Measurement of the mass and production rate of Ξ_b^- baryons

R. Aaij et al.*
(LHCb Collaboration)

(Received 21 January 2019; published 22 March 2019)

The first measurement of the production rate of Ξ_b^- baryons in pp collisions relative to that of Λ_{b0}^0 baryons is reported, using data samples collected by the LHCb experiment, and corresponding to integrated luminosities of 1, 2 and 1.6 fb$^{-1}$ at $\sqrt{s} = 7, 8$ and 13 TeV, respectively. In the kinematic region $2 < \eta < 6$ and $p_T < 20$ GeV/c, we measure $\frac{f_{\Xi_b^-}}{f_{\Lambda_{b0}^0}} = (10.8 \pm 0.9 \pm 0.8) \times 10^{-2}$ [$\sqrt{s} = 7, 8$ TeV], $\frac{f_{\Xi_b^-}}{f_{\Lambda_{b0}^0}} = (13.1 \pm 1.1 \pm 1.0) \times 10^{-2}$ [$\sqrt{s} = 13$ TeV], where $f_{\Xi_b^-} \text{ and } f_{\Lambda_{b0}^0}$ are the fragmentation fractions of b quarks into Ξ_b^- and Λ_{b0}^0 baryons, respectively; B represents branching fractions; and the uncertainties are due to statistical and experimental systematic sources. The values of $f_{\Xi_b^-}/f_{\Lambda_{b0}^0}$ are obtained by invoking SU(3) symmetry in the $\Xi_b^- \to J/\psi \Xi^-$ and $\Lambda_{b0}^0 \to J/\psi \Lambda$ decays. Production asymmetries between Ξ_b^- and Ξ_b^+ baryons are also reported. The mass of the Ξ_b^- baryon is also measured relative to that of the Λ_{b0}^0 baryon, from which it is found that $m(\Xi_b^-) = 5796.70 \pm 0.39 \pm 0.15 \pm 0.17$ MeV/c2, where the last uncertainty is due to the precision on the known Λ_{b0}^0 mass. This result represents the most precise determination of the Ξ_b^- mass.

DOI: 10.1103/PhysRevD.99.052006

The decays of beauty (b) quarks provide a sensitive probe of physics within, and beyond, the Standard Model. Due to the large $b\bar{b}$ production cross section at the Large Hadron Collider, beauty hadrons of all species are abundantly produced. Measurements of branching fractions in specific decay channels are often needed in order to make quantitative comparisons to theoretical predictions. However, absolute branching fraction measurements at hadron colliders are difficult to perform without an external input. Instead, one generally resorts to measuring a par
d
dantly produced. Measurements of branching fractions in

*Full author list given at the end of the article.
and $\Xi^{-}_b \to \Xi^0_b \mu^- \nu_{\mu} X$ decays to measure $f_{\Xi^0_b}/f_{\Lambda^0_b}$ and f_{Ξ^-}/f_{Λ^-}. However, an obstacle to such an analysis is the limited knowledge of absolute branching fractions for the decays of the Ξ^+_c or Ξ^0_c baryon. Recently, the Belle experiment published a first measurement of the absolute branching fractions for three Ξ^0_c decay modes, each with a relative precision of about 40% [21]. No such measurements exist yet for the Ξ^+_c baryon. Precise measurements of branching fractions for both Ξ^+_c and Ξ^0_c decays should be feasible in the Belle II experiment [22].

Production ratio measurements of the hadronic $\Xi^0_b \to \Xi^+_c \pi^-$ and $\Lambda^0_b \to \Lambda^+_c \pi^-$ decays [14], where both the Ξ^+_c and Λ^+_c baryons are reconstructed in the $pK^-\pi^+$ final state, have been used to predict $f_{\Xi^0_b}/f_{\Lambda^0_b}$. In this case, theoretical estimates of $B(\Xi^+_c \to pK^-\pi^+)$ are used, resulting in predictions of $f_{\Xi^0_b}/f_{\Lambda^0_b} = 0.065 \pm 0.020$ [23] and $f_{\Xi^-}/f_{\Lambda^-} = 0.054 \pm 0.020$ [24].

An alternative approach to either of these two methods is to exploit the decays $\Lambda^0_b \to J/\psi \Lambda$ and $\Xi^-_b \to J/\psi \Xi^-$, where the Ξ^- baryon is detected in its decay to $\Lambda \pi^-$. Charge-conjugate processes are implicitly included. These decay rates are related through SU(3) flavor symmetry, where one finds [25–27]

$$\frac{\Gamma(\Xi^-_b \to J/\psi \Xi^-)}{\Gamma(\Lambda^0_b \to J/\psi \Lambda)} = \frac{3}{2}. $$

(1)

The ratio

$$R \equiv \frac{f_{\Xi^-}/f_{\Lambda^-} B(\Xi^-_b \to J/\psi \Xi^-)}{f_{\Lambda^0_b} B(\Lambda^0_b \to J/\psi \Lambda)} = \frac{f_{\Xi^-} \Gamma(\Xi^-_b \to J/\psi \Xi^-) \tau_{\Xi^-}}{f_{\Lambda^0_b} \Gamma(\Lambda^0_b \to J/\psi \Lambda) \tau_{\Lambda^0_b}}$$

