochastic models of communication networks; and

– environmental monitoring using dense networks of cheap sensors, to gain an
unprecedented level of detail on conditions at the earth-atmosphere interface—
see for example http://sensorscope.epfl.ch.

One result is the increasing quantification of many domains of knowledge, as data
replace speculation. In some countries a side-effect of this is that studying the mathe-
matical sciences seems to be becoming more attractive: quite apart from the challenge
of problem-solving afforded by a numerate degree, the prospect of a well-paid and
interesting career is a strong incentive for students.

In some domains it is now possible to have all the data. Databases held by banks on
their customers, for example, may contain every transaction ever performed, and may
be used to determine which customers are likely to become credit risks. Of course the
mere availability of such data does not make it useful; the economic conditions that last
year made bankruptcy more likely for one type of customer may not be those that cause
difficulties for another type of customer next year, so prediction is, as usual, fraught
with difficulties. Changes due to this so-called database drift raise questions about the
appropriateness of highly sophisticated discrimination methods (Hand 2006).

In other domains the number of sampling units remains limited because of financial
or other constraints, but the number of measurements on each unit is now much larger
than hitherto. The numbers of patients who may be recruited into a clinical trial remains
limited by practical considerations, but advances in technology make it possible to
have several hundred thousand single nucleotide polymorphisms (SNPs) on each. This
raises questions about the comparability of such data, especially when observations
from different centres are combined; for example, combination of microarray data from
different laboratories can pose serious problems of interpretation in clinical studies.

Elsewhere, for example in social science, budget limitations mean that the quantity
of data cannot grow without damaging its quality, though there is scope for linking
together existing databases, for example on employment histories and health—so-
called data fusion is an important topic for national statistics institutes, as well as in
many scientific domains.

Underlying this discussion are traditional statistical issues for design of investiga-
tions: the choice and construction of sampling plans with appropriate randomisation,
replication and blocking and the importance of recognising selection and other forms
of sampling bias. It is unfortunate—a traditional complaint of statisticians—that these
topics remain under appreciated, to the point that many costly investigations are com-
promised by poor design.

3 Stochastic modelling

The huge quantities of data now available give correspondingly vast scope for
modelling. A simple illustration is afforded by Fig. 1, taken from an experiment
conducted to understand the basis of sediment transport and erosion in river beds
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Fig. 1 Still image of beads in motion in an experimental stream (Böhm et al. 2004). The beads are entrained
by the flow of the water from left to right, and their positions are recorded 130 times per second. Afterwards
the numbers in various states of motion can be determined using imaging software

(Böhm et al. 2004). The figure shows a single frame from a video lasting 60 s, with
around 130 frames taken each second—8,000 frames in all. Two parallel sheets of
glass are placed 6.5 mm apart, with a base inclined at an angle of around 10◦ from
the horizontal; water flows between them, from left to right in the figure; and beads
of diameter 6 mm are released into the flowing water, which then entrains them.
The beads can only form a single layer, as transversal movement is impossible.
Some beads form a bed, some roll along the surface of the bed, and others bounce
along in the direction of the moving water. Image processing software can be used
to count the numbers of stationary, rolling and bouncing beads, allowing theories
about sediment transport to be tested empirically. A simple surprisingly successful
model is an immigration–birth–death process in which immigration corresponds to
the arrival of particles from the left, births occur when particles in the image are set
in motion, and deaths occur when particles stop or leave the observation frame on
the right. This stochastic model seems to describe the behaviour of the beads better
than the traditional continuum approach, though there is still room for improvement
(Ancey et al. 2008).

More sophisticated examples could be taken from almost any quantitative jour-
nal. Some that spring to mind are modelling of the water balance between soil and
vegetation (Porporato and Rodríguez-Iturbe 2005), the use of Lévy and other heavy-
tailed processes in finance (Barndorff-Nielsen et al. 2001), shape statistics applied
to single molecules (Kou et al. 2005; Panaretos 2006), quantum statistical infer-
ence (Barndorff-Nielsen et al. 2003), modelling of epidemics with partly unobserved
data (Panaretos 2007; Isham 2005), and spatial point process models of rainfall
(Cox and Isham 1988).

