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Abstract

A new method for robust fixed-order H∞ controller design by convex op-
timization for multivariable systems is investigated. Linear Time-Invariant
Multi-Input Multi-Output (LTI-MIMO) systems represented by a set of com-
plex values in the frequency domain are considered. It is shown that the
Generalized Nyquist Stability criterion can be approximated by a set of con-
vex constraints with respect to the parameters of a multivariable linearly
parameterized controller in the Nyquist diagram. The diagonal elements of
the controller are tuned to satisfy the desired performances, while simul-
taneously, the off-diagonal elements are designed to decouple the system.
Multimodel uncertainty can be directly considered in the proposed approach
by increasing the number of constraints. The simulation examples illustrate
the effectiveness of the proposed approach.

Key words: Convex Optimization, H∞ control, MIMO systems, spectral
models

1. Introduction

Most of the industrial plants consist of several interconnected loops, which
can be represented by MIMO models. One approach to design multivariable
controllers is the classical optimal and robust control techniques applied to
a state space representation of these MIMO models. Unfortunately, these
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techniques lead to high-order multivariable controllers with a state-space
representation. This type of controller structure is not common in indus-
trial plants and their retuning is difficult for control technicians. Several
fixed-order controller design methods based on parametric models have been
proposed in the literature, e.g. [1, 2, 3]. However, these methods cannot deal
with systems containing a time-delay which is very common in industrial
processes. Hence, they are rarely used in industry for tuning multivariable
PID controllers.

A two-step technique is commonly used in practice instead. In the first
step the MIMO system is transformed into a diagonally dominant system us-
ing a decoupling precompensator. Once the system is diagonally dominant,
SISO techniques are used to design the decoupled controllers for each diagonal
element of MIMO system. This strategy is easy to implement and maintain,
and is very effective in practice. An example of a two-step approach is given
in [4], where first a decoupler is obtained based on the adjoint of the system.
Then, a diagonal PID controller is tuned minimizing the integrated absolute
error for a step load disturbance for each decoupled system satisfying an up-
per bound on the sensitivity and complementary sensitivity functions. Many
decoupling techniques have been proposed in literature. The classical decou-
pling methods are based on the eigenvalue decomposition [5] or the singular
value decomposition [6]. The minimization of a non-convex function of the
weighted off-diagonals of the open-loop system in some given frequencies is
considered in [7] to tune a decoupler. An appropriate choice of the weighting
function provides a better decoupling around the cross-over frequency.

Since the decoupling step is never perfect, several methods based on a
detuning factor are proposed that take into account the coupling effects in the
design of SISO controllers. The biggest log modulus tuning (BLT) method
proposed in [8] is used to tune individual PI controllers for each decoupled
loop using Ziegler-Nichols approach. Then, the proportional and integral
terms are multiplied by a detuning factor so that the maximum modulus of
the closed-loop transfer function has a specific value.

A decentralized PID controller design method using Gershgorin bands is
proposed in [9]. By solving a system of nonlinear equations involving the
Gershgorin bands, the decentralized controllers are tuned so that desired
gain and phase margins are guaranteed for the diagonal system. It should be
noticed that the global stability is not guaranteed because only two crossover
frequencies associated to the gain and phase margins are considered for the
Gershgorin bands shaping. The coupling effects for a particular loop from
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all other closed loops are incorporated to a so called effective transfer func-
tion, which is used consequently to design decentralized controllers using
the single loop tuning techniques [10]. Several simulation examples shows
the effectiveness of this approach, however, the stability of the multivariable
system cannot be guaranteed.

Although obtaining a parametric model based on physical laws or iden-
tification from data is usually too difficult or time consuming, most of the
SISO and MIMO controller design methods are based on parametric models.
This kind of models need several a priori information, in contrast to spectral
models. Spectral models are largely used in practice, however, there is only
a few controller design methods based on this type of SISO models, and even
fewer for MIMO models. For diagonally dominant or decoupled systems,
in [11] a non-convex frequency criterion is defined as the weighted sum of
squared error between the desired and computed stability margins consider-
ing the Gershgorin bands. Then, this criterion is minimized iteratively using
the measured data from some specific closed-loop relay tests. The Gershgorin
bands are also used to compute the detuning factor for Z-N tuned controllers
based on the calculation of the ultimate gains and ultimate frequencies of
each loop using the frequency response of system [12].

