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AbstractÐThe rolling, recrystallization and cooling of AgCl containing 1±5 mm glass spheres generates
thermal mis®t dislocations. Under stress, prismatic loops elongate in the glide cylinder de®ned by their line
sense and Burgers vector. Using optical microscopy, the shape of dislocation loops under an applied stress
of 2.3 MPa is measured. The measurements are corrected for a friction stress of 0.34 MPa and compared
with a model which incorporates the orientation dependent line tension (ODLT) of a dislocation. The
measured data show considerable scatter; after averaging, good agreement between theory and experiment
is obtained. # 1999 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Prismatic dislocation loops are closed dislocations

which, in an unstressed crystal, lie in the plane nor-
mal to their Burgers vector ~b. As a shear stress is
applied, a prismatic loop elongates in the glide

cylinder de®ned by ~b and the dislocation's line
sense x̂. Once x̂ is parallel to ~b, the dislocation can
cross slip and escape the glide cylinder. Nabarro [1]
discusses the development of this concept; it is illus-

trated and described qualitatively by Read [2].
The equilibrium shape of a loop under stress and

the critical shear stress t* required for cross slip

were calculated by GrilheÂ [3] under the assumption
of constant dislocation line tension. GrilheÂ found
that t* �Ws=br, where r is the radius and Ws the

energy per unit length of dislocation. GrilheÂ also
predicted that supercritical loops and helices should
form Frank±Read sources.
In the present study we use a decoration tech-

nique to measure loop shape as a function of the
applied stress in AgCl. The data compare favorably
with an extension of GrilheÂ 's model which incorpor-

ates a constant matrix friction stress term and the
orientation dependent line tension (ODLT) of a dis-
location as it changes in character from edge to

screw.

2. THEORY

2.1. Orientation dependent line tension solution

In what follows we assume the matrix is isotropic

and the stress state uniform, that dynamic e�ects

can be ignored, and, because the e�ects of non-

adjacent dislocation components are small for large

(r� b) loops [4], that the ``line tension'' approxi-

mation can be used. (Limitations of the line tension

concept are discussed in Chapter 6 of Hirth and

Lothe [5].)

Consider an initially circular prismatic dislocation

loop in a glide cylinder of radius r and axis coinci-

dent with the êloop3 basis vector of the orthonormal

system êloopi . Angle y sweeps the plane normal to

êloop3 starting at êloop1 , Fig. 1. Then loop ~s is

described by

~s�y� �
� r cos y
r sin y
rA�y�

�
�1�

where A(y) is its normalized elongation. The

Burgers vector is �0, 0, b�. Using the FS/RH

convention [5], b is negative for an interstitial loop.

The force due to the uniform stress tensor ssloop is

computed using the Peach±Koehler equation [6].

After de®ning a resolved shear stress term t �
s13 sec a where tan a � ÿs23=s13 and rewriting the

result in the orthonormal basis

t̂ �
�ÿsin y

cos y
0

�
, ẑ �

� 0
0
1

�
, r̂ �

� cos y
sin y
0

�
�2�

we obtain the glide (t̂ and ẑ) and climb (r̂) com-

ponents of the unit force ~Fs

~Fs � ÿ b���������������������
1� A 0�y�2

q "
A 0�y�t cos�a� y�
ÿt cos�a� y�

A 0�y�t sin�a� y� � s33

#
: �3�

Resisting elongation is the increase in the disloca-

tion's self-energy. The energy per unit length of a

straight dislocation is, using Foreman's [7] notation
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Ws�b� � K�b�b2
4p

ln

�
R

r0

�
1K�b�b2

4p
ln

�
r

b

�
: �4�

In an isotropic medium, the energy coe�cient K(b)
is G�cos2 b� sin2 b=�1ÿ ���, where b is the angle

between ~b and x̂ and G is the elastic shear modulus.

The e�ective line tension of a curved

dislocation [8] is Ws�b� � @ 2Ws�b�=@b2. The restor-

ing force ~Fr is proportional to the line tension and

to the local curvature k

~Fr � ÿWs�0���1� ��A 0�y�2 � 1ÿ 2��
r�1ÿ ���1� A 0�y�2�3

�
"
A 0�y�A0�y�
ÿA0�y�

1� A 0�y�2

#
: �5�

At equilibrium, ~Fs � ~Fr � 0 for all y. Both t̂ and

ẑ components yield, after integration, the di�eren-

tial equation

ÿO sin�a� y� � c

� A 0�y� 1ÿ 2�� �1ÿ ��A 0�y�2
�1ÿ ���1� A 0�y�2�3=2 �6�

where we have introduced the dimensionless stress

parameter O � rbt=Ws�0�. As A'(y) must be periodic

on the interval 0±2p for a single prismatic loop,

c � 0.