In these and other applications there is a tension between conceptual modelling of
how the data might arise, based on a few key elements, and the detailed representation
of component processes, which renders the model less tractable and thus perhaps less
useful as an aid to understanding. Clearly the level of detail to be included depends on
the goal of the exercise: a major conceptual advance may stem from a simple model
involving only the main processes, whereas an activity such as short-term local weather
forecasting may require consideration of many processes of atmospheric physics. In
the second case as in many others an alternative is the use of predictive ‘black boxes’
such as neural nets, random forests, support vector machines, and the like, as forcefully
advocated by Breiman (2001), though that article should not be read in isolation from
the subsequent discussion by Cox and Efron.
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4 Sparsity

4.1 Generalities

Many modern applications involve the extraction of a signal from a noisy environment.
Examples are finding the gene or combination of genes responsible for a congenital
disorder, cleaning a biomedical image, and identifying SPAM emails. Often we seek
a sparse representation of the signal, as just a few components, and aim to compress
the data as tightly as possible without losing its essence. In many cases the signal will
contain many similar elements (genes, pixels, letters), and we seek a good ensemble
estimate, which may be provided by shrinkage of its elements towards a common
value. Approaches to this in different contexts include the lasso and related estimators
(Tibshirani 1996; Efron et al. 2004), mixed modelling (McCulloch and Searle 2001)
and Markov random fields (Isham 1981; Clifford 1990; Chellappa and Jain 1993); see
also Hastie et al. (2001). Below we briefly outline one technique for building models
with sparse elements and give two examples of its use.

4.2 Bayesian wavelet analysis

Figure 2 shows data for which a sparse representation seems necessary. The upper left
hand panel shows a transect taken using nuclear magnetic resonance (NMR) imaging.
There is a clear if irregular signal with several spikes obscured by homoscedastic
noise. The upper right hand panel shows an orthogonal transformation of the data in
terms of wavelets, the details of which are unimportant here.

To model this, we follow others such as Abramovich et al. (1998) in supposing
that the data may be treated as the realisation of a n × 1 vector X = µ + ε, where
µ represents the signal and the elements of ε are independent normal variables with
zero mean and variance σ 2. Let Y = W T X , where W is an n × n orthogonal matrix
representing the wavelet transformation; thus W TW = W W T = In . The matrix W is
chosen so that θ = W Tµ should be sparse, that is, most elements of θ are small or
even zero. Wavelets are known to have this property for a wide variety of functions; in
other contexts one might choose other orthogonal transformations of the data, such as
discrete Fourier series. In each case, the idea is to choose an operator that ‘kills’ small
elements of Y by setting them to zero, and then to estimate the signal by applying
the inverse transformation to the shrunken coefficients, yielding the estimator µ̃ =
W {kill(W T X)}.

A possible prior model is that the coefficients θ1, . . . , θn are drawn independently
from the mixture

θ ∼
{

0, with probability1 − p,

N (0, τ 2), with probabilityp,

or equivalently that

π(θ) = (1 − p)δ(θ)+ pτ−1φ(θ/τ), θ ∈ R,
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Fig. 2 Nuclear magnetic resonance data. Left top data transect, with n = 1,024 values translated to have
average zero. Right top coefficients of the wavelet decomposition of the transect. Left bottom Bayesian
posterior median reconstruction of the transect. Right Bayesian posterior median wavelet coefficients

where δ(·) is the delta function putting unit mass at θ = 0, and φ(·) represents the
standard normal density. Conditional on θ1, . . . , θn , we take the elements of Y to
be independent normal variables with means θ j and variance σ 2. Then the θ j are
independent conditional on the data and