The minimization of a weighted difference between a desired diagonal
closed-loop frequency response and the real response for some finite frequen-
cies is presented in [13] to attain the decoupling and desired performances via
separate non-convex optimizations. Note that the method is only applicable
to 2 × 2 systems. It should be noticed that these methods do not guarantee
the closed-loop stability.

An iterative correlation-based controller (CbT) tuning approach was pro-
posed in [14], where diagonal and off-diagonal elements of the controller
transfer function matrix are tuned simultaneously to satisfy desired single-
loop closed-loop performance and to decouple the closed-loop outputs. The
method is a time-domain data-driven approach using non-convex optimiza-
tion which does not guarantee the closed-loop stability.

In this work, the method proposed in [15, 16] is extended to deal with LTI-
MIMO systems. It is shown that fixed-order linearly parameterized MIMO
controllers for MIMO nonparametric spectral models can be computed by
convex optimization. The stability of the closed-loop system is guaranteed
thanks to the Generalized Nyquist Stability criterion. It should be mentioned
that the use of this criterion leads to a non-convex set on the controller pa-
rameters. In this paper, a convex approximation of this set is given by a set
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of convex constraints in the Nyquist diagram based on Gershgorin bands.
In this approach, decouplers and decoupled controllers are designed simul-
taneously by a convex optimization technique. The proposed method can
be used for PID controllers as well as for higher order linearly parametrized
controllers in discrete or continuous time. The case of unstable open-loop
systems can be considered if a stabilizing controller is available.

This paper is organized as follows: In Section 2 a review of the recently
proposed method for fixed-order H∞ controller design for SISO systems in
[15] is given. Section 3 introduces the control design methodology for MIMO
systems based on the convex constraints in the Nyquist diagram, which guar-
antees the Generalized Nyquist Stability criterion and single-loop H∞-SISO
performance. This leads to a Semi-Infinite Programming (SIP) problem
which is solved using the scenario approach in Section 4. Simulation results
and comparison with other design methods are given in Section 5. Finally,
Section 6 gives some concluding remarks.

2. Summary of the approach for SISO systems

In this section, the main idea of fixed-order H∞ controller design for SISO
systems proposed in [15] is reviewed.

A system represented by a set Gc of m LTI-SISO strictly proper spectral
models with bounded infinity norm are considered:

G = {G1(jω), . . . , Gm(jω); ω ∈ R} (1)

The models can be obtained from a set of input/output data via spectral
analysis. In the sequel, we consider a continuous-time model G(jω) ∈ G
to explain the basis of the proposed approach. It will be shown that the
results can be extended straightforwardly to the case of multiple models and
discrete-time systems.

The objective is to design a linearly parameterized controller given by :

K(s) = ρT φ(s) (2)

where
ρT = [ρ1, ρ2, . . . , ρn] (3)

φT (s) = [φ1(s), φ2(s), . . . , φn(s)] (4)

n is the number of controller parameters and φi(s), i = 1, . . . n are stable
transfer functions possibly with poles on the imaginary axis, chosen from a
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set of orthogonal basis functions. It is clear that PID controllers belong to
this set. The main property of this parameterization is that every point on
the Nyquist diagram of L(jω, ρ) = K(jω)G(jω) can be written as a linear
function of the controller parameters ρ:

K(jω)G(jω) = ρT φ(jω)G(jω) = ρTR(ω) + jρTI(ω) (5)

where R(ω) and I(ω) are the real and imaginary parts of φ(jω)G(jω), re-
spectively.

Typically, a standard robust control problem is to design a controller that
satisfies ‖W1S‖∞ < 1 for a set of models, where W1(s) is the performance
weighting filter and S is the sensitivity function. If the set of models is repre-
sented by multiplicative uncertainty, i.e. G̃(s) = G(s)[1 + W2(s)∆(s)] where
∆(s) is a stable transfer function with ‖∆‖∞ < 1, the robust performance
condition is given by [17]:

|W1(jω)S(jω)|+ |W2(jω)T (jω)| < 1 ∀ω ∈ R (6)

where
S(jω) = [1 + L(jω, ρ)]−1

is the sensitivity function and

T (jω) = L(jω, ρ)[1 + L(jω, ρ)]−1

is the complementary sensitivity function. This constraint is satisfied if and
only if there is no intersection in the Nyquist diagram between the perfor-
mance circle centered at the critical point with a radius of |W1(jω)| and the
uncertainty circles centered at L(jω) with a radius of |W2(jω)L(jω)| at all
ω. Equivalently, this condition is satisfied if and only if the circle centered
at L(jω, ρ) does not intersect the line d∗(ω), which is tangent to the circle
with radius |W1(jω)| and orthogonal to the line between the critical point
and L(jω, ρ), and is in the side that excludes the critical point (in the right
hand side of d∗(ω) in Fig. 1). This leads to nonconvex robust performance
constraints on controller parameters because the line d∗(ω) depends on the
controller parameters.