Squaring this equation yields a cubic equation in

A'(y)2, which was solved using Mathematica

(Wolfram Research, Champaign, IL) to yield

lengthy polynomials in O sin�a� y� and n. With

�p F�y�� the real root, continuity requirements dic-

tate that

A 0�y� � �ÿ ���������
F�y�p

when ÿ a<yRpÿ a���������
F�y�p

when pÿ a<yR2pÿ a
:

A(y) is obtained by numerical integration.

When A 0�y�ÿÿÿ421, the dislocation has screw
character and can cross slip. Since A 0�p=2ÿ a� has
denominator 0 when O � 1 and, for 0R�R1=2,
negative and non-zero numerator, A 0�2p=2ÿ
a�ÿÿÿ431 when Oÿÿÿ421. Therefore

O* �21 �7�
where O* is the dimensionless stress above which
equilibrium cannot be obtained.

2.2. GrilheÂ's solution

We recover GrilheÂ 's solution by setting Ws(b)
equal to the self-energy of a pure screw dislocation,
Ws(0), and integrating twice. Since A�y� � 0 at y �
2p=2ÿ a

A�y� � ln
ÿ
O cos�a� y� �

�������������������������������������
1ÿ O2 sin2�a� y�

q �
ÿ 1

2
ln�1ÿ O2�: �8�

For this case, A 0�2p=2ÿ a�ÿÿÿ431 as Oÿÿÿ421,
so again O* �21.

2.3. E�ects of crystal anisotropy

The ODLT analysis assumes an isotropic matrix,

whereas crystals of AgCl and many metals of engin-
eering interest display cubic symmetry. We applied
Foreman's anisotropic analysis, as presented in

Hirth and Lothe [5], to calculate the line tension
Ws�b� � @ 2Ws�b�=@b2 for dislocations in AgCl.
Using the elastic constants of Loje and Schuele [9]
(c11 � 59:85, c12 � 36:11, c44 � 6:24 GPa at 300 K),

we computed the e�ective line tension for dislo-
cations with ~b � 1

2 �101� as a function of b, the angle
between a pure [101] screw dislocation and various

edge orientations. The results are plotted in Fig. 2.
The curves for dislocations with edge components
of ��101� and [010] show the range of values obtained

when using anisotropic elasticity. We computed the
mean value of the anisotropic line tensions for all
dislocations which make angle b with [101] for com-
parison with the isotropic line tension and constant

line tension cases. All curves are normalized by the
line energy of a pure screw dislocation, Ws(0).
The anisotropic dislocation line tension depends

on the orientation of a dislocation segment with
respect to the crystallographic axes. Because the
anisotropy of AgCl is relatively strong, the shape of

a prismatic loop will depend both on its orientation
with respect to the applied stress and on the crystal
orientation. Computation of dislocation shape is

di�cult in the anisotropic case; however, Fig. 2
shows that the mean anisotropic line tension is
reasonably well approximated by the isotropic ex-
pression. Thus, while anisotropy e�ects will cause

Fig. 1. Coordinate systems used in analyzing loop shape.
Basis êloopi is ®xed with respect to each loop; êrefi is ®xed
with respect to the applied stress direction; êproji is based
on a projection of êloopi onto the focal plane of the micro-

scope.

CALHOUN and MORTENSEN: PRISMATIC DISLOCATION LOOPS2358



the behavior of individual loops to deviate from the
values predicted by the isotropic ODLT model, the
mean response of many loops of di�erent crystallo-

graphic orientations should approach the values
predicted by the isotropic elasticity calculations.

2.4. Incorporating a non-zero ¯ow stress

The ODLT model also ignores lattice friction. To
a ®rst approximation, the e�ects of the Peierls stress
and interactions with solute atoms or second phase

precipitates can be modeled with a constant friction
stress term, tf. The relative importance of tf and the
dislocation's self-energy are compared in the dimen-

sionless friction stress v of Bullough and
Newman [10] where v � 4pr�1ÿ ��tf=Gb.
When v is greater than about 5, dislocation beha-

vior is dominated by matrix friction. When 0<v<5,
matrix friction can be accommodated in the ODLT
model by incorporating tf into O:

O �
t
jtj �

rb�jtj ÿ tf�
Ws�0� when jtj ÿ tfr0

0 when jtj ÿ tf<0

8<: : �9�

This will compensate, on average, for interactions
between a dislocation and randomly distributed ob-
stacles.