(2)

depends on f_{Ξ^-}/f_{Λ^-}, the partial decay widths Γ, and the lifetimes τ of the indicated b baryons. Experimentally, R is obtained from the ratio of efficiency-corrected yields:

$$R = \frac{N(\Xi^-_b \to J/\psi \Xi^-) \epsilon_{\Xi^-}}{N(\Lambda^0_b \to J/\psi \Lambda) \epsilon_{\Lambda^0_b}}$$

(3)

where ϵ represents the detection efficiency and N is the yield of the indicated decays.

In this article, we report a first measurement of the ratio R in pp collision data collected by the LHCb experiment, corresponding to integrated luminosities of 1.0 fb$^{-1}$ at $\sqrt{s} = 7$ TeV, 2.0 fb$^{-1}$ at $\sqrt{s} = 8$ TeV and 1.6 fb$^{-1}$ at $\sqrt{s} = 13$ TeV. The measurement of R, along with the SU(3) assumption in Eq. (1) and the known Λ^0_b and Ξ^-_b baryon lifetimes [28], is used to infer the value of f_{Ξ^-}/f_{Λ^-}. The same data samples are also used to measure the production asymmetry between Ξ^-_b and Ξ^+_b baryons, and to make the most precise measurement of the Ξ^-_b mass.

The LHCb detector [29,30] is a single-arm forward spectrometer designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/p_T) \mu m$, where p_T is expressed in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The online event selection is performed by a trigger which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

Simulation is required to model the effects of the detector acceptance and the imposed selection requirements. In the simulation, pp collisions are generated using PYTHIA [31] with a specific LHCb configuration [32]. Decays of unstable particles are described by EVTGEN [33], in which final-state radiation is generated using PHOTOS [34]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [35] as described in Ref. [36].

The $\Xi^-_b \to J/\psi \Xi^-(\to \Lambda \pi^-)$ and $\Lambda^0_b \to J/\psi \Lambda$ decays both contain a J/ψ meson and a Λ baryon in the decay chain, and are kinematically similar. To reduce systematic uncertainties, selection requirements are tailored to exploit the common particles in the final state of the Λ^0_b and Ξ^-_b decays. At the trigger level, both modes are required to satisfy requirements based solely on the $J/\psi \to \mu^+ \mu^-$ decay. Firstly, the hardware stage must register either a single high-p_T muon or a $\mu^+ \mu^-$ pair. The software stage [37] then requires a $\mu^+ \mu^-$ pair whose decay vertex is displaced from all PVs in the event, and that has an invariant mass consistent with the known J/ψ mass [28].

Selected events may contain more than one PV. Each particle is associated to the PV for which the corresponding value of x^2_{fp} is smallest, where x^2_{fp} is defined as the difference in the vertex-fit x^2 of a given PV reconstructed with and without the particle under consideration.

In the offline analysis, each muon must have p_T in excess of 550 MeV/c and have IP to all PVs in the event that exceeds approximately three times the expected uncertainty. The $\mu^+ \mu^-$ pair must form a good-quality vertex and have an invariant mass within 40 MeV/c^2 of the known J/ψ mass, corresponding to about three times the mass resolution.
Reconstructed charged particles are classified into two categories in this analysis. The “long” category refers to tracks that have reconstructed segments in both the vertex detector and the tracking stations upstream and downstream of the LHCb magnet. The “downstream” category consists of those tracks that are not reconstructed in the vertex detector, and thus only include information from the tracking detectors just before and after the LHCb magnet. While most of the reconstructed particles from the pp interactions are in the long category, the decay products of long-lived strange particles tend to be mostly reconstructed as downstream tracks. Because of the presence of vertex detector measurements, the trajectories, and hence the IP, of long tracks are measured with better precision than those of downstream tracks.

Candidate \(\Lambda \rightarrow p\pi^- \) decays are formed by combining downstream \(p \) and \(\pi^- \) candidates with \(p_T \) in excess of 500 and 100 MeV/c, respectively. Both tracks are required to be significantly detached from all PVs in the event. Together they must form a good-quality vertex and must satisfy the requirement \(|M(p\pi^-) - m_\Lambda| < 8 \text{ MeV}/c^2 \), corresponding to approximately three times the mass resolution. Here and throughout the text, \(M \) represents an invariant mass and \(m \) represents the known mass of the indicated particle [28].