π(θ | y) = (1 − py)δ(θ)+ pyb−1φ

(
θ − ay

b

)
, θ ∈ R, (1)

where

a = τ 2/(τ 2 + σ 2), b2 = 1/(1/σ 2 + 1/τ 2),

123



Some challenges for statistics 173

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prior

theta

C
D

F

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior, y=−2.5, posterior median=−0.98

theta
C

D
F

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior, y=−1, posterior median=0

theta

C
D

F

Fig. 3 Bayesian soft thresholding: prior distribution of θ (top left), and posterior cumulative distribution
functions when p = 0.5, σ = τ = 1, and y = −2.5 (top right), and y = −1 (bottom). Horizontal line
(dashes): cumulative probability=0.5. Vertical line (dots): observation y. Vertical line (dot-dash): posterior
median θ̃

and

py = p(σ 2 + τ 2)−1/2φ{y/(σ 2 + τ 2)1/2}
(1 − p)σ−1φ(y/σ)+ p(σ 2 + τ 2)−1/2φ{y/(σ 2 + τ 2)1/2}

is the posterior probability that θ �= 0.
The posterior mean is the most obvious summary of (1), but if a sparse solution is

sought it is better to take the posterior median of (1), that is, the value θ̃ that satisfies
Pr(θ ≤ θ̃ | y) = 0.5. As Fig. 3 shows, this performs a form of soft shrinkage (Donoho
and Johnstone 1994): if y is sufficiently close to 0, then θ̃ = 0, and otherwise θ̃ lies
between y and 0.
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Fig. 4 Metabolic profile data. The left part shows four replicate metabolic profiles for each of 14 plant
phenotypes, with measurements on 42 metabolites. The right part shows a hierarchical clustering tree
obtained using empirical Bayes estimation of a mixture model; the scale ‘Height’ is log marginal likelihood
below zero, and minus log marginal likelihood above zero. The goal is to classify the unknown phenotypes
d172 and d263 to the known ones

The unknown parameters p, σ, τ may be estimated by maximizing the marginal
likelihood based on y1, . . . , yn , noting that the y j are independent conditional on these
parameters, with density

f (y | p, σ, τ ) = (1 − p)σ−1φ(y/σ)+ p(σ 2 + τ 2)−1/2φ{y/(σ 2 + τ 2)1/2},

The resulting estimates for the data shown in Fig. 2 are p̃ = 0.04, σ̃ = 2.1,
and τ̃ = 52.1, and the corresponding shrunken coefficients and reconstructed sig-
nal are shown in the lower panels of the figure. Almost all the coefficients have
been set to zero, yet the reconstruction picks out most of the salient features of the
data.

The approach above is simple enough to be explained to an undergraduate audience,
yet sufficiently powerful to be of real use in complex problems. It can be improved by
replacing the point mass/normal mixture with a point mass/Laplace mixture; this too
allows analytical calculations and has excellent frequentist properties (Johnstone and
Silverman 2005).

4.3 Metabolic profiling

Another use of mixture models such as that outlined in the previous section is in
statistical analysis of metabolic profiles. The data shown on the left of Fig. 4 are taken
from an experiment performed by Gaëlle Messerli of the Institute of Plant Sciences
at the ETH Zürich, and colleagues, in which gas chromatography/mass spectrometry
was used to compare metabolic profiles of varieties of the plant Arabidopsis thaliana
(Messerli et al. 2007). The main idea was that mutations affecting distinct metabolic
or signalling pathways may have similar phenotypes, so the screening of traits such as
the metabolic profile may allow discrimination of mutants of interest, in this case those
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with known deficiencies in starch metabolism. Four replicates were obtained of each of
a number of profiles taken from leaves of plants, some having known anomalies
with their metabolic pathways, and others having anomalies of unknown origin. The
purpose of statistical analysis of the profiles was to identify the known mutants closest
to each of the unknown mutants, the aim being to use this information to assess
which parts of the metabolic pathway could be responsible for the starch deficiencies
observed in the unknown mutants.