3. EXPERIMENT

3.1. Experimental procedures

We compared the predictions of the ODLT
model with experiment using 150 mm thick samples
of the ductile ionic solid AgCl containing

0.01 vol.% of 1±5 mm pyrex microspheres. Samples
were prepared by homogenizing an ingot of AgCl
containing the microspheres and 500 p.p.m. CuCl

sensitizer, rolling a piece of the ingot to the target
thickness, cutting the sheet into tensile specimens
and recrystallizing these specimens at 573 K.

Prismatic loops are generated in this material
during cooling from the matrix recrystallization
temperature due to the di�erent thermal expansion

properties of the two phases.
Freshly recrystallized samples of dimensions 37�

3� 0:15 mm3 were glued by their ends onto the top
of a 13 mm thick beam. The glue was a catalyzed

cyanoacrylate adhesive; 3M Scotchgard was used as
a stop layer and lubricant. After waiting overnight
for the glue to fully cure, the beam was loaded in

three-point bending as shown in Fig. 3. This yields
a sample stress state which is close to uniaxial ten-
sion. Beam deformation was monitored with strain

gauges; sample stress was calculated from the
applied beam strain and the stress±strain curves [11]
of identically heat-treated AgCl from the same
ingot.

Samples were illuminated with an un®ltered
xenon bulb strobe lamp while under load. This cat-
alyzes the decomposition of silver chloride into met-

allic silver, which subsequently precipitates on
dislocations and other defects in the crystal.
Dislocations are locked in their elongated state by

the decoration process, preserving their shape for
later examination with an optical microscope.
This technique [11], a modi®cation of that devel-

oped by Mitchell and co-workers [12±15], produces
dislocations that are resolvable in the top 40 mm of
a sample when oil-immersion optics are used. The
examined volumes are much greater than in elec-

tron-transparent metal samples, and even large
(5 mm) loops are relatively free from the e�ects of
free surfaces. The ability to ®x dislocation con®gur-

ations under load using only visible/near UV light
is a signi®cant advantage of dislocation decoration.
Compared with the technique of Mitchell and co-

workers, the present technique has the advantage of
producing pore-free samples, such that uniform de-
formation produces a uniform stress distribution

across the sample.

3.2. Physical constants

The Voigt average elastic constants of AgCl are
G � 8:49 GPa and � � 0:409. From the X-ray dif-

fraction data of Fouchaux and Simmons [16], b �
0:392 nm at 300 K.
The friction stress tf was deduced from the spa-

cing between prismatic dislocations generated by

Fig. 2. Dislocation line tension Ws�b� � @ 2Ws�b�=@b2 for
dislocations in AgCl with ~b � 1

2 �101� normalized by energy
of a pure screw dislocation Ws(0). Anisotropic elasticity
was used to compute the line tension of dislocations with
edge components ��101� and [010] and the average line ten-
sion for all dislocations at angle b to ~b. The curve com-
puted using isotropic elasticity (solid line) is fairly close to
the average of the anisotropic results and is used in the
present model. Also shown is the line tension of a dislo-
cation where the line energy is assumed to be constant.
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thermal mismatch. Bullough and Newman [10] ana-
lyzed the spacing between such prismatic dislo-

cations, correlating the dimensionless loop spacing
w � x=2r with the dimensionless friction stress v.
Dunand and Mortensen [17] used their results to

determine the spacing w0 between the penultimate
and last loops, ®nding that these expressions could
be approximated by the function
log v0 � 0:866ÿ 1:08w0 � 0:102w20.
Eighteen values of w0 were determined from an

identically annealed AgCl/glass sample to which no
external stress was applied. Loop spacings were

measured using the image processing software
IPLab (Scanalytics, Inc., Fairfax, VA) and cor-
rected for the position of the observer. Loop diam-

eters were taken to be the mean of the measured
diameters of the two loops. The mean of the values
of tf computed was 0:3420:06 MPa, so v is in the

range 0.4±2.

