GALVANICALLY ISOLATED HIGH POWER CONVERTERS FOR MVDC APPLICATIONS

Prof. Drazen Dujic, Dr. Alexandre Christe
École Polytechnique Fédérale de Lausanne (EPFL)
Power Electronics Laboratory
Switzerland
INTRODUCTION

Why more modular converters are needed?
SwissGrid infrastructure

- Existing infrastructure (220 – 380kV, 50 Hz) is ageing (2/3 built ~ 1960)
- Large PHSPs commissioned ⇒ sufficient capacity required
- Lengthy procedures for new overhead lines construction (low social acceptance, impact on landscape)

Swiss energy landscape

- Annual consumption 60 TWh
- Nuclear phase out by 2050

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro</td>
<td>56.91%</td>
</tr>
<tr>
<td>Non-renewable</td>
<td>37.7%</td>
</tr>
<tr>
<td>Renewable</td>
<td>5.39%</td>
</tr>
</tbody>
</table>

Swiss Competence Centers for Energy Research (SCCERs)

- Government supported initiative
- SCCER-FURIES for future grids
- Explore ways to interconnect a MVDC grid w/ a LVAC grid

MVDC grids

- Might be a good candidate w/ underground cable
- Suited for medium-scale energy collection
TREND TOWARDS DC

Bulk power transmission
- Break even distance against AC lines
- ~50 km for subsea cables or 600 km for overhead lines
- Long history since 1950s
- Interconnection of asynchronous grids

Datacenters
- 380 V_{dc}
- DC loads (including UPS)
- Expected efficiency increase

Large PV powerplants
- 1500 V_{dc} PV central inverters
- Higher number of series-connected panels per string

LVDC ships
- Variable frequency generators ⇒ maximum efficiency of the internal combustion engines
- Commercial products by ABB & Siemens

Open challenges
- DC breaker
- Conversion blocks missing
- Protection coordination
TREND TOWARDS DC

Bulk power transmission
- Break even distance against AC lines
- \(\sim 50 \text{ km for subsea cables or 600 km for overhead lines} \)
- Long history since 1950s
- Interconnection of asynchronous grids

Datacenters
- \(380 \text{ V}_{dc} \)
- DC loads (including UPS)
- Expected efficiency increase

Large PV powerplants
- \(1500 \text{ V}_{dc} \) PV central inverters
- Higher number of series-connected panels per string

LVDC ships
- Variable frequency generators \(\Rightarrow \) maximum efficiency of the internal combustion engines
- Commercial products by ABB & Siemens

Open challenges
- DC breaker
- Conversion blocks missing
- Protection coordination

ADCGS 2018, Aachen, Germany

April 20, 2018

Power Electronics Laboratory | 4 of 23
TREND TOWARDS HIGHLY MODULAR CONVERTER TOPOLOGIES

HVDC

- Decoupled semiconductor switching frequency from converter apparent switching frequency
- Improved harmonic performance ⇒ less / no filters
- Series-connection of semiconductors still possible
- Fault blocking capability depending on cell type

Solid-state transformers (SSTs)

- Power density increase w/ conversion & isolation at higher frequency
- Grid applications / traction transformer w/ different optimization objectives
- MFT design / isolation are the bottlenecks

MV drives

- Monolithic ML topologies (NPC, NPP, FC, ANPC) are not scalable
- Robicon drive → everyone offers it
- Siemens & Benshaw: MMC drive
- Low dv/dt ⇒ motor friendly

FACTS

- SFC for railway interties (direct catenary connection)
- STATCOM
- BESS (split batteries)
TREND TOWARDS HIGHLY MODULAR CONVERTER TOPOLOGIES

HVDC
- Decoupled semiconductor switching frequency from converter apparent switching frequency
- Improved harmonic performance ⇒ less / no filters
- Series-connection of semiconductors still possible
- Fault blocking capability depending on cell type

Solid-state transformers (SSTs)
- Power density increase w/ conversion & isolation at higher frequency
- Grid applications / traction transformer w/ different optimization objectives
- MFT design / isolation are the bottlenecks

MV drives
- Monolithic ML topologies (NPC, NPP, FC, ANPC) are not scalable
- Robicon drive → everyone offers it
- Siemens & Benshaw: MMC drive
- Low dv/dt ⇒ motor friendly

FACTS
- SFC for railway interties (direct catenary connection)
- STATCOM
- BESS (split batteries)
EMERGING MVDC APPLICATIONS