Statistically this problem boils down to simultaneous hierarchical cluster and dis-
criminant analysis. The tool used was a mixture model whose main components are a
point mass and a normal distribution, like that described in Sect. 4.2, simple enough
to allow analytical computation of the marginal likelihood of any given partition of
the different profiles, and yet complex enough to allow the incorporation of different
levels of variation: between leafs within profiles, between profiles within mutants,
between mutants within elements of the partition, and between elements of the par-
tition. The mixture model ensures a potentially sparse representation of the data,
as only those metabolites that show substantial variation are used for the cluster-
ing. The hyperparameters may be estimated by marginal maximum likelihood, and
a cluster tree may be estimated using agglomerative clustering (Heard et al. 2006;
Lau and Green 2008). The result, shown in the right part of Fig. 4, agrees well with
classical approaches to clustering: there are four main clusters, that at the top of
the figure containing the wild types, the next containing two known types, the third
grouping the unknowns d263 and d172 with the known types isa2 and sex4,
and the last containing the highly unusual profiles mex1 and dpe2. The log mar-
ginal likelihood increases from around −80 when every profile is attributed to a sin-
gle cluster to a maximum value of zero, and then decreases to a value of around
−80 when there is a single cluster; in order to provide a tree of the usual form the
sign of the log marginal likelihood has been changed to the right of zero on the
plot.

This approach thus seems to provide plausible clustering trees without the Markov
chain Monte Carlo computations required by other Bayesian approaches, but is fully
probabilistic. Moreover it has the added advantage of ordering the metabolites in terms
of their usefulness for the clustering.

4.4 Comments

Similar approaches based on mixture models have a wide range of other applica-
tions, such as detection of gene expression in microarrays (Lönnstedt and Speed
2002; Bhowmick et al. 2006). Although they are powerful tools for use with
high-dimensional datasets, they raise questions: which are good general approaches
to dealing with sparse high-dimensional data, and on what basis should we judge
them? How should one perform inference for the resulting model-selected estimate?
For those approaches where Markov chain Monte Carlo must be used, the peren-
nial issue of convergence rears its ugly head, while it would be good to have
reliable simulation approaches that can be used by non-experts without
tuning.
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5 Likelihood

5.1 Higher order asymptotics

One concept that would be on almost every statistician’s list of core topics is likelihood,
which with its many variants forms the basis of inference in an increasing variety of
situations, including those where semiparametric models are used (Bickel et al. 1993;
Murphy and van der Vaart 2000; Owen 2001; Rotnitzky 2005). Likelihood theory has
been investigated for over 80 years, but is still capable of further development. Below
I touch on just two aspects to which statisticians from the Veneto region have made
valuable contributions.

Asymptotic arguments in statistics typically generate distributional approximations
to be used with finite samples, for example to set confidence intervals or perform
tests based on maximum likelihood estimates or likelihood ratio statistics. Likelihood
asymptotics were initiated by Fisher in the 1920s (Fisher 1922, 1925), and remain the
most widely used inferential tool on our workbench. It is less well-known that Fisher
(1934) also suggested the basis of a more refined theory, without developing this
beyond some special cases. Over the last 30 years prominent theoretical statisticians
have made a major effort to develop this theory, which is now useable in a variety of
applications. Consider a random sample of size n from a regular statistical model whose
log likelihood �(ψ, λ) depends on a scalar interest parameter ψ and a vector nuisance
parameter λ. Let θ̂ = (ψ̂, λ̂) denote the overall maximum likelihood estimator and
write the partially maximised estimator as θ̂ψ = (ψ, λ̂ψ), where λ̂ψ is the maximum
likelihood estimator of λ with ψ held fixed. Then one basis for inference on ψ is the
likelihood root

r(ψ) = sign(ψ̂ − ψ)
[
2

{
�(θ̂)− �(θ̂ψ)

}]1/2
,

also sometimes called the signed deviance or the signed likelihood ratio statistic.
Classical likelihood theory implies that the distribution of r(ψ) is standard normal
with error of order n1/2; that is

Pr {r(ψ) ≤ r;ψ} = Φ(r)
{

1 + O(n−1/2)
}
, as n → ∞, (2)

where the probability on the left is computed under the true model and Φ denotes the
standard normal cumulative distribution function. As usual with asymptotic arguments
in applied mathematics, the notion that n becomes large is simply a technical device
used to generate approximations for use with finite n.