The \(\Xi^- \) baryon is reconstructed through its decay to \(\Lambda\pi^- \). Due to the long \(\Xi^- \) and \(\Lambda \) lifetimes, only \(\Lambda \) candidates formed from downstream tracks are used, as they contribute about 90% to the \(\Xi^- \) sample in \(\Xi^- \) decays. To maintain a uniform selection, the same requirement is imposed on \(\Lambda \) decays in the \(\Lambda_0 \) mode. The \(\pi^- \) meson from the \(\Xi^- \) decay may be reconstructed as either a long or a downstream track. For the \(\Xi^- \) mass and production asymmetry measurements, both categories are used. However, for the measurement of \(R \), only the long-track sample is used, since the efficiency for detecting the \(\pi^- \) meson in the decay \(\Xi^- \rightarrow \Lambda\pi^- \) enters directly in Eq. (3), and long-track efficiencies have been precisely calibrated using a tag-and-probe method [38]. No explicit momentum requirement is applied to the \(\pi^- \) meson, since it typically has low momentum. When necessary, the notation \(\pi^-_L \) and \(\pi^-_D \) is used to distinguish between long (L) and downstream (D) \(\pi^- \) tracks. Tracks in the \(\pi^-_L \) sample are required to be significantly detached from all PVs in the event, corresponding to a requirement that the impact parameter exceeds about four times the corresponding uncertainty; no such requirement is necessary on the \(\pi^-_D \) sample. Exploiting the large \(\Xi^- \) baryon lifetime, \(\Xi^- \) candidates must have \(\ell_{PV} > 6 \) ps, where \(\ell_{PV} \) is the decay time measured relative to the associated PV. Lastly, \(\Xi^- \) candidates are required to satisfy the mass requirement \(|M(\Lambda\pi^-_{L(D)}) - M(p\pi^-) + m_\Lambda - m_\Xi^-| < 10 \text{ MeV}/c^2 \), corresponding to about three times the mass resolution, and have positive decay time, measured relative to the \(\Xi^- \) decay vertex.

The \(\Lambda_0 \) (\(\Xi^- \)) candidates are formed by combining \(J/\psi \) and \(\Lambda \) (\(\Xi^- \)) candidates. A vertex fit of good quality is required. To suppress background from prompt \(J/\psi \) production, the \(b \) hadron is required to have a reconstructed decay time larger than 0.2 ps, which is about four times the resolution. Finally, to have a well-defined fiducial region, the \(\Lambda_0 \) and \(\Xi^- \) candidates are required to be within the kinematic region \(2 < \eta < 6 \) and \(p_T < 20 \text{ GeV}/c \). Multiple candidates in a single event occur in less than 1% of selected events, and all candidates are kept. To improve the mass resolution, an additional kinematic fit is performed on each candidate, employing both vertex and mass constraints on the \(J/\psi \), \(\Lambda \) and \(\Xi^- \) candidates [39]. The resulting mass resolution is about 8 MeV/c^2 for both modes.

The invariant-mass spectra of selected \(\Lambda_0 \) and \(\Xi^- \) candidates are shown in Fig. 1. The data are partitioned into the combined 7, 8 TeV data samples and the 13 TeV data sample, and show the distributions for \(\Lambda_0 \) candidates, and \(\Xi^- \) candidates formed from either long or downstream pions. A simultaneous fit to all six distributions is performed in order to determine the signal yields. Each of the signal shapes is described by the sum of two Crystal Ball (CB) functions [40] with a common peak position and a common width. The tail parameters, which describe the non-Gaussian portion of the signal on either side of the signal peak, are independent for the two CB components. The parameters of the signal shape are determined from large samples of simulated signal decays. The background is described by an exponential function, with the shape parameter left free in the fit to data.

The signal-shape fit parameters are (i) the peak positions, \(\bar{m} \), of the \(\Lambda_0 \) mass in the 7, 8 TeV and 13 TeV data; (ii) a single mass difference, \(\delta m \equiv \bar{m}_{\Xi^-} - \bar{m}_{\Lambda_0} \); and (iii) a scale factor applied to the simulated width of the CB functions, which allows the mass resolution in data to be slightly different than in simulation. The values of \(\bar{m}_{\Lambda_0} \) are allowed to differ for the 7, 8 TeV data and the 13 TeV data, since the statistical uncertainty on each is about four times smaller than the systematic uncertainty from the momentum scale calibration [41]. However, that same calibration renders the corresponding uncertainty on \(\delta m \) negligible.

The fitted signal yields and the values of \(\bar{m}_{\Lambda_0} \) are shown in Table I. From the fit, it is determined that

\[
\delta m = 177.30 \pm 0.39 \text{ MeV}/c^2,
\]

\[
m(\Xi^-) = 5796.70 \pm 0.39 \text{ MeV}/c^2,
\]

where the uncertainties are statistical only, and we have used \(m(\Xi^-) = \delta m + \bar{m}_{\Lambda_0} \), with \(\bar{m}_{\Lambda_0} = 5619.60 \pm 0.17 \text{ MeV}/c^2 \) [28]. The value of \(\delta m \) is corrected by \(+0.12 \pm 0.06 \text{ MeV}/c^2\) to account for a bias observed in the obtained value of \(\delta m \), as seen in the fit to large samples of simulated signal decays. The uncertainty on this value is due to the size of the simulated samples.