Installations

▶ ABB HVDC Light demo: 4.3 km/±9 kVdc [1]
▶ Tidal power connection: 16 km/10 kVdc (based on MV3000 & MV7000) [2]
▶ Unidirectional oil platform connection in China: 29.2 km/±15 kVdc [3]

Projects

▶ Angle DC: conversion of 33 kV MVac line to ±27 kV MVdc [4]

Universities

▶ Increased number of laboratories active in high power domain
▶ China, Europe, USA,…

Products

▶ Siemens MVDC Plus
 ▶ 30 - 150 MW
 ▶ < 200 km
 ▶ < ±50 kVdc

▶ RXPE Smart VSC-MVDC
 ▶ 1 - 10 MVar
 ▶ ±5 - ±50 kVdc
 ▶ 40 - 200 km

EMERGING MVDC APPLICATIONS

Installations

▶ ABB HVDC Light demo: 4.3 km/±9 kVdc [1]
▶ Tidal power connection: 16 km/10 kVdc (based on MV3000 & MV7000) [2]
▶ Unidirectional oil platform connection in China: 29.2 km/±15 kVdc

Projects

▶ Angle DC: conversion of 33 kV MVac line to ±27 kV MVdc [4]

Universities

▶ Increased number of laboratories active in high power domain
▶ China, Europe, USA,…

Products

▶ Siemens MVDC Plus
 ▶ 30 - 150 MW
 ▶ < 200 km
 ▶ < ±50 kVdc

▶ RXPE Smart VSC-MVDC
 ▶ 1 - 10 MVAR
 ▶ ±5 - ±50 kVdc
 ▶ 40 - 200 km

MVDC is gaining momentum!

ADCGS 2018, Aachen, Germany
April 20, 2018
MEDIUM OR LOW FREQUENCY CONVERSION?

Focus
▶ MVDC-LVAC galvanically isolated conversion system

Features
▶ High efficiency
▶ Galvanic isolation
▶ Modularity
▶ Scalability
▶ Reliability
▶ Availability

Prototype ratings
▶ $S = 0.5 \text{ MVA}$
▶ $N_{\text{cells}} = 6 \times 16$
▶ $V_{\text{dc}} = 10 \text{ kV}$
▶ $V_{\text{ac}} = 400 \text{ V}$

SST
▶ VSI on LVAC side of SST reduces efficiency by $\approx 2 \%$ (I) \[^{[5]}\]
▶ Drawn solution is not the unique possibility

MMC
▶ Solution with MMC + LFT has higher efficiency

Investigations
1. Comparative assessment of the control methods for a dc/3-ac MMC
2. Critical assessment of the modulation and branch balancing methods
3. Merging of the branch inductances and LFT leakage inductances: the GIMC
4. Virtual Submodule Concept for fast cell loss estimation method \[^{[6]}\]
5. Design of a MMC cell (under certain academic constraints) \[^{[7]}\]

GALVANICALLY ISOLATED MODULAR CONVERTER

Integrating line frequency transformer into the MMC...
TRANSFORMER INTEGRATION PROPOSALS

OEWMMC [8]

- Only one branch per phase-leg
- No CM voltage injection
- No current decoupling
- DC bias in trafo → zig-zag trafo [9]

Isolated dc/dc converter [10]

- DC bias cancellation for any operating point
- Two-phase at least

TRANSFORMER INTEGRATION PROPOSALS

OEWMMC [8]
- Only one branch per phase-leg
- No CM voltage injection
- No current decoupling
- DC bias in trafo → zig-zag trafo [9]

Isolated dc/dc converter [10]
- DC bias cancellation for any operating point
- Two-phase at least

Integration opportunities

- Multi-windings trafo
- Dc bias cancellation is effective for any operating point
- Different dc voltage levels can be accommodated with the same branch design

Method

- Carried out once via terminal mapping \[14\]
- \(v = L \frac{di}{dt} + Ri \)

\[
L = \begin{bmatrix}
L_{\sigma,HV} + L_{HV} & L_{HV} & M_{LV} \\
L_{HV} & L_{\sigma,HV} + L_{HV} & M_{LV} \\
M_{LV} & M_{LV} & L_{\sigma,LV} + L_{LV}
\end{bmatrix}
\]

\[
R = \begin{bmatrix}
R_{HV} & 0 & 0 \\
0 & R_{HV} & 0 \\
0 & 0 & R_{LV}
\end{bmatrix}
\]

\[i\text{GIMC}\]

\[
\begin{align*}
v_1 &= v_i \\
v_2 &= -v_r \\
v_3 &= v_L
\end{align*}
\]

\[
\begin{align*}
i_1 &= i_j \\
i_2 &= -i_r \\
i_3 &= -i_g
\end{align*}
\]