The basic idea of the proposed approach in [15] is to approximate the
nonconvex robust performance constraints in (6) by convex constraints. The
line d∗(ω) can be approximated by the line d(ω) which is tangent to the
performance circle but orthogonal to the line connecting the critical point
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to Ld(jω), which is a desired open-loop transfer function (see Fig. 1). It is
clear that if the uncertainty circles are in the right hand side of d(ω), they
have no intersection with the performance circle and the robust performance
constraints in (6) are satisfied.

Denoting x and y as the real and imaginary parts of a point on the
complex plane, the line d(ω) is defined as:

|W1(jω)[1 + Ld(jω)]| − Im{Ld(jω)}y − [1 + Re{Ld(jω)}](1 + x) = 0 (7)

It should be noted that the equation of d(ω) at each frequency depends
only on W1(jω) and Ld(jω), which are supposed to be completely known.
Therefore, the next linear constraint guarantees that the point L(jω, ρ) is in
the side of d(ω) that excludes the critical point:

|W1(jω)[1 + Ld(jω)]| − Im{Ld(jω)}Im{L(jω, ρ)}−
[1 + Re{Ld(jω)}][1 + Re{L(jω, ρ)}] < 0 ∀ω ∈ R (8)

This linear constraint can be simplified to:

|W1(jω)[1 + Ld(jω)]| −Re{[1 + Ld(−jω)][1 + L(jω, ρ)]} < 0 ∀ω ∈ R (9)

To assure that all models inside the uncertainty circles satisfy the condi-
tion (9), the radius of the performance filter is increased by |W2(jω)L(jω)|
which gives the following convex constraints with respect to the controller
parameter vector ρ:

|W1(jω)[1 + Ld(jω)]| + |W2(jω)L(jω, ρ)[1 + Ld(jω)]|−
Re{[1 + Ld(−jω)][1 + L(jω, ρ)]} < 0 ∀ω ∈ R (10)

These constraints are the convex approximation of the robust performance
condition in (6). The conservatism of this approximation depends on the
choice of Ld(jω). Since Ld(jω) is chosen such that it represents some desired
control specifications, then it is judicious to minimize a norm of L−Ld under
the new convex robust performance constraints. This leads to a Semi-Infinite
Programing problem (SIP), an optimization problem with a finite number of
variables and an infinite number of constraints:

min
ρ

‖L(ρ) − Ld‖
Subject to:
|W1(jω)[1 + Ld(jω)]| + |W2(jω)L(jω, ρ)[1 + Ld(jω)]|−
Re{[1 + Ld(−jω)][1 + L(jω, ρ)]} < 0 ω ∈ R

(11)
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Figure 1: Convex constraints for robust performance in Nyquist diagram
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Remarks:

• This optimization problem can be extended to the case of multimodel
uncertainty. The constraints should be repeated for m models by re-
placing L(jω, ρ) with Li(jω, ρ) = K(jω)Gi(jω) for i = 1, . . . , m and

the objective function with min
ρ

m∑
i

‖Li(ρ) − Ld‖.

• It can be shown that the proposed approach can be applied to unstable
systems as well. The only condition is that Ld(s) has the same number
of unstable poles (with negative real parts) as G(s) and the same poles
on the imaginary axis.

3. MIMO Controller design in Nyquist diagram

In this section the proposed design method is extended to MIMO systems.

3.1. Class of models

A set G including m LTI-MIMO strictly proper spectral models with
bounded infinity norm are considered:

G = {G1(jω), . . . ,Gm(jω); ω ∈ R} (12)

where Gi(jω) is an no × ni matrix of frequency response functions (FRF) or
spectral models with ni the number of inputs and no the number of outputs
of the system.

In the sequel, it will be shown that ensuring closed-loop performance and
stability for each member of the set G leads to a set of convex constraints.
Therefore, thanks to the properties of convex sets, by repeating the con-
straints for m models the robust performance and stability for the set G will
be guaranteed. For the sake of simplicity, henceforth, we derive the stability
and performance conditions for a single nominal model G. Obviously the
results can be applied to the class of model G by repeating the constraints
for every model in the set.