Expression (2) is a first order asymptotic approximation which can be used to test
the hypothesis ψ = ψ0, by computing the tail probability associated with r(ψ0),
or to obtain the limits (ψα,ψ1−α) of a (1 − 2α) confidence interval for ψ as the
solutions to the equation r(ψ) = ±zα , where zα is the α quantile of the standard
normal distribution. It is a remarkable fact that under essentially the same regularity
conditions, and for a wide variety of continuous response models, replacement of
r(ψ) in (2) by the modified likelihood root r∗(ψ) = r(ψ)+ r(ψ)−1 log{v(ψ)/r(ψ)}
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reduces the order of error to n−3/2; in many cases the resulting tests and confidence
intervals are essentially exact even for n ≈ 5. The quantity v(ψ) appearing in the
definition of r∗(ψ) depends on the model, but it may be computed explicitly in wide
generality. For discrete response models the approximation error becomes O(n−1) and
the computation of v(ψ)may be a little more complicated. There are close connections
to related ideas such as modified profile likelihoods (Sartori 2003), which are widely
used in practice.

The extensive theoretical literature on higher order procedures is summarised in
the books of Barndorff-Nielsen and Cox (1994), Pace and Salvan (1997) and Severini
(2000), and a recent review is provided by Reid (2003). Their application is illustrated
in Brazzale et al. (2007), which makes use of an R package bundle hoa (for higher
order asymptotics), and gives numerous practical examples. This may be viewed as a
culmination of work by Brazzale and Bellio, among others, who have laboured to make
these approximations widely available (Bellio 1999; Brazzale 1999, 2000; Bellio and
Brazzale 1999, 2001, 2003).

The ideas described above extend easily to independent but non-identically distrib-
uted responses, but the literature contains little discussion of higher order asymptotics
for dependent data or for non-regular problems—though see Castillo and López-Ratera
(2006). Both these topics and the intriguing connections with Bayesian inference based
on matching priors remain to be explored more thoroughly.

5.2 Composite likelihood

Statistical inference for parametric statistical models is ideally performed using the
likelihood function, but this is unavailable or difficult to compute for many complex
models. It may then be natural to use a composite likelihood function (Lindsay 1988),
based on subsets A1, . . . ,Am of the data for which the densities are available or are
more readily computed; often these subsets will most naturally arise from considera-
tion of marginal or conditional densities. The corresponding composite marginal log
likelihood is

�A(θ) =
m∑

j=1

log f (yA j ; θ)

in a natural notation. A simple example arises in analysis of a time series y1, . . . , yn ,
where it may be tempting to replace the full likelihood

f (y1, . . . , yn; θ) = f (y1; θ)
n∏

j=2

f (y j | y1, . . . , y j−1; θ)

by (Azzalini 1983)

f (y1, . . . , yn; θ) = f (y1; θ)
n∏

j=2

f (y j | y j−1; θ)
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if the one-step transition densities are easily computed; this amounts to behaving
as if the process were first order Markov. Under regularity conditions analogous to
those needed for the limiting normality of the usual maximum likelihood estimator,
and if θ is identifiable from the marginal densities contributing to �A, the maximum
composite likelihood estimator θ̃ has a limiting normal distribution as n → ∞, with
mean θ and covariance matrix of sandwich form estimable by J (θ̃)−1 K (θ̃)J (θ̃)−1,
where J (θ) and K (θ) are are the observed information and squared score statistic
corresponding to �A. Often the efficiency of θ̃ relative to the maximum likelihood
estimator is surprisingly high, though care must be taken not to allow m to become too
large; if so the efficiency can drop, and in extreme cases θ̃ may become inconsistent
(Cox and Reid 2004).

Composite likelihood may be seen as the basis for the estimating equation

∂�A(θ)
∂θ

= 0,

but has the advantage over arbitrarily-defined estimating equations of stemming from
a well-defined objective function. It would be natural to base inference for components
of θ on the corresponding profile log composite likelihood, but unfortunately the usual
limiting Chi-squared result does not apply to the composite likelihood ratio statistic,
whose distribution is a sum of differently scaled χ2

1 variables. Varin (2008) reviews
composite likelihood inference and gives many further references. It would be very
interesting to compare composite likelihood with other approaches to inference, where
such comparison is possible. A further topic worth investigating is to what extent
Bayesian inference is feasible using composite likelihoods.