The ratio of efficiencies in Eq. (3) is determined from weighted simulations of the signal decays. The \(\Lambda_0 \)
simulation is weighted in bins of (η, p_T) of the b baryon to reproduce the 2D distribution observed in the data, after the background contribution is subtracted using the sPlot method [42]. We assume that the Ξ^- spectrum is the same as that of the Λ^0_b, and variations are investigated when assessing systematic uncertainties. By studying the distributions of the fraction of the momentum carried by the decay products in each part of the decay chain, it is found...
that the simulation differs from the corresponding spectra observed in data. The simulation is weighted to match the distributions observed in data for the momentum and usage of only long tracks for the small value is due to the combination of the relatively low efficiencies represent the weighted average value. This table gives, along with the total selection efficiencies. The efficiencies associated with the detector acceptance, the reconstruction and selection, and the trigger requirements are given, along with the total selection efficiencies. The relative efficiency is approximately 14% for both the 7, 8 TeV and 13 TeV data sets. For the 7, 8 TeV values, the efficiencies represent the weighted average value. This small value is due to the combination of the relatively low momentum and usage of only long tracks for the \(\pi^+ \) meson in the \(\Xi^- \) decay.

From the signal yields and relative efficiencies, the ratios \(R \) are computed to be

\[
R = (10.8 \pm 0.9) \times 10^{-2}; \quad [\sqrt{s} = 7, 8 \text{ TeV}],
\]

\[
R = (13.1 \pm 1.1) \times 10^{-2}; \quad [\sqrt{s} = 13 \text{ TeV}],
\]

where the uncertainties are statistical only.

The difference between the \(\Xi^+ \) and \(\Lambda^+_b \) baryon production asymmetries is determined using the relation

\[
A_{\text{prod}}(\Xi^+) - A_{\text{prod}}(\Lambda^+_b) = \alpha(\Xi^+) - \alpha(\Lambda^+_b) - A_{\text{det}}(\pi^+) \tag{4}
\]

where \(\alpha(\Xi^+) [\alpha(\Lambda^+_b)] \) is the raw yield asymmetry between the \(\Xi^- \) and \(\Lambda^+_b \) decays. In the difference of the raw yield asymmetries, the \(\Lambda \) detection asymmetry cancels since the kinematical properties are similar. The \(\pi^+ \) detection asymmetry, \(A_{\text{det}}(\pi^+) \), has been measured [43,44], and, while it is consistent with zero, an asymmetry of up to about 1% in this low momentum region cannot be discounted. In the above expression, it is expected, and assumed, that there is no direct \(CP \) violation in these decays.

The raw yield asymmetries are obtained by fitting for the signal yields separately for the beauty baryon and antibaryon subsamples. The fit is similar to that which was described previously, except that the CB width scale factors are fixed to the values obtained from the fit to the full sample, since the mass resolution can be assumed to be the same for the \(b \) baryons and antibaryons. The fitted signal yields are shown in Table II, along with the resulting raw asymmetries. The differences in production asymmetries are readily found to be

\[
|A_{\text{prod}}(\Xi^+) - A_{\text{prod}}(\Lambda^+_b)| = (1.3 \pm 5.6)\% \quad [\sqrt{s} = 7, 8 \text{ TeV}]
\]

\[
|A_{\text{prod}}(\Xi^+) - A_{\text{prod}}(\Lambda^+_b)| = (6.3 \pm 4.9)\% \quad [\sqrt{s} = 13 \text{ TeV}]
\]

where the uncertainties are due to the signal yields obtained in this analysis.

To obtain \(A_{\text{prod}}(\Xi^+) \), previous measurements of \(A_{\text{prod}}(\Lambda^+_b) \) at \(\sqrt{s} = 7 \) and 8 TeV are used [45]. Since the value of \(A_{\text{prod}}(\Lambda^+_b) \) averaged over the LHCB acceptance is not expected to change significantly with center-of-mass energy [46], and the measured values of \(A_{\text{prod}}(\Lambda^+_b) \) obtained at \(\sqrt{s} = 7 \) and 8 TeV are compatible [45], they are averaged, taking the systematic uncertainties as fully correlated, to obtain \(A_{\text{prod}}(\Lambda^+_b) = (2.4 \pm 1.4 \pm 0.9)\% \). An alternate measurement of \(A_{\text{prod}}(\Lambda^+_b) \) yielded results that are consistent with the above value [47]. The value at 7, 8 TeV is also used for the \(\Xi^- \) asymmetry measurement at 13 TeV, and a systematic uncertainty, which is discussed below, is assigned. The \(\Xi^- \) asymmetries are found to be

Table II. Selection efficiencies as obtained from the simulation of \(\Lambda^+_b \rightarrow J/\psi \Lambda \) and \(\Xi^- \rightarrow J/\psi \Xi^- \rightarrow \Lambda \pi^+ \) decays at \(\sqrt{s} = 7, 8 \text{ TeV} \) and 13 TeV. The efficiencies (\(\epsilon \)) listed are those associated with the detector acceptance (acc), the reconstruction and selection (sel), the trigger (trig), their product, and the relative efficiency.