3.2. Class of controllers

Consider the class of multivariable controllers given by an ni × no matrix
K(s) whose elements Kpq(s) for p = 1, . . . , ni and q = 1, . . . , no are linearly
parameterized. It means that Kpq(s) = ρT

pqφpq(s) where ρT
pq is the vector of
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parameters for Kpq(s) and φpq(s) is the vector of stable transfer functions
possibly with poles on the imaginary axis, chosen from a set of orthogonal
basis functions. Obviously, PID matrix controllers belong to this set, whose
non-diagonal elements principally decouple the system and the diagonal el-
ements are designed to achieve some single-loop desired performances. As
for the SISO case, the main property of this parameterization is that every
component of the matrix L(jω, ρ) = G(jω)K(jω) on the Nyquist diagram,
can be written as a linear function of the controller parameters ρ:

ρ = [ρ11, . . . , ρ1ni
, . . . , ρno1, . . . , ρnoni

]

3.3. Stability condition based on Gershgorin Bands

Let the open-loop system L(s) have no uncontrollable and/or unobserv-
able unstable modes. Then, the Generalized Nyquist Stability criterion shows
that the feedback system will be stable if and only if the net sum of anti-
clockwise encirclements of the critical point (−1+j0) by the set of eigenvalues
of the matrix L(jω) is equal to the total number of right-half plane poles of
L(s).

The eigenvalues of the matrix L(jω, ρ) at each frequency ω are nonconvex
functions of the controller parameters. A sufficient stability condition can be
obtained by approximating the eigenvalues using the Gershgorin bands. Let
L(jω, ρ) be the open-loop no × no matrix with complex elements Lpq(jω, ρ).
For q ∈ {1, . . . , no} we define

rq(ω, ρ) =

no∑
p=1,p �=q

|Lpq(jω, ρ)| (13)

which is a convex function with respect to the controller parameters. Let
D(Lqq(jω, ρ), rq(ω, ρ)) be a circle centered at Lqq(jω, ρ) with radius rq(ω, ρ).
Such a circle is called a Gershgorin band. Every eigenvalue of L(jω, ρ) lies
within at least one of the Gershgorin bands D(Lqq(jω, ρ), rq(ω, ρ)) for q =
1, . . . , no [18].

Proposition 1. [19]: Consider that the elements of the no × no matrix
L(jω) = G(jω)K(jω) satisfy

|rq(ω)| < |1 + Lqq(jω)| (14)
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for q = 1, . . . , no and for all ω on the Nyquist contour, where

rq(ω) =

no∑
p=1,p �=q

|Lpq(jω)| (15)

Let the qth Gershgorin band of L(jω), which is composed of circles centered
at Lqq(jω) with radius rq(ω), encircles the critical point (−1, j0), Nq times
counterclockwise. Then, the negative feedback system is stable if and only if

no∑
q=1

Nq = P0 (16)

where P0 is the number of unstable poles of L(s).

Hence, for an open-loop stable system, the closed-loop is stable if the set
of the Gershgorin bands of radius rq(ω, ρ) of the matrix L(jω, ρ) is strictly
at the right hand side of a line passing through the critical point (−1 + j0)
for all ω and for q = 1, . . . , no. A line dq(ω) could be used to divide the
complex plane in two half-planes, shown in Fig. 2. The slope of this line
can be changed automatically to enlarge the set of admissible controllers if
a desired strictly proper open-loop transfer function LDq(s) is defined for
each q-th diagonal component. At each frequency ω, the line dq(ω) which
crosses the critical point (−1 + j0) and is orthogonal to the line connecting
the critical point to LDq(jω) is defined. For an open-loop stable system, if all
Gershgorin bands for all frequencies are located on the same side of LDq(jω)
with respect to the lines dq(ω), stability is guaranteed. Therefore an no × no

desired transfer function matrix LD(jω) can be defined with LDq(jω) as the
q-th diagonal element.

The proposed approach can also be applied to unstable systems. The
main condition is that LD(jω) should be a matrix of strictly proper transfer
functions and the set of its eigenvalues has to encircle P0 times the critical
point (−1 + j0), where P0 is the number of unstable poles of G(s) (in our
approach K(s) has no unstable poles due to its parameterization). This is
shown in the following theorem:

Theorem 1. Given the spectral model G(jω), the linearly parameterized
controller K(s) defined in subsection 3.2 stabilizes the closed-loop system if

|rq(ω, ρ)| − Re{[1 + LDq(−jω)][1 + Lqq(jω, ρ)]}
|1 + LDq(jω)| < 0

∀ω for q = 1, . . . , no (17)
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Figure 2: Convex constraints for the Generalized Nyquist Stability criterion in Nyquist
diagram

where the diagonal matrix LD(jω) is chosen such that the number of coun-
terclockwise encirclements of the critical point by the Nyquist plot of the set
of its eigenvalues is equal to the number of unstable poles of G(s).