Result:

\[
\begin{align*}
v_B &= e_i + e_r + R_{HV}(i_j + i_r) + L_{\sigma,HV}\left(\frac{di_j}{dt} + \frac{di_r}{dt}\right) \\
0 &= -e_i + e_r + R_{HV}(-i_j + i_r) + (L_{\sigma,HV} + 2L_{HV})\left(\frac{di_j}{dt} + \frac{di_r}{dt}\right) \\
&\quad + 2M_{LV} \frac{di_j}{dt} - 2v_{CM} \\
v_L &= M_{LV}\left(\frac{di_j}{dt} - \frac{di_r}{dt}\right) - (L_{\sigma,LV} + L_{LV}) \frac{di_j}{dt} - R_{LV} i_g
\end{align*}
\]

\[s\text{GIMC}\]

\[
\begin{align*}
v_1 &= v_p \\
v_2 &= -v_n \\
v_3 &= v_L
\end{align*}
\]

\[
\begin{align*}
i_1 &= i_p \\
i_2 &= -i_n \\
i_3 &= -i_g
\end{align*}
\]

Result:

\[
\begin{align*}
v_B &= e_p + e_n + R_{HV}(i_p + i_n) + L_{\sigma,HV}\left(\frac{di_p}{dt} + \frac{di_n}{dt}\right) \\
0 &= -e_p + e_n + R_{HV}(-i_p + i_n) + (L_{\sigma,HV} + 2L_{HV})\left(\frac{di_p}{dt} + \frac{di_n}{dt}\right) \\
&\quad + 2M_{LV} \frac{di_p}{dt} - 2v_{MO} \\
v_L &= M_{LV}\left(\frac{di_p}{dt} - \frac{di_n}{dt}\right) - (L_{\sigma,LV} + L_{LV}) \frac{di_p}{dt} - R_{LV} i_g
\end{align*}
\]

GIMC - MODELING

Method

- Carried out once via terminal mapping [14]
- \(v = L \frac{di}{dt} + Ri \)

\[
L = \begin{bmatrix}
L_{\sigma,HV} + L_{HV} & L_{HV} & M_{LV} \\
L_{HV} & L_{\sigma,HV} + L_{HV} & M_{LV} \\
M_{LV} & M_{LV} & L_{\sigma,LV} + L_{LV}
\end{bmatrix}
\]

\[
R = \begin{bmatrix}
R_{HV} & 0 & 0 \\
0 & R_{HV} & 0 \\
0 & 0 & R_{LV}
\end{bmatrix}
\]

\[\begin{align*}
\text{iGIMC} & : & v_1 &= v_i \\
& & v_2 &= -v_r \\
& & v_3 &= v_L \\
& & i_1 &= i_j \\
& & i_2 &= -i_r \\
& & i_3 &= -i_g \\
\text{sGIMC} & : & v_1 &= v_p \\
& & v_2 &= -v_n \\
& & v_3 &= v_L \\
& & i_1 &= i_p \\
& & i_2 &= -i_n \\
& & i_3 &= -i_g
\end{align*}\]

Result:

\[
\begin{align*}
v_B &= e_i + e_r + L_{HV} (i_j + i_r) + L_{\sigma,HV} \left(\frac{d}{dt} i_j + \frac{d}{dt} i_r \right) \\
0 &= -e_i + e_r + R_{HV} (-i_j + i_r) + (L_{\sigma,HV} + 2L_{HV}) \left(-\frac{d}{dt} i_j + \frac{d}{dt} i_r \right) \\
&\quad + 2M_{LV} \frac{d}{dt} i_g - 2v_{CM} \\
v_L &= M_{LV} \left(\frac{d}{dt} i_j - \frac{d}{dt} i_r \right) - (L_{\sigma,LV} + L_{LV}) \frac{d}{dt} i_g - R_{LV} i_g
\end{align*}\]

\[
\begin{align*}
v_B &= e_p + e_n + R_{HV} (i_p + i_n) + L_{\sigma,HV} \left(\frac{d}{dt} i_p + \frac{d}{dt} i_n \right) \\
0 &= -e_p + e_n + R_{HV} (-i_p + i_n) + (L_{\sigma,HV} + 2L_{HV}) \left(-\frac{d}{dt} i_p + \frac{d}{dt} i_n \right) \\
&\quad + 2M_{LV} \frac{d}{dt} i_g - 2v_{MO} \\
v_L &= M_{LV} \left(\frac{d}{dt} i_p - \frac{d}{dt} i_n \right) - (L_{\sigma,LV} + L_{LV}) \frac{d}{dt} i_g - R_{LV} i_g
\end{align*}\]
Inverter mode operation