<table>
<thead>
<tr>
<th>Final state</th>
<th>(\Lambda^+_b \rightarrow J/\psi \Lambda)</th>
<th>(\Xi^- \rightarrow J/\psi \Xi^-)</th>
<th>(\Lambda^+_b \rightarrow J/\psi \Lambda)</th>
<th>(\Xi^- \rightarrow J/\psi \Xi^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon_{\text{acc}}) (%)</td>
<td>18.9 ± 0.1</td>
<td>17.3 ± 0.1</td>
<td>19.8 ± 0.1</td>
<td>18.0 ± 0.1</td>
</tr>
<tr>
<td>(\epsilon_{\text{trig}}) (%)</td>
<td>2.86 ± 0.02</td>
<td>0.42 ± 0.01</td>
<td>2.91 ± 0.01</td>
<td>0.42 ± 0.01</td>
</tr>
<tr>
<td>(\epsilon_{\text{sig}}) (%)</td>
<td>73.2 ± 0.3</td>
<td>75.6 ± 0.7</td>
<td>75.4 ± 0.2</td>
<td>77.8 ± 0.5</td>
</tr>
<tr>
<td>(\epsilon (10^{-2}))</td>
<td>39.5 ± 0.4</td>
<td>5.56 ± 0.11</td>
<td>43.5 ± 0.3</td>
<td>5.85 ± 0.06</td>
</tr>
<tr>
<td>(\epsilon_{\Xi^-}/\epsilon_{\Lambda^+_b}) (%)</td>
<td>14.1 ± 0.3</td>
<td>13.4 ± 0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE III. Yields of \(\Lambda_b^0 \) and \(\Xi_b^- \) decays, split by the charge of the final state, and their asymmetries, for the combined 7, 8 TeV data samples and the 13 TeV data sample. Uncertainties are statistical only.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\Lambda_b^0 \to J/\psi \Lambda)</th>
<th>(\Xi_b^- \to J/\psi \Xi^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\sqrt{s}=7.8 \text{ TeV}})</td>
<td>6827 ± 94</td>
<td>236 ± 18</td>
</tr>
<tr>
<td>(\alpha_{\sqrt{s}=7.8 \text{ TeV}})</td>
<td>(2.6 ± 1.0)%</td>
<td>(1.3 ± 5.4)%</td>
</tr>
<tr>
<td>(N_{\sqrt{s}=13 \text{ TeV}})</td>
<td>7602 ± 102</td>
<td>304 ± 21</td>
</tr>
<tr>
<td>(\alpha_{\sqrt{s}=13 \text{ TeV}})</td>
<td>(2.8 ± 1.0)%</td>
<td>(−3.5 ± 4.8)%</td>
</tr>
</tbody>
</table>

\[
A_{\text{prod}}(\Xi_b^-) = (1.1 \pm 5.6)\% \quad [\sqrt{s} = 7.8 \text{ TeV}],
\]
\[
A_{\text{prod}}(\Xi_b^-) = (−3.9 \pm 4.9)\% \quad [\sqrt{s} = 13 \text{ TeV}].
\]

In the mass measurement, most sources of systematic uncertainty cancel, since it relies on the mass difference, \(\delta m \). The modulus of the correction of 0.12 MeV/c\(^2\) described previously is assigned as a systematic uncertainty. The signal shape uncertainty is quantified by performing an alternate fit using the sum of two Gaussian functions. Apart from a common peak value, all shape parameters are left free in the fit. The difference with respect to the nominal value, 0.06 MeV/c\(^2\), is assigned as a systematic uncertainty. The background shape uncertainty is assessed by using a first-order polynomial in place of the nominal exponential function, and is found to change the result by 0.01 MeV/c\(^2\). The systematic uncertainties due to the momentum scale and energy loss have been evaluated previously [48] and are found to contribute 0.01 MeV/c\(^2\) each. Knowledge of the \(\Xi^- \) mass contributes an uncertainty of 0.07 MeV/c\(^2\). Adding these uncertainties in quadrature, the total systematic uncertainty on \(\delta m \) is 0.15 MeV/c\(^2\).

For the measurement of \(R \), several sources of uncertainty are considered, which are summarized in Table IV. The efficiency for all decay products to be within the LHCb acceptance is derived from the simulation, and could depend on the polarization of the \(\Lambda_b^0 \) or \(\Xi_b^- \) baryon. To investigate this effect, variations in the \(\Lambda_b^0 \) and \(\Xi_b^- \) polarization are considered, including full polarization, zero polarization, and using the helicity amplitudes presented in Ref. [49]. All three variations are found to give statistically compatible acceptance corrections. The assigned uncertainty of 3.0% reflects the statistical precision of the test.