Proof. Since the real value of a complex number is less than or equal to its
magnitude, we have:

Re{[1 + LDq(−jω)][1 + Lqq(jω, ρ)]} ≤ |[1 + LDq(−jω)][1 + Lqq(jω, ρ)]|
(18)

Then from (17) we obtain:

|rq(ω, ρ)| − |1 + Lqq(jω, ρ)| < 0 ∀ω for q = 1, . . . , no (19)

which leads directly to (14).
Now we should show that this controller stabilizes the system. From (17),

we have:
Re{[1 + LDq(−jω)][1 + Lqq(jω, ρ)]} > 0 ∀ω (20)

or wno{[1 + LDq(−jω)][1 + Lqq(jω, ρ)]} = 0, where wno stands for winding
number around the origin. It should be mentioned that Lqq(jω, ρ) is zero
for the semicircle with infinity radius of the Nyquist contour so the wno of
1 + Lqq(jω, ρ) depends only on the variation of s on the imaginary axis. On
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the other hand, as LDq(jω) is a strictly proper transfer function, it goes also
to zero for this semicircle. Consequently, the wno of 1 + LDq(−jω) is also
determined by the variation of s on the imaginary axis. Therefore:

no∑
q=1

wno[1 + LDq(jω)] =

no∑
q=1

wno[1 + Lqq(jω, ρ)] (21)

Since LD(jω) satisfies the Generalized Nyquist criterion, L(jω) will do so as
well and all closed-loop systems are stable.

Remarks:

• The results of Theorem 1 are valid even if Lqq(jω, ρ) has some poles
on the imaginary axis, say {p1, p2, . . .}. In this case ω ∈ R − {[p1 −
ε, p1 + ε], [p2 − ε, p2 + ε], . . .} where ε is a small positive value. The
stability is guaranteed if LDq(s) contains the poles on the imaginary
axis of Lqq(s, ρ), because they will have the same behavior at the small
semicircular detour of the Nyquist contour at these poles.

• According to this theorem, LDq(s) should contain the unstable poles
(as well as the poles on the imaginary axis) of Lqq(s). If these poles
are unknown (when only the frequency response of the system G(jω)
is available), but a stabilizing controller K0(s) is available, a reason-
able choice for LD(jω) is G(jω)K0(jω). In this case LDq(jω) in the
above constraints should be replaced by the q-th eigenvalue, λq(jω), of
LD(jω).

3.4. Optimization criterion

The convex stability constraints shown in (17) add some conservatism
to the approach since the location of an eigenvalue is no longer considered
at a point but inside the circle D(Lqq(jω, ρ), rq(ω, ρ)). To reduce this con-
servatism, the radius of this circle rq(ω, ρ) should be minimized. This is
equivalent to minimizing the magnitude of the off-diagonal components of
the open-loop transfer function matrix L(jω, ρ). Therefore, it is judicious to
minimize the following criterion:

J(ρ) = ‖L(ρ) − LD‖2 (22)

This way, the off-diagonal elements of L(jω, ρ) will be minimized, which
helps to decouple the system. On the other hand, the two norm of Lqq −LDq
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will be minimized for q = 1, . . . , no, which ensures the single-loop closed-loop
performances. It means that by one optimization, decoupling controller and
decoupled controlled systems are designed simultaneously.

A weighted norm of L(ρ) − LD can be minimized to obtain a controller
with more decoupling effect or a better tracking of the desired open-loop in
a given frequency range.

4. Optimization approach

The optimization problem for single-loop controller design in (11) and
the stability constraints for the MIMO system in (17) are defined for all
ω ∈ R, which is an infinite set. This infinity number of constraints should be
satisfied to guarantee the stability and performance conditions. This leads
to optimization problems with an infinite number of constraints and a finite
number of variables, known as semi-infinite programming (SIP) problem,
which is difficult to solve and even NP-hard in many cases.