GIMC - OPERATION

sGIMC

iGIMC

ADCGS 2018, Aachen, Germany
April 20, 2018
Power Electronics Laboratory | 12 of 23
Inverter mode operation

\[i_\mu \text{ does not contain a dc component} \]
MAGNETIC COMPONENTS DESIGN

How much gain with the integrated magnetic component?
AIR-CORE BRANCH INDUCTOR DESIGN

Design space (PEL target values)

- Target: $L_{br} = 2.5\, \text{mH}$
- $i_{br\text{,rms}} = 56.7\, \text{A}$
- $J = 2\, \text{A/mm}^2$

Analytical designs

- $L_{\text{Welsby}} = \frac{\mu_0 N^2 n a^2}{b} \left(\frac{1}{1 + 0.9 \frac{b}{D} + 0.32 \frac{c}{a} + 0.84 \frac{c}{D}} \right) \, \text{[H]}$

- Cost function: $J_{\text{cost}} = \sqrt{\left(\frac{l_{\text{wire}}}{10} \right)^2 + V_\text{tot}^2}$

Optimal design

- $N_{\text{turns}} = 132, \, N_{\text{layers}} = 12, \, r_{\text{int}} = 42.4\, \text{mm} \rightarrow 42.6\, \text{mm}$
- $V_{\text{tot}} \approx 61$
- $P_{\text{losses}} = 130\, \text{W}$

- COMSOL frequency analysis @ 0.1 Hz (→ B-field / → H-field)

- Impedance between 0.1 Hz and 100 kHz
Design

- Three-limb dry-type transformer
- Short-circuit impedance > 5%
- Silicon steel (M19 from AK Steel): $B_{\text{max}} = 1.2 \text{T} \Rightarrow \mu = 1.37\%$
- $V_{21t} = 10\text{V}$
- $J_{\text{HV}} = 2.5 \text{A/mm}^2$, $J_{\text{LV}} = 2 \text{A/mm}^2$

Core's permeance model

- Single unknown: $w_w = \frac{4\mu_0\mu_rA_c - \mathcal{P}_c^*(6 + \pi)d_c}{(4 + 6\alpha\mathcal{P}_c^*)}$

Best design

- $w_w = 214.4 \text{mm}$ and $\alpha = 4$
- $V_{\text{tot}} = 481.7\text{I}$
- $P_{w,\text{HV}} = 79.08\text{W}$ and $P_{w,\text{LV}} = 30.93\text{W}$ per phase

Leakage H-field in COMSOL @ 50 Hz (\leftarrow phase a / \rightarrow phase b)

Time domain simulations (\leftarrow no-load / \rightarrow short-circuit)
Degree of freedom

- HV windings interleaving
- Leakage inductance (i.e., branch inductance) tuning

Best design

- $w_w = 259.8$ mm and $a = 4$
- $V_{tot} = 573.11$
- $P_{w,HV} = 63.29$ W and $P_{w,LV} = 30.93$ W

$L_{\sigma,HV} = \{83.33, 108.21, 83.33\}$ [mH]
$L_{\sigma,HV} = \{25.57, 31.17, 25.57\}$ [mH]
GIMC TRANSFORMER DESIGN

Degree of freedom

- HV windings interleaving
- Leakage inductance (i.e., branch inductance) tuning

Best design

- $w_w = 259.8$ mm and $\alpha = 4$
- $V_{\text{tot}} = 573.11$
- $P_{w,\text{HV}} = 63.29$ W and $P_{w,\text{LV}} = 30.93$ W

Leakage inductance values are easily reachable by HV windings interleaving (+ positioning)

$L_{\sigma,\text{HV}} = \{83.33, 108.21, 83.33\}$ [mH]

$L_{\sigma,\text{HV}} = \{25.57, 31.17, 25.57\}$ [mH]
MAGNETIC COMPONENTS COMPARISON

Case 1 MMC
- 6 branch inductors + conventional LFT

<table>
<thead>
<tr>
<th>Branch inductors</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume</td>
<td>losses</td>
</tr>
<tr>
<td>DC/3-AC MMC</td>
<td>6 × 6</td>
</tr>
<tr>
<td>GIMC</td>
<td>-</td>
</tr>
</tbody>
</table>