The systematic uncertainty due to the signal and background functions is estimated by using alternate choices for each, as described above for the uncertainty on \(\delta m \), leading to an uncertainty of 2.0%. The \(\Lambda_b^0 \) and \(\Xi_b^- \) simulations are weighted as discussed previously and reproduce well the kinematical distributions of the final-state particles seen in data. However, due to low \(\Xi_b^- \) signal yields, variations with respect to the nominal weighting are considered. In particular, a 3% change in the relative efficiency is seen when applying an additional weight to the \(\Xi_b^- \) pseudorapidity spectrum that is permissible by the data.

A significantly smaller difference is seen when weighting the \(\Xi_b^- \) baryon’s \(p_T \) spectrum. A 3% uncertainty is therefore assigned to account for potential differences in the (\(\eta, p_T \)) spectrum of \(\Lambda_b^0 \) and \(\Xi_b^- \) baryons.

Uncertainties in the detection efficiency of the \(\pi^- \) meson from the \(\Xi^- \) decay enters directly into the result for the ratio \(R \). The tracking efficiency in simulation has been calibrated using a tag-and-probe method [38] using \(J/\psi \to \mu^+ \mu^- \) decays; however, the calibration only covers the kinematic region \(p > 5 \text{ GeV/c} \) and \(1.9 < \eta < 4.9 \). Outside this region, no correction to the tracking efficiency in simulation is applied and an uncertainty of 5% is assigned to the tracking efficiency. This value is justified based upon a comparison of the reconstructed momentum spectrum of \(\pi^- \) mesons from \(\Lambda_b^0 \to J/\psi \Lambda \) decays in data and simulation, where the \(\Lambda \) baryons are formed from long tracks. These tracks serve as a good proxy for the \(\pi^- \) meson from \(\Xi^- \) baryon decay, since they also have low momentum and large impact parameter. Averaging over the tracks within and outside the range covered by the tracking calibration, an uncertainty of 4.5% on the \(\pi^- \) tracking efficiency is obtained. As a cross-check, the analysis is repeated using only \(\pi^- \) candidates in the range covered by the calibration, and the \(R \) values are consistent with the nominal results.

Potential uncertainties due to the \(\Xi^- \) mass requirement may arise from differences in the \(\Xi^- \) mass resolution, or possibly a (Cabibbo-suppressed) nonresonant \(\Lambda \pi^- \)

<table>
<thead>
<tr>
<th>Source</th>
<th>Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda_b^0, \Xi_b^-) polarization</td>
<td>3.0</td>
</tr>
<tr>
<td>Signal and background shape</td>
<td>2.0</td>
</tr>
<tr>
<td>(\Xi_b^-) production spectra</td>
<td>3.0</td>
</tr>
<tr>
<td>(\pi^-) tracking efficiency</td>
<td>4.5</td>
</tr>
<tr>
<td>(\Xi^-) mass resolution and nonresonant (\Lambda \pi^-)</td>
<td>3.0</td>
</tr>
<tr>
<td>(\Xi^-) selections</td>
<td>1.4</td>
</tr>
<tr>
<td>(\Xi_b^-) lifetime</td>
<td>0.5</td>
</tr>
<tr>
<td>Simulated sample sizes</td>
<td>2.0</td>
</tr>
<tr>
<td>Total</td>
<td>7.6</td>
</tr>
</tbody>
</table>
contribution. To quantify the potential size of such effects, the Ξ_b^- signal yield in the Ξ^- sideband region, $10 < |M(\Lambda b)_{\text{SID}} - M(p\pi^-)| < m_{\Xi^-} - m_{\Xi^-} < 20$ MeV/c^2 is measured. The yield in that region, which is consistent with zero, is taken as a systematic uncertainty. Other Ξ^- selections are very loose and are studied by comparing background-subtracted distributions of relevant variables in data with those in simulation. From the observed differences an uncertainty of 1.4% is assigned. The uncertainty on R due to the knowledge of the Ξ_b^- lifetime, $\tau_{\Xi_b^\mp} = 1.571 \pm 0.040$ ps [28], is estimated by weighting the simulation to replicate 0.04 ps shorter and longer lifetimes. The effect on R of the Λ_b^0 lifetime uncertainty is negligible. Lastly, the simulated sample sizes contribute 2.0% uncertainty to the relative efficiency.

The uncertainty on the Ξ_b^- production asymmetry receives contributions from the π^- detection asymmetry and the measurement of $A_{\text{prod}}(\Lambda_b^0)$. The pion detection asymmetry uncertainty is assigned to be 1%, as mentioned previously. Taking the sum in quadrature of the statistical and systematic uncertainties in the value of $A_{\text{prod}}(\Lambda_b^0) = (2.4 \pm 1.4 \pm 0.9)$%, a 1.7% systematic uncertainty is assigned. Since the average value of $A_{\text{prod}}(\Lambda_b^0)$ at $\sqrt{s} = 7$ and 8 TeV [45] could differ from that at 13 TeV [46], an additional systematic uncertainty of 1.5% is assigned to the measured value of $A_{\text{prod}}(\Xi_b^-)$ at 13 TeV. The total systematic uncertainty in $A_{\text{prod}}(\Xi_b^-)$ is therefore 1.9% and 2.5% for the 7, 8 TeV and 13 TeV data samples, respectively.