There exist many numerical methods to deal with general SIP problems,
for an overview see [20] and [21]. A practical way to solve this optimization
problem is to define ωmax, the frequency above which the gains of all closed-
loop transfer functions are close to zero and negligible. For discrete-time
systems, this will be the Nyquist frequency (half of the sampling frequency).
Then by gridding the interval [0 ωmax], a finite set of frequency can be ob-
tained and the constraints can be defined in this finite set. This way, the SIP
problem is converted to a semi-definite programming (SDP) problem and can
be solved using an SDP solver (e.g. SeDuMi [22]). Since this type of solvers
can solve efficiently convex optimization problems with more than hundred
thousands of constraints, a very fine grid can be chosen to avoid possible
inter grid problems.

An alternative is to use the scenario approach for robust optimization.
This approach has been investigated in [23] and [24], where a finite number N
of constraints extracted randomly from the infinite set of constraints are used
in the optimization problem. The theory shows to what extend the solution
satisfies the constraints for another randomly chosen set of frequency points.

Selecting a violation parameter ε ∈ (0, 1) and a confidence parameter
β ∈ (0, 1), if

N ≥ 1

ε

(
ln

1

β
+ n − 1 +

√
2(n − 1) ln

1

β

)
(23)
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where n is the number of design parameters, then, with probability no smaller
than 1−β, the solution satisfies all constraints but at most an ε-fraction [25].
β plays a key role because selecting β = 0 leads to N = ∞, but practically
has marginal importance since its logarithm appears in (23), i.e. N does not
grow significantly even with selecting β = 10−5.

Based on this approach, the SIP problem is transformed to an SDP prob-
lem by choosing N independent identically distributed samples ω1, . . . , ωN

from R. Practically, to obtain a quadratic objective function, the two norm
is replaced by ‖L(ρ) − LD‖2

2, which is approximated by:

‖L(ρ) − LD‖2
2 ≈

∑
ω

‖L(jω, ρ) − LD(jω)‖F (24)

where ‖·‖F is the Frobenius norm. Thus, the following optimization problem
is considered:

min
ρ

N∑
k=1

‖L(jωk, ρ) − LD(jωk)‖F

Subject to:
|rq(ωk, ρ)[1 + LDq(ωk)]| − Re{[1 + LDq(−jωk)}][1 + Lqq(jωk, ρ)]} < 0

for k = 1, . . . , N and q = 1, . . . , no

|W1q(jωk)[1 + LDq(jωk)]| − Re{[1 + LDq(−jωk)][1 + Lqq(jωk, ρ)]} < 0
for k = 1, . . . , N and q = 1, . . . , no

(25)
It is interesting to note that the probability distribution function of the

frequency samples has no effect on the bound in (23).
Remark: The objective function is convex in ρ. If a parametric model of the
plant G(s) and LD(s) are available, this convex function can be computed
using the state space representation. If only the spectral models are avail-
able, this function can be estimated using a finite number of equally spaced
frequency samples (not necessarily those used for the constraints). It should
be mentioned that a good approximation of the two norm can be obtained
if the number of frequency samples is large enough. Increasing the number
of frequency samples for estimation of the two norm will not increase the
number of constraints and will not complicate the optimization problem.
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5. Simulation Example

In this section, the proposed algorithm is applied to two industrial pro-
cesses proposed in literature.

5.1. Example 1

Consider the following process proposed in [10]:

G1(s) =


 5e−3s

4s+1
2.5e−5s

15s+1

−4e−6s

20s+1
e−4s

5s+1


 (26)

where the time scale is given in minutes. A continuous-time PI controller
should be tuned assuring 3 dB gain margin and π/3 phase margin. This
system is not diagonally dominant and the variable pairings are not evident.

The results are compared with a controller given in [10] where single
loop tuning techniques are used to design the decentralized controller using
the effective transfer function. This effective transfer function considers the
coupling effects for a particular loop from the other closed loop. This results
in the following controller:

K0(s) =


 0.0233

(
1 + 1

4s

)
0

0 0.1094
(
1 + 1

5s

)

 (27)

For this example, the number of optimization variables n is 8 and if we
choose β = 0.1 and ε = 0.1, we obtain N = 150 frequency points for the
scenario approach optimization problem. The system is evaluated at N ran-
domly chosen frequency points between 0.01 rad/min and 10 rad/min. The
lower limit is greater than 0 because of the integrator. The upper limit is cho-
sen sufficiently large so that the frequency response of the system is negligible
at frequencies above the upper limit. The desired open-loop transfer function
matrix LD(s) is chosen as simple integrators at the diagonal elements with
a bandwidth similar to those obtained with the controller proposed in [10]:

LD(s) =

[
1

30s
0

0 1
30s

]
(28)

which satisfies the specified gain and phase margins.
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Figure 3: Two output responses: Reference signal (blue, dash-dot), controller proposed in
[10] (red dashed) and proposed controller (blue solid).