6 Training statisticians

One essential role of a university statistics department is to attract young people,
and to educate them to be future leaders and users of our subject. An enormous
amount has been written on statistical education, and I touch on just one aspect. The
relation with mathematics and with other substantive subjects is crucial: what do we
want our students to know and to be able to do? A strong mathematical background
seems important for statistical theory, but computational skills are now key to much
methodology, while substantive knowledge seems increasingly needed for applied
work. If we are to train young people able and eager to take on future challenges, we
must try and balance these three aspects.

The construction or revision of a curriculum typically involves deciding what can
safely be left out, rather than what should be put in, so it is important to identify
which skills and topics are core, and which are merely desirable. The core devel-
ops over time: 25 years ago the kernel of a regression course was the linear model,
analysis of variance and non-linear and generalized linear modelling. Today it might
also include generalized linear mixed models; nonparametric regression including
local likelihood, spline smoothing and wavelets; the lasso and related approaches
to sparse modelling; neural nets; classification and regression trees; survival data
analysis; support vector machines and radial basis functions; and random trees and
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forests. The course might also touch on more theoretical topics such as cross-validation
and boosting (Freund and Schapire 1997; Bühlmann and Hothorn 2006). As this
list is intended to make clear, continual addition to the core is infeasible, at least
in the long term; rather the central elements need to be emphasised, with some key
examples, so that new techniques can quickly be placed into a mental map of the
domain.

One attempt to define a core is set out in Davison (2003), but I am well aware
of its limitations. From this viewpoint key inferential topics are likelihood, estimat-
ing functions and Bayesian inference; key methods topics are regression in some of
its varieties, study design including sampling and experimental design, multivariate
statistics and simulation; and key models include a variety of stochastic processes,
particularly Markov and point processes and time series.

Mathematical topics that seem essential for a statistician include real analysis,
geometry, linear algebra, discrete mathematics, probability—perhaps with a dash of
measure—and basic stochastic processes. Beyond this functional and numerical analy-
sis are increasingly important for many statistical applications, with the necessary
background of algebra and topology, and stochastic geometry and stochastic calcu-
lus also seem valuable. Further beyond this lie statistical applications of almost any
conceivable domain of mathematics, examples being number theory, computational
algebra, Riemannian geometry and algebraic geometry (Hall 2005). At some point
however a balance has to be struck—although it is possible to see much of modern
smoothing as an exercise in the geometry of reproducing kernel Hilbert spaces (Pearce
and Wand 2006; Wahba 1990; Gu 2002), it is moot whether this is essential for the
beginner.

Apart from mathematics, a reasonable background in computational science
including programming skills has become essential, and knowledge of optimisa-
tion, algorithmics and complexity are increasingly needed to make progress in major
applications.

The range of possible applications is so diverse that contact with more than a
small subset seems impossible. Apart from the obvious, such as good communica-
tion skills and technical competence, key attributes for collaboration are a willing-
ness to ask basic questions and to query assumptions, and respect for the insights
given by different viewpoints. A strong element of project work, blending acqui-
sition of statistical methodology with immersion in applications, helps to develop
these.

7 Conclusion

These are exciting times for statistics and for statisticians. Important problems require
solutions that take proper account of uncertainty, based on data of novel types, com-
putational tools are readily available, and new mathematical models can be applied
in imaginative ways. We are sometimes exhorted to ‘think globally, but act locally’,
and in this spirit I congratulate the statisticians at the Università Ca’ Foscari on their
beautiful new building, and look forward to the further contributions to be made from
there.