In summary, data samples collected at $\sqrt{s} = 7$, 8 and 13 TeV have been used to measure the ratio of production rates of Ξ_b^- and Λ_b^0 baryons in the pseudorapidity and p_T region, $2 < \eta < 6$ and $p_T < 20$ GeV/c, to be

$R = (10.8 \pm 0.9 \pm 0.8) \times 10^{-3} \quad [\sqrt{s} = 7, 8 \text{ TeV}],$

$R = (13.1 \pm 1.1 \pm 1.0) \times 10^{-3} \quad [\sqrt{s} = 13 \text{ TeV}],$

where the uncertainties are statistical and systematic. From the values of R, the ratios of fragmentation fractions are determined to be

$f_{\Xi_b^-}/f_{\Lambda_b^0} = (6.7 \pm 0.5 \pm 0.5 \pm 2.0) \times 10^{-2} \quad [\sqrt{s} = 7, 8 \text{ TeV}],$

$f_{\Xi_b^-}/f_{\Lambda_b^0} = (8.2 \pm 0.7 \pm 0.6 \pm 2.5) \times 10^{-2} \quad [\sqrt{s} = 13 \text{ TeV}].$

The last uncertainty, due to the assumed SU(3) flavor symmetry and taken to be 30%, is an estimate of the typical size of SU(3)-breaking effects between decays related by this symmetry. The LHCb results show no significant dependence on the center-of-mass energy in the 7 to 13 TeV range. These results are consistent with the predictions in Refs. [23,24], which used production ratio measurements of $\Xi_b^\mp \rightarrow \Xi^\mp \pi^-$ and $\Lambda_b^0 \rightarrow \Lambda^\mp \pi^-$ decays at 7 and 8 TeV [14] and an estimated value for $B(\Xi_b^- \rightarrow pK^-\pi^+)$.

Assuming that $f_{\Xi_b^\mp} = f_{\Xi^-}$, these results indicate that in the forward region, b quarks fragment into Ξ_b baryons at about 15% of the rate at which they fragment into Λ_b^0 baryons. Previous measurements of R by the CDF [50] and D0 [51] collaborations are about two standard deviations larger than the results reported here; however, those measurements are performed in $p\bar{p}$ collisions at $\sqrt{s} = 2$ TeV and in the central rapidity region $|\eta| < 2$

The mass difference, δm, and the corresponding value of the Ξ_b^- mass, $m(\Xi_b^-)$, are measured to be

$\delta m = 177.30 \pm 0.39 \pm 0.15$ MeV/c^2,

$m(\Xi_b^-) = 5796.70 \pm 0.39 \pm 0.15 \pm 0.17$ MeV/c^2,

where the last uncertainty is due to the Λ_b^0 mass. This Ξ_b^- mass measurement includes the data used in Ref. [48], and therefore supersedes those results. This measurement represents the most precise determination of the Ξ_b^- mass, and is consistent with the previous most precise measurement of the mass difference of 178.36 \pm 0.46 \pm 0.16 MeV/c^2 [15].

The Ξ_b^- production asymmetry is also measured for the first time. The values at the lower and higher center-of-mass energies are

$A_{\text{prod}}(\Xi_b^-) = (1.1 \pm 5.6 \pm 1.9)\% \quad [\sqrt{s} = 7, 8 \text{ TeV}],$

$A_{\text{prod}}(\Xi_b^-) = (-3.9 \pm 4.9 \pm 2.5)\% \quad [\sqrt{s} = 13 \text{ TeV}].$

The asymmetries are consistent with zero at the level of a few percent.

We thank M. Voloshin for interesting and helpful discussions on theoretical aspects of this work. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNISW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or
members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (USA).

[13] R. Aaij et al. (LHCb Collaboration), Searches for $Λ_b^0$ and $Ξ_b^0$ decays to $K_b^0 ρ^−$ and $K_b^0 pK^−$ final states with first observation of the $Λ_b^0 → K_b^0 ρ^−$ decay, J. High Energy Phys. 04 (2014) 087.
[17] R. Aaij et al. (LHCb Collaboration), Observations of $Λ_b^0 → ΛK^+ π^−$ and $Λ_b^0 → ΛK^+ K^−$ decays and searches for other $Λ_b^0$ and $Ξ_b^0$ decays to $Λ h^+ h^−$ final states, J. High Energy Phys. 05 (2016) 081.
[26] M. Voloshin, Remarks on measurement of the decay $Ξ_b^0 → Λ_b^0 π^−$, arXiv:1510.05568.

[46] W. K. Lai and A. K. Leibovich, $\Lambda_c^+ / \Lambda_c^-$ and $\Lambda_b^0 / \Lambda_b^-$ production asymmetry at the LHC from heavy quark recombination, Phys. Rev. D 91, 054022 (2015).