Only stability constraints are considered on the optimization problem
given in (25), which results in the following controller:

K1(s) =


 0.002667s+0.002338

s
0.003439s−0.005726

s

−0.0004078s+0.008943
s

0.05531s+0.01166
s


 (29)

Figure 3 shows that the proposed method decouples the system almost
perfectly, which is not the case for K0(s). It should be noted that the con-
troller proposed in [10] is a decentralized controller while that proposed in
this paper is centralized. The complexity of the controller explains the better
performances obtained with the proposed controller. However, even that the
proposed method offers the possibility to design more complex controllers,
the method remains simple and intuitive.

One of the most important advantages of the proposed approach is that
systems with multi-model uncertainty can directly be considered. A second
system with 100% higher values for the gains, time constants and time delays
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than those of the previous system G1(s) is defined:

G2(s) =


 10e−6s

8s+1
5e−10s

30s+1

−8e−12s

40s+1
2e−8s

10s+1


 (30)

The following multiplicative uncertainty filters are defined for the diagonal
elements of both systems, G1(s) and G2(s) by:

W2q(s) = 0.5
2s + 1

s + 1
for q = 1, 2 (31)

A stabilizing PI MIMO controller is tuned to satisfy the robust performance
condition in (6) for the diagonal elements of both systems, where the perfor-
mance filter for both systems is given by W1q(s) = 0.5 for q = 1, 2.

The optimization problem proposed in (25) is solved by repeating the
stability and robust performance constraints for G2(s). This results in the
following controller:

K2(s) =


 0.001851s+0.001348

s
0.002225s−0.003084

s

−0.0005015s+0.004521
s

0.03111s+0.006742
s


 (32)

This controller is stabilizing and satisfies the required H∞ constraints for
both systems. Figure 4 shows that, contrarily to K1(s), controller K2(s)
decouples both systems. This was expected because K1(s) was not designed
with this porpoise. It should be noted that K0(s) does not even stabilize
G2(s).

5.2. Example 2

In this example, the proposed algorithm is applied to a multivariable
gas turbine engine and the results are compared with those of two other
data-driven controller design approaches for multivariable systems in [26,
14]. The objective is to tune a multivariable PI controller for an LV100 gas
turbine engine to follow the reference model MD. The plant is represented
by a continuous-time state-space model with five states, two inputs and two
outputs. The model is discretized using Tustin’s approximation with Ts =
0.1s as sampling period. Each experiment is performed with a measurement
noise that is generated as a zero-mean, stationary white Gaussian sequence
with variance 0.0025I.
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Figure 4: Two output responses: Reference signal (blue, dash-dot), K1(s) (red, dashed)
and K2(s) (blue, solid).

The given reference model is:

MD(z) =

[
Md1 0
0 Md2

]
=

[
0.4

z−0.6
0

0 0.4
z−0.6

]
(33)

which is used to define our desired open-loop transfer function:

LD(z) =

[ Md1

1−Md1
0

0
Md2

1−Md2

]

=

[
Ld1 0
0 Ld2

]
=

[
0.4
z−1

0

0 0.4
z−1

] (34)

An experiment is realized using the simulation conditions proposed in
[26]. The results are compared with the CbT controller given in [14]:

KCbT (z) =


 0.3636z−0.09866

z−1
0.3653z−0.2691

z−1

18.69z−18.16
z−1

−3.453z+2.652
z−1


 (35)

18



and the IFT controller provided in [26]:

KIFT (z) =


 0.248z−0.03

z−1
0.38z−0.199

z−1

16.47z−15.91
z−1

0.063z+0.054
z−1


 (36)

The sum of squared output errors (SSOE) is used for comparison of different
controllers. This criterion is defined as:

SSOE =
1

M

M∑
t=1

εT
oe(t)εoe(t) (37)

where M=151 is the data length and εoe the difference between the desired
and the obtained outputs.