Case 2 GIMC [15]
- no branch inductors + multi-windings transformer

[15] Design values are related to ongoing prototype design at Power Electronics Laboratory.
MAGNETIC COMPONENTS COMPARISON

Case 1 MMC
- 6 branch inductors + conventional LFT

Case 2 GIMC [15]
- no branch inductors + multi-windings transformer

<table>
<thead>
<tr>
<th>Branch inductors</th>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume</td>
<td>losses</td>
</tr>
<tr>
<td>DC/3-AC MMC</td>
<td>6 x 6 l</td>
</tr>
<tr>
<td>GIMC</td>
<td>-</td>
</tr>
</tbody>
</table>

⇒ volume + cost reduction & efficiency increase with the integrated magnetic component

[15] Design values are related to ongoing prototype design at Power Electronics Laboratory
MV MMC CONVERTER PLATFORM

University laboratory environment...
INDUSTRIAL MMC CELL DESIGNS

- HVDC designs
- MV designs
INDUSTRIAL MMC CELL DESIGNS

▸ HVDC designs

▸ MV designs

numerous designs for similar target applications
MMC CELL @ PEL

Ratings
- 0.5 MVA apparent power
- 10 kV MVDC connection
- 400 V / 6 kV AC output
- 96 cells (16 per branch)

Cell concept
- Half-bridge
- Full-bridge
- GD
- GD
- HR
- THYB
- RELB
- OVD
- Flyback
- ACPS
- 4
- Low-voltage outputs
- +15V GD1
- GND GD1
- +15V GD2
- sw GD1
- fault GD1
- sw GD2
- fault GD2
- CTRL
- TX
- Rx
- Optical fibers
- +5V
- +80V
- +15V GD3
- GND GD3
- +15V GD4
- sw GD3
- fault GD3
- sw GD4
- fault GD4
- HB2

Design
- 1.2 kV / 50 A IGBT module (Semikron SK50GH12T4T)
- 1.2 kV / 70 A Thyristor module (Semikron SK70KQ)
- C_{sm} = 2.25 mF (6x Exxalia SnapSiC 4P 1500 µF, 400 V)
- Current sensor (Allegro ACS759 100 A)
- Bypass relay (KG K100 B-D012 X P)
- TI TMS320F28069 DSP
- Integrated Flyback auxiliary cell power supply from DC link with planar trafo

Circuit partitioning
- Assembled cell
INSULATION COORDINATION OF A MV CONVERTER PROTOTYPE

System partitioning:

- Control cabinet
- Phase-leg 1 cabinet
- Phase-leg 2 cabinet
- Phase-leg 3 cabinet
- GIMC Trafo cabinet

Branch phase-leg
10kVdc
400Vac
400Vac
Multi-windings transformer

Zones definition:

- Zone 1 (ins. coord. inside a SM's enclosure) system voltage: 1 kV_ac
- Zone 2 (ins. coord. branch)
 - Horizontal system voltage: 1 kV_ac
 - Vertical system voltage: 3.6 kV_ac
- Zone 3 (ins. coord. branch - cabinet (at GND)) system voltage: 6.6 kV_ac
- Zone 4 (ins. coord. for LV circuits) system voltage: 0.4 kV_ac

Standards:

- UL840 for cell PCB (< 1 kV)
- IEC61800-5-1 (AC motor drives)
 - Pollution degree 2: "Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation is to be expected, when the PDS is out of operation."
 - Overvoltage category II: "Equipment not permanently connected to the fixed installation. Examples are appliances, portable tools and other plug-connected equipment."

Zone 2:

- Box at dc-cell's potential (floating)
- Box corner radius: 3 mm
- MKHP (high CTI material) drawer holding 4 cells
SUMMARY

GIMC
- DC bias free magnetic structure (no penalty on magnetic material utilization)
- iGIMC & sGIMC suitable for Boost or Buck between the DC and AC voltages
- The integrated magnetics offer efficiency and power density increase
- Cost savings

MV MMC converter platform
- Realistically sized MV converter prototype
- LV IGBT based MMC cell
- Flyback-based ACPS, local cell controlled
- Complete dielectric design - insulation coordination
GALVANICALLY ISOLATED HIGH POWER CONVERTERS FOR MVDC APPLICATIONS

Prof. Drazen Dujic, Dr. Alexandre Christe
École Polytechnique Fédérale de Lausanne (EPFL)
Power Electronics Laboratory
Switzerland