123



180 A. C. Davison

References

Abramovich F, Sapatinas T, Silverman BW (1998) Wavelet thresholding via a Bayesian approach. J Roy
Stat Soc B 60:725–749

Ancey C, Davison AC, Böhm T, Jodeau M, Frey P (2008) Entrainment and motion of coarse particles in a
shallow water stream down a steep slope. J Fluid Mech 595:83–114

Azzalini A (1983) Maximum likelihood estimation of order m for stationary stochastic processes. Bio-
metrika 70:381–387

Barndorff-Nielsen OE, Cox DR (1994) Inference and asymptotics. Chapman & Hall, London
Barndorff-Nielsen OE, Mikosch T, Resnick SI (2001) Lévy processes: theory and applications. Birkhäuser

Verlag, Basel
Barndorff-Nielsen OE, Gill RD, Jupp PE (2003) On quantum statistical inference (with discussion). J Roy

Stat Soc B 65:775–816
Bellio R (1999) Likelihood Asymptotics: Applications in Biostatistics. PhD Thesis, Department of Statis-

tical Science, University of Padova
Bellio R, Brazzale AR (1999) On the implementation of approximate conditional inference. Stat Appl

11:251–271
Bellio R, Brazzale AR (2001) A computer algebra package for approximate conditional inference. Stat

Comput 11:17–24
Bellio R, Brazzale AR (2003) Higher-order asymptotics unleashed: Software design for nonlinear het-

eroscedastic models. J Computat Graphical Stat 12:682–697
Bhowmick D, Davison AC, Goldstein DR, Ruffieux Y (2006) A Laplace mixture model for the identification

of differential expression in microarrays. Biostatistics 7:630–641
Bickel PJ, Klassen CAJ, Ritov Y, Wellner JA (1993) Efficient and adaptive estimation for semiparametric

models. Johns Hopkins University Press, Baltimore
Böhm T, Ancey C, Frey P, Reboud J-L, Ducottet C (2004) Fluctuations of the solid discharge of gravity-

driven particle flows in a turbulent stream. Phys Rev E 69:061307
Brazzale AR (1999) Approximate conditional inference in logistic and loglinear models. J Computat Graph-

ical Stat 8:653–661
Brazzale AR (2000) Practical Small-Sample Parametric Inference. PhD Thesis, Department of Mathematics,

Swiss Federal Institute of Technology, Lausanne
Brazzale AR, Davison AC, Reid N (2007) Applied asymptotics: case studies in small sample statistics.

Cambridge University Press, Cambridge
Breiman L (2001) Statistical modeling: the two cultures (with discussion). Stat Sci 16:199–231
Bühlmann P, Hothorn T (2006) Boosting algorithms: regularization, prediction and model fitting. http://

stat.ethz.ch/buhlmann/bibliog.html.
Castillo JD, López-Ratera A (2006) Saddlepoint approximation in exponential models with boundary

points. Bernoulli 12:491–500
Chellappa R, Jain A (eds) (1993) Markov random fields: theory and application. Academic, New York
Clifford P (1990) Markov random fields in statistics. In: Grimmett GR, Welsh DJA (eds) Disorder in

physical systems: a volume in honour of John M. Hammersley. Clarendon Press, Oxford. pp 19–32
Cox DR, Isham VS (1988) A simple spatial-temporal model of rainfall. Proc Roy Soc Lond A 415:317–328
Cox DR, Reid N (2004) A note on pseudolikelihood constructed from marginal densities. Biometrika

91:211–221
Davison AC (2003) Statistical models. Cambridge University Press, Cambridge
Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455
Efron B (2003) The statistical century. In: Panaretos J (ed) Stochastic musings: perspectives from the

pioneers of the late 20th century. Laurence Erlbaum, Florence. pp 31–46
Efron B, Hastie TJ, Johnstone IM, Tibshirani RJ (2004) Least angle regression (with discussion). Ann Stat

32:407–499
Fisher RA (1922) On the mathematical foundations of theoretical statistics. Philos Trans Roy Soc Lond A

222:309–368
Fisher RA (1925) Theory of statistical estimation. Proc Cambridge Philos Soc 22:700–725
Fisher RA (1934) Two new properties of mathematical likelihood. Proc Roy Soc Lond A 144:285–307
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application

to boosting. J Comput Syst Sci 55:119–139
Gu C (2002) Smoothing spline ANOVA models. Springer, New York

123

http://stat.ethz.ch/buhlmann/bibliog.html.
http://stat.ethz.ch/buhlmann/bibliog.html.