3.3. Data processing

Only distinctly closed loops were used: ®gure-
eight loops, incompletely formed (shear) loops, and

helical structures were ignored. To avoid compli-
cations caused by unrelaxed thermal stresses in the
vicinity of glass spheres, data were gathered using
only the outermost loop of each punched loop

train. Loops less than four radii from the center of
the glass sphere or from the surface of the sample
were also excluded. We take the stress state in the

vicinity of loops meeting these criteria to be one of
simple tension.
In the sample coordinate system êrefi , shown in

Fig. 1, the tensile load is applied along êref3 and the
microscope axis is parallel to êref2 . We de®ne angle
o to be the complement of the angle between êref3

and êloop3 , and angle f to be the angle between êref1

and the projection of êloop1 onto the plane normal to
êref3 as shown in Fig. 4. In terms of the reference
frame êrefi , the basis vectors êloopi are

êloop1 �
� cos f sin o
sin f sin o
ÿcos o

�
, êloop2 �

�ÿsin f
cos f
0

�
,

êloop3 �
� cos f cos o
sin f cos o

sin o

�
: �10�

Experimentally, f and o are computed from the

crystallographic orientation of each grain and the

fact that êloop3 is a h110i direction. Grain orientation
is determined from the angle that each h110i punch-
ing direction makes with êref3 when projected onto

the plane normal to êref2 . This process is described in
Appendix A.

Rotation of the stress tensor into the loop frame

yields t � ÿ 1
2s33 sin 2o and a � 0. Since b is nega-

tive for interstitial loops, O is positive and the loop
reaches its maximum extent Amax at A(0). We use

Amax as a measure for comparing the predictions of

the model with experiment.

Fig. 3. Tensile testing rig used with decoration samples. Sample dimensions are approximately
37� 3� 0:15 mm3. Glued regions on each end are approximately 3� 3 mm2.

Fig. 4. De®nition of angles used to describe a loop's orien-
tation with respect to the loading direction êref3 .
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Except for the special case where f equals 0 or p,
Amax has to be computed from an experimentally
measurable quantity, the apparent canting angle.

This process is described in the Appendix A. The
uncertainties associated with the correction process
increase as fÿÿÿ4np=2, sometimes generating clearly

erroneous results. These data were discarded.

4. RESULTS AND DISCUSSION

Predicted loop geometries under stress are plotted
in their ``unrolled'' shape [plots of A(y) vs y] in

Fig. 5. The GrilheÂ and ODLT analyses predict iden-
tical critical values of O but di�er in their predic-
tions of loop shape at smaller values of O. Note

that the ODLT model predicts a longer and more
canted loop at each O despite the fact that the dis-
location line energy is everywhere equal to or higher

than the constant term Ws(0) used in the GrilheÂ

model. This is because the dislocation line tension
contains a torque term which results in an e�ective
line tension smaller than Ws(0) for dislocations

which are predominantly edge in character

(cos b > 1= 3
p

. This is shown in Fig. 2.

Plots of the predicted magnitude of canting Amax

as a function of O are given in Fig. 6 for a crystal

with Poisson ratio n of 0.409. A function which ap-

proximates the ODLT solution for O less than

about 0.95 is

Amax1�1:12� 10:5�2�Oÿ �0:593� 16:8�2�O3 � �1:85

� 14:3�2�O5:

An example of loops in their unstressed con®gur-

ation is shown in Fig. 7. (Loops with Burgers vec-

tors in the plane of focus look like straight line

segments in micrographs.) Examples of the e�ect of

stress on such loops can be seen in Figs 8 and 9.

The loading axis is left±right in these micrographs;

loops under stress cant towards the loading axis

and the magnitude of canting increases as the orien-

tations of maximum shear are approached.

Quantitative measurements of loop canting were

made on a sample loaded in tension to an applied

strain of 191 mE, which corresponds to a stress of

2.3 MPa. Values of O were determined for each

measured loop using the de®nition of O given in

equation (9) with tf � 0:34 MPa. As collected, the

axis of symmetry of the canting data did not co-

incide with the applied stress direction: there was

an angle of 0.143 rad between the two. This could

result from several causes, including uneven load

transfer across the glued sample ends and crystal

anisotropy. Assuming this discrepancy resulted pri-

marily from a small local rotation of the principal

stress axis in the sample under examination, we

rotated the direction of the applied stress by

0.143 rad when computing values of O and Amax so

Fig. 5. Plots of A(y) vs y for ODLT and GrilheÂ models of
loop shape for O � 0:3, 0.6, 0.9 where O is a dimensionless
shear stress. Computation assumes isotropic elasticity with

� � 0:409.