5.2.1. Model-based design

As in the previous example, the number of optimization variables n is 8,
which gives N = 150 frequency points for the same values of β and ε. These
frequency points are selected randomly between ωmax/N and ωmax rad/s. The
lower limit is greater than zero because of the integrator in the controller and
ωmax is chosen equal to the Nyquist frequency. The optimization problem in
(25) without the H∞ constraints are used. The result of the optimization
algorithm is :

K0(z) =


 0.3779z−0.1098

z−1
0.3584z−0.2574

z−1

19.57z−19.02
z−1

−3.183z+2.262
z−1


 (38)

with an SSOE equal to 0.0047. Figure 5 shows the experiment without noise
where an almost perfect decoupling can be observed.

5.2.2. Data-driven design

To be fair in this comparison, a spectral model is identified based on the
same rectangular reference signal used by the methods previously mentioned.
The Empirical Transfer Function Estimate (ETFE) method is used to identify
the frequency function models based on the input/output measurements for
the rectangular reference signal applied to each input while the other is not
excited. As the input spectrum is low at high frequencies and as the signal
to noise ratio is very low, the ETFE model is evaluated at N = 150 random
frequency points between 1/N and ωmax = 1 rad/s for the optimization
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Figure 5: Two output responses: Reference signal (blue, dash-dot), Reference model (black
dotted), CbT (red dashed), IFT (green dash-dot) and proposed controller using the model
(blue solid)

problem (this range of frequency defines the first lobe of the input spectrum).
The resulting PI MIMO controller is :

K(z) =


 0.3359z−0.05477

z−1
0.3624z−0.2615

z−1

20.42z−19.79
z−1

−3.308z+2.348
z−1


 (39)

Figure 6 shows that the system’s outputs using the proposed controller are
very close to the desired response except for the effect of noise. In addi-
tion, the closed-loop system is nearly fully diagonalized. The observed SSOE
with the proposed controller is 0.0048, while those with the CbT and IFT
controllers are 0.0050 and 0.0082, respectively. Even if IFT method has a
noise-rejection objective function that could be advantageous in a noisy en-
vironment, the results are not so satisfactory because it is not able to fully
decouple the system, while the other methods do. This is more perceptible
in Figure 7, where an experiment without noise is shown. At the instants 0s
and 5s on y2 and at instant 10s on y1, it is visible that the decoupling of the
IFT controller is not as good as that proposed by the other approaches.

It should be noticed that global stability is guaranteed thanks to the
Gershgorin bands considered as convex constraints in this approach, whereas
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Figure 6: Two output responses: Reference signal (blue, dash-dot), Reference model (black
dotted) and proposed controller (blue solided)
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Figure 7: Two outputs response: Reference signal (blue, dash-dot), Reference model (black
dotted), CbT (red dashed), IFT (green dash-dot) and proposed controller (blue solided)
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the other data-driven approaches do not ensure the stability of the closed-
loop system. The other advantage of the proposed approach is in terms
of experimental cost. The CbT and IFT methods are iterative methods
which are experimentally expensive. The IFT controller is designed after 6
iterations with a total of 450 seconds of experimentation and CbT is obtained
after 8 iterations (120 seconds), while the proposed method is designed based
on an experiment of 20 seconds. Moreover, the computational complexity of
this approach is very low. For this particular example, the Matlab code,
running on a Mac Intel 3GHz Xeon 8 cores takes only 5.3 seconds.

6. Conclusions

A new decoupling fixed-order MIMO controller design method in the
Nyquist diagram for spectral MIMO models has been proposed in this pa-
per. The method is based on an approximation of the Generalized Nyquist
Stability criterion that leads to convex constraints with respect to linearly
parameterized controllers.

Even if the performance and stability conditions are defined for an infi-
nite number of frequency points, a randomized solution for SIP problem is
used that needs a finite number of frequency points. This solution, satisfies
with a desired probability all the constraints exept for a defined fraction of
constraints. The controller is linearly parameterized and its denominator
should be fixed a priori. However, this restriction ensures the stability of the
controller and makes no problem for PID controller design.

The advantages of this approach are summarized below:

1. Only the frequency response of the system is needed and no parametric
model is required. The method can be considered as “data-driven”
because the frequency response of the system can be obtained directly
by discrete Fourier transform from a set of periodic data. Of course,
when a parametric model is given, the method can also be applied.

2. Simultaneously, the diagonal elements of the controller are tuned to
satisfy some desired performances, while the off-diagonal elements are
tuned to decouple the system.

3. Multimodel uncertainty can be handled easily by increasing the num-
ber of constraints. Most of the mentioned classical frequency-domain
approaches cannot deal with this type of uncertainty.

4. If a stabilizing initial controller is known, unstable systems can also be
considered with this approach.
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