[47] R. Aaij et al. (LHCb Collaboration), Study of the productions of Λ_b^0 and B^0 hadrons in pp collisions and first measurement of the $\Lambda_b^0 \rightarrow J/\psi \phi K^-$ branching fraction, Chin. Phys. C 40, 011001 (2016).

[48] R. Aaij et al. (LHCb Collaboration), Measurements of the Λ_b^0, Ξ_b^+, and Ω_b^- Baryon Masses, Phys. Rev. Lett. 110, 182001 (2013).

[49] R. Aaij et al. (LHCb Collaboration), Measurement of the $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decay amplitudes and the Λ_b^0 polarisation in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. B 724, 27 (2013).

[50] T. Aaltonen et al. (CDF Collaboration), Observation of the Ω_b^- and measurement of the properties of the Ξ_b^0 and Ω_b^- baryons, Phys. Rev. D 80, 072003 (2009).

R. AAII et al.

PHYS. REV. D 99, 052006 (2019)

17 INFN Sezione di Ferrara, Ferrara, Italy
18 INFN Sezione di Firenze, Firenze, Italy
19 INFN Laboratori Nazionali di Frascati, Frascati, Italy
20 INFN Sezione di Genova, Genova, Italy
21 INFN Sezione di Milano-Bicocca, Milano, Italy
22 INFN Sezione di Milano, Milano, Italy
23 INFN Sezione di Cagliari, Monserrato, Italy
24 INFN Sezione di Padova, Padova, Italy
25 INFN Sezione di Pisa, Pisa, Italy
26 INFN Sezione di Roma Tor Vergata, Roma, Italy
27 INFN Sezione di Roma La Sapienza, Roma, Italy
28 Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
29 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
30 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
31 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
32 National Center for Nuclear Research (NCBJ), Warsaw, Poland
33 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
34 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
35 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
36 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
37 Yandex School of Data Analysis, Moscow, Russia
38 National Research University Higher School of Economics, Moscow, Russia
39 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
40 Institute for High Energy Physics (IHEP), Protvino, Russia
41 Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia
42 ICCUB, Universitat de Barcelona, Barcelona, Spain
43 Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
44 European Organization for Nuclear Research (CERN), Geneva, Switzerland
45 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
46 Physik-Institut, Universität Zürich, Zürich, Switzerland
47 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
48 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
49 University of Birmingham, Birmingham, United Kingdom
50 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
51 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
52 Department of Physics, University of Warwick, Coventry, United Kingdom
53 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
54 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
55 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
56 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
57 Imperial College London, London, United Kingdom
58 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
59 Department of Physics, University of Oxford, Oxford, United Kingdom
60 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
61 University of Cincinnati, Cincinnati, Ohio, USA
62 University of Maryland, College Park, Maryland, USA
63 Syracuse University, Syracuse, New York, USA
64 Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria (associated with Institution Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
65 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil [associated with Institution Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]
66 University of Chinese Academy of Sciences, Beijing, China (associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
67 South China Normal University, Guangzhou, China (associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
68 School of Physics and Technology, Wuhan University, Wuhan, China (associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
(associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)

Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia
(associated with Institution LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France)

Institut für Physik, Universität Rostock, Rostock, Germany
(associated with Institution Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)

Van Swinderen Institute, University of Groningen, Groningen, Netherlands
(associated with Institution Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)

National Research Centre Kurchatov Institute, Moscow, Russia
(associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)

National University of Science and Technology “MISIS”, Moscow, Russia
(associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)

Van Swinderen Institute, University of Groningen, Groningen, Netherlands
(associated with Institution Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)

University of Michigan, Ann Arbor, United States
(associated with Institution Syracuse University, Syracuse, NY, United States)

Los Alamos National Laboratory (LANL), Los Alamos, United States
(associated with Institution Syracuse University, Syracuse, NY, United States)

Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

Also at Laboratoire Leprince-Ringuet, Palaiseau, France.

Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.

Also at Università di Bari, Bari, Italy.

Also at Università di Bologna, Bologna, Italy.

Also at Università di Cagliari, Cagliari, Italy.

Also at Università di Ferrara, Ferrara, Italy.

Also at Università di Genova, Genova, Italy.

Also at Università di Milano Bicocca, Milano, Italy.

Also at Università di Roma Tor Vergata, Roma, Italy.

Also at Università di Roma La Sapienza, Roma, Italy.

Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.

Also at Hanoi University of Science, Hanoi, Vietnam.

Also at Università di Padova, Padova, Italy.

Also at Università di Pisa, Pisa, Italy.

Also at Università degli Studi di Milano, Milano, Italy.

Also at Università di Urbino, Urbino, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Scuola Normale Superiore, Pisa, Italy.

Also at Università di Modena e Reggio Emilia, Modena, Italy.

Also at H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom.

Also at MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at Sezione INFN di Trieste, Trieste, Italy.

Also at School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China.

Also at Physics and Micro Electronic College, Hunan University, Changsha City, China.

Also at Lanzhou University, Lanzhou, China.