Fig. 6. Plot of Amax vs O for ODLT and GrilheÂ models of
loop elongation for an isotropic matrix with � � 0:409. At
small values of O, the ODLT analysis predicts a more
canted loop. Both models predict the same critical value.
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Fig. 7. Prismatic dislocation loops punched by glass spheres due to thermal mismatch. No external
stress has been applied. Discrete loops with ~b in the plane of focus (above and left of sphere) resemble

line segments. Depth of sphere in the crystal is approximately 22 mm.

Fig. 8. Dislocation loops canting under an applied stress. Figure shows canting of dislocations gener-
ated by a glass sphere (top center) and by two smaller silver precipitates (lower left and lower right).
Loading direction is left±right to a far-®eld stress of approximately 2.1 MPa. The shear stress varies as
sin 2o, where o is the angle which ~b makes with the loading direction. Prismatic loops cant towards
the applied stress axis, with the magnitude of canting increasing with the resolved shear stress. The

depth of the spheres in the crystal is approximately 20 mm.
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that the applied stress direction was coincident with

the data's apparent axis of symmetry.

Results from the corrected canting angle

measurements on 61 loops are given in Fig. 10. For

clarity, error bars are not shown in the data; esti-

mates of experimental error are detailed in Table 1.

The data show considerable scatter. There are

two additional sources of loop canting not accom-

modated by the ODLT model: the previously men-

tioned crystal anisotropy and unrelaxed mis®t

stresses from the thermal quenching process. In a

material with no nucleation barrier and zero friction

stress, dislocation loops emitted from a sphere

would glide away until the mis®t stress became

completely relaxed. In practice, loops become

pinned during glide before complete relaxation,

resulting in canted dislocation loops even under

zero applied stress.

Such loop pinning should not have a preferred

orientation; to con®rm this, we measured the values

of Amax on 12 loops from a second sample to which

no external strain was applied. The mean value

obtained, �A
max

, was 0:020:2; as expected, �A
max

is

near zero. The standard deviation of this measure-

Fig. 10. Real (corrected) values of Amax determined from a
sample loaded to an applied strain of 2.3 MPa. Each data
point represents the canting magnitude of a single pris-
matic loop. Errors associated with the measurements are

discussed in the text.

Fig. 9. Dislocation loops canting under an applied stress. This ®gure shows dislocations around a single
glass sphere at four depths: approximately 11 mm below the surface (top left), 14 mm (top right), 16 mm
(bottom left), 23 mm (bottom right). Canted isolated dislocation loops visible in each frame are indi-
cated with an arrow. Loading direction is left±right; the far ®eld stress was approximately 2.3 MPa.

Table 1. Errors associated with measurements

Loop radius, r 27%
Applied stress, szz 20.1 MPa
Friction stress, tf 20.06 MPa
Measurement of canting angle 20.03 rad
Overall average relative error in O 25%
Overall average relative error in Amax 16%
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ment is quite high, which suggests that the e�ects of

unrelaxed quenching stresses are signi®cant. As
with the e�ects of crystal anisotropy, the mean
elongation of dislocation loops should approach the

predictions of the ODLT model.
We averaged the data in Fig. 10 by binning the

61 points into six bins of ten points each, the

suggested minimum number of discrete observations
one should consider before assuming normally dis-
tributed data [18]. The mean values of O and Amax

obtained are given in Fig. 11; the averaged data are
in good agreement with the ODLT model.
We have no data on loops for which Oÿÿÿ41

because other dislocation sources activated ®rst [11]

and kept the stress low; however, it is worth specu-
lating on the fate of supercritical (O > 1) loops,
because it has been proposed that such loops might

represent a signi®cant source of slip in crystals.
GrilheÂ argued that when O exceeds 1, loops and

helices can become Frank±Read sources. It is di�-

cult to see how this could occur in a perfect crystal,
as a Frank±Read source requires a dislocation seg-
ment to be pinned at both ends. Once the screw

segments of a supercritical loop begin to cross slip,
the êloop3 components of the restoring force decrease
continuously for 0R�R1=2. The cross-slipped seg-
ments of supercritical loops should then expand

across a perfect crystal while the two remnant half
loops of material remain constrained in the original
glide cylinder. In a real material, these mobile dislo-

cation segments may of course become pinned or
multiply via the same mechanisms which apply to
ordinary glissile dislocations; however, we see no

intrinsic mechanism whereby such a single expanded
loop would lead to the generation of many dislo-
cations.

