In the first semester of the academic year 2007/2008 the ALICE students were asked to develop design proposals for a site reactive pavilion for the London Festival of Architecture in June 2008. (www.londonbiennale.org.uk).

A chosen scheme was selected at the end of the semester in December 2007 through a small design competition within the studio to establish a project team to carry forward the development of the pavilion towards fabrication during the second semester. The pavilion was then erected in London for the biennale’s opening on June 20th. See brochure on Overflow.

One of the programmatic components for the pavilion was display. The specificities of the sites that the various pavilions were to engage were in accordance with the proposed route from the program of the London Festival of Architecture.
The studio started by probing gravity and its direct implications in the conception of architecture; gravity initially in a physical and spatial sense, and being observed later in the semester in its social, cultural and political consequences.

Two definitions of interest for gravity:

° The force of attraction, characterized by heaviness or weight (force), by which terrestrial bodies tend to fall towards the centre of the earth (physical).
° Gathering: a group of persons together in one place (social).

For instance, can we speak of gravity without the implications of terms such as: acceleration, velocity, mass, fall/impact, grounding, excavation, centre of gravity, relativity, relations, force (of attraction), weight/volume, structure, matter, material, downward, upward, air resistance, equilibrium, rest...?
The first phase in the ALICE curriculum includes the fabrication of a “physical construct” based on explorations conducted through experiments. This physical construct was to “declare gravity at work.”
Physical experiments on gravity from left:
Malka Cimenti, Lila Held
Ashen Alberti, Sebastian Hefti
Konstantinos Dell’Olivo,
Ann Madlen Gefeller
Andreas Gselller, Sandro
Tonietti
Nicolas de Courten,
Christopher Tan
The gravitational impact on falling objects and receiving grounds was observed as spatial and formal conditions manifested in compressed moments of time.

Andreas Bellmann, Sandro Tonietti

Physical experiment on gravity: two falling balls, impact on textile under tension & Sequence drawings recording the balls in space.

Clio Gachoud, Minh-Luc Pham
This project was generated through the tracking of a sheet of paper falling in space. The movements were recorded by 3 cameras and then reconstructed in 3-D software. The trajectories of the four cardinal points of the sheet led to a warped spatial construct, built in thin cardboard, its wrapped geometry locking its form in space and making it a structurally robust artifact. Augusta Prorok, Bertrand Sauterel

3-D software is implemented as a tool for analysis of spatial conditions and transformations in time. The parallel construction of a physical model and its counterpart in the digital realm fosters an understanding of structures and forces.
This project investigates how, with an increasing upward force, an initial two-dimensional lattice redistributes itself into three-dimensional space with some local attachments.

Nicolas De Courten, Christopher Tan
Analytical sections in drawing and model form of a first profane experiment: a dome of glue, poured over an inflated balloon, collapsed as the balloon was removed.

Aurel Martin, Mikael Monteserin

Explorations on how gravity impacts on form
above:
Fatma Ben Amor, Aurélie Krotoff
below:
Clio Gachoud, Minh-Luc Pham
A PHYSICAL CONSTRUCT
DECLARING GRAVITY AT WORK

It is a core idea of the ALICE curriculum to work simultaneously in parallel realms—to develop a project in 3-D software and to test it constantly in physical models, or to draw while at the same time probing material qualities in one-to-one mock-ups. In this approach the design process is constantly challenged by catalyst “reactions” in the respective fields of production.
A structure that resists gravity by means of its geometry. Drawing of templates for the construction of the model.

Nicolas De Courten, Christopher Tan

This project proposes a physical representation of the spatial impact of a falling object on a series of receivers. In the absence of the falling object, the physical representation registers the temporal aspect of the event while disclosing new spatial encounters.

Adrien Alberti, Sebastian Hefti
Gravity impacts on form. A hanging structure responding to tidal forces along an embankment. Wood structure connected by elastic strips.

Fatma Ben Amor, Aurélie Kortoff

This project is an attempt to reconsider the properties of a brick-wall by introducing a string or cable instead of the mortar commonly used for the joints between the individual bricks. In the place of adhesion gravity itself stabilizes the wall.

Alexander Hertel, Philipp Jakob
The third phase in the ALICE curriculum tests, transforms, develops and materializes the initial ideas towards a concrete proposal for the pavilion. Scale, material, structure, program, construction details, fabrication and assembly are addressed.
What appears to be a simple triangulated object is in fact a structure consisting of bands, with a hierarchy between the different parts. The result is not a fully rigid structure but rather a partially flexible construct that resists gravity by means of its geometry.

Nicolas De Courten, Christopher Tan
We start our project from an experiment with an elastic membrane and balls which were falling on it. We studied on the membrane; their deformations, the space between them and the interaction with the balls at different moment.

In our construction we merged down different moments of the membrane's deformation. We can see the gravity in the deformation of our membrane and with the people who will use the pavilion. The people can entrance and get out by two entrances, which are not so visible, we want the visitor be curious and search the way. We use the big stairs as a place where they can sit and observe the structure. It’s an interactive experiment, u cannot go throw the structure few people in the same time.

We make a new relation with the ground.

We choose this site because we wanted a place which was not flat, and where we could be hanging. Here we are handing on the bridge and put on the stairs. The second membrane and the third are hanging to the primary structure of the first one and ve some attachment on the ground and between them.

We choose this system of hanging to have this motion of rebounding when u re walking on the structure and this new view of the ground.

The structure is in bamboo because of his capacity of flexibility.
This project was selected by the jury at the end of the first semester. In an extensive discussion with the group, the decision was taken to directly work with the water surface of the River Thames.

Nathalie Egli, Auguste Michael, Andres Tovar Nuez
team

acknowledgments

alice students 2007/ 2008

alice team
Dieter Dietz, Eveline Galatis, Olivier Ottevaere, Daniel Pokora, Isabella Pasqualini, Katia Ritz, Marc Schmit

many thanks to:
Ivan Beer, Andreas Bründler, Hani Buri, Jean-Pierre Dürrig, Urs Egg, Reto Geiser, Iela Herrling, Adi Heusser, Alex Jaimes, Hieronyme Lacroix, Russell Loveridge, Marc Mader, Ramias Steinemann, Isa Stürm, Dieter Vischer, Yves Weinand
for inspiring critics and discussions.

special thanks to:
Marc Parlange, Doyen ENAC EPFL; Giorgio Margaritondo, Vice President EPFL; Nicolas Henchoz, Director EPFL+ECAL lab; Ines Lumunière, Director SAR, EPFL; Bruno Marchand, Director IA, EPFL; Luca Ortelli, Former Director, SAR EPFL; Eveline Galatis, ALICE lab EPFL; Anne Markey, London Met University, NASF coordinator; Robert Mull, Director DASD London Met University; Pippa Gueterbock, Associate Director EDAW; Sarah Ichioka, Director The Architecture Foundation; Donald Hyslop, Director’s Office, Tate Modern; Alistair Huggett, Southwark Council
for their widespread support.