Some challenges for statistics 181

Hall P (2005) On non-parametric statistical methods. In: Davison AC, Dodge Y, Wermuth N (eds)
Celebrating statistics: papers in honour of Sir David Cox on his 80th birthday. Clarendon Press,
Oxford. pp 137–150

Hand DJ (2006) Classifier technology and the illusion of progress (with discussion). Stat Sci 21:1–34
Hastie TJ, Tibshirani RJ, Friedman JH (2001) The elements of statistical learning: data mining, inference,

and prediction. Springer, New York
Heard NA, Holmes CC, Stephens DA (2006) A quantitative study of gene regulation involved in the immune

response of Anopheline mosquitoes: an application of Bayesian hierarchical clustering of curves. J
Am Stat Assoc 101:18–29

Isham V (1981) An introduction to spatial point processes and Markov random fields. Int Stat Rev 49:21–43
Isham VS (2005) Stochastic models for epidemics. In: Davison AC, Dodge Y, Wermuth N (eds) Celebrating

statistics: papers in honour of Sir David Cox on his 80th birthday. Clarendon Press, Oxford. pp 27–54
Johnstone IM, Silverman BW (2005) Empirical Bayes selection of wavelet thresholds. Ann Stat 33:1700–52
Kou SC, Xie XS, Liu JS (2005) Bayesian analysis of single-molecule experimental data (with discussion).

Appl Stat 54:469–506
Lau JW, Green PJ (2008) Bayesian model based clustering procedures. Journal of Computational and

Graphical Statistics p. (to appear)
Lindsay BG (1988) Composite likelihood methods. Contemporary Math 80:220–241
Lönnstedt I, Speed TP (2002) Replicated microarray data. Stat Sinica 12:31–46
McCulloch CE, Searle SR (2001) Generalized, linear, and mixed models. Wiley, New York
Messerli G, Partovi Nia V, Trevisan M, Kolbe A, Schauer N, Geigenberger P, Chen J, Davison AC, Fernie A,

Zeeman SC (2007) Rapid classification of phenotypic mutants of Arabidopsis via metabolite finger-
printing. Plant Physiol 143:1484–1492

Murphy SA, van der Vaart AW (2000) On profile likelihood (with discussion). J Am Stat Assoc 95:449–485
Owen AB (2001) Empirical likelihood. Chapman & Hall/CRC, Boca Raton
Pace L, Salvan A (1997) Principles of statistical inference from a neo-fisherian perspective. World Scientific,

Singapore
Panaretos VM (2006) The diffusion of radon shape. Adv Appl Prob 38:320–335
Panaretos VM (2007) Partially observed branching processes for stochastic epidemics. J Math Biol 54:645–

668
Pearce ND, Wand MP (2006) Penalized splines and reproducing kernel methods. Am Stat 60:233–240
Porporato A, Rodríguez-Iturbe I (2005) Stochastic soil moisture dynamics and vegetation response. In:

Davison AC, Dodge Y, Wermuth N (eds) Celebrating Statistics: papers in honour of Sir David Cox
on his 80th birthday. Clarendon Press, Oxford. pp 55–72

Reid N (2003) Asymptotics and the theory of inference. Ann Stat 31:1695–1731
Rotnitzky A (2005) On semiparametric inference. In: Davison AC, Dodge Y, Wermuth N (eds) Celebrating

statistics: papers in honour of Sir David Cox on his 80th birthday. Clarendon Press, Oxford. pp 115–136
Sartori N (2003) Modified profile likelihoods in models with stratum nuisance parameters. Biometrika

90:533–549
Severini TA (2000) Likelihood methods in statistics. Clarendon Press, Oxford
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc B 58:267–288
Varin C (2008) On composite marginal likelihoods. Statistics (to appear)
Wahba G (1990) Spline models for observational data. CBMS-NSF regional conference series in applied

mathematics. SIAM, Philadelphia

123


	Some challenges for statistics
	Abstract
	Introduction
	Data
	Stochastic modelling
	Sparsity
	Generalities
	Bayesian wavelet analysis
	Metabolic profiling
	Comments
	Likelihood
	Higher order asymptotics
	Composite likelihood
	Training statisticians
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