5. CONCLUSION

We present observations and quantitative
measurements of interstitial dislocation loops within
bulk AgCl crystals subjected to externally applied
stress. Data are compared with predictions for loop

shape in isotropic crystals, with and without
account of the orientation dependence of the dislo-

cation line energy. The averaged loop elongation
data obtained show good agreement with the orien-
tation dependent model.

Both analyses predict that prismatic loops can
cross slip and leave their glide cylinder when the
value of the dimensionless stress parameter O
reaches 1. In terms of resolved shear stresses, the
critical stress for cross slip is approximately
t* � Gb=r.
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APPENDIX A

Determining the crystallographic orientation of each grain

The orientation of each loop's glide cylinder is deter-
mined from the crystallographic orientation of each grain
in the polycrystal. The grain orientations are determined

Fig. 11. Mean values of data from Fig. 10 averaged by
binning the data into six groups of ten points. Error bars
represent the standard deviations of the data in each bin.
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by measuring the angle between the loading direction and
the projection of each h110i direction onto the plane nor-
mal to the microscope axis. The grain orientation is then
determined by mapping each projected angle to a particu-
lar h110i direction and numerically calculating an orien-
tation for this set of h110i directions which best ®ts the
experimental data.

The degree of ®t is quanti®ed by averaging the dot pro-
ducts of the normalized h110i projections obtained from
experiment with those computed. The mapping of each
punching direction to a particular h110i is done by trial
and error; we assume a correct mapping has been found
when the average of the normalized dot products is 0.9999
or better and there are no discrepancies between the pre-
dicted punching directions and those observed in the
microscope.

Compensating for the observer's frame of reference

The AgCl casting technique developed by Mitchell and
co-workers resulted in a strong crystallographic texture in
which the microscope axis was usually very close to h100i.
The ``roll and recrystallize'' technique used in the present
work results in a more random texture. As a result, pris-
matic loops were rarely found in the special orientation
required for the magnitude of canting to be measured
directly. We used the following method to compute the
actual magnitude of canting from an experimentally mea-
surable quantity.

First, an experimentally convenient basis for making
measurements, êproji , is de®ned for each loop, Fig. 1:

êproj1 � k

� sin o

0

ÿcos f cos o

�
,

êproj2 �
� 0
1

0

�
,

êproj3 � k

� cos f cos o

0

sin o

�
:

Here, k � 1= �p cos2 f cos2 o � sin2 o �. Vector êproj3 is the
projection of the loop's Burgers vector onto the focal
plane of the microscope. On a micrograph, êproj3 is con-
structed by drawing a line from the center of the glass
sphere through the center of the loop; êproj1 is the normal
to êproj3 at the center of the loop (Fig. A1).
Next, a line is drawn through the major axis of the loop

as it appears in the micrograph. The angle c between the
loop's major axis and êproj1 (Fig. A2) is the apparent cant-
ing angle. We compute the real magnitude of canting nu-
merically by ®nding a value of Amax which would result in
the apparent angle of canting observed.
To do this, we write the equation describing the loop in

the êproji frame, yielding ~s
proj�y� �M � ~s�y� where

Mij � êproji � êloopj . For a � 0, the maximum elongation of
the loop occurs at y � 0 in the êloopi frame. In micro-
graphs, the location of the real maximum ~s

proj�0� will not
generally coincide with the apparent maximum; rather, it
will be found at some other value of y which we call g
(Fig. A2). To compute g, we ®nd the value of y for which
sproj1 �y� � 1, i.e. where the projected loop touches the pro-
jection of its glide cylinder. This is a function of o and f
only.
Once g is known, we ®nd a value of Amax such that

sproj3 �g� � tan c. Here we assume that loops elongate by
canting around the êloop2 axis as predicted by the model;
this should be true on average.
The robustness of the algorithm was checked by numeri-

cally generating loops of random elongation and orien-
tation and comparing the elongation of each generated
loop with the value back-calculated using the method
above. The algorithm always worked with synthetic data.
With real data, some obviously incorrect results were gen-
erated, especially when the loops were at a high angle
above or below the microscope's focal plane. These points
were discarded.

Fig. A2. Measurement of the apparent angle of canting
and typical location of actual loop extrema in projection.

Fig. A1. Construction of coordinate system êproji on micro-
scopic images. Vector êproj2 (not shown) is into the paper.
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