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A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented,
using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which
can lead to incorrect moment-arms if used inappropriately due to its dependency on the choice of joint coordinates. The
definition of moment-arms, and the presented construction method, apply to musculoskeletal models in which the bones are
modelled as rigid bodies, the joints are modelled as ideal mechanical joints and the muscles are modelled as massless,
frictionless cables wrapping over the bony protrusions, approximated using geometric surfaces. In this context, the definition
is independent of any coordinate choice. It is then used to solve a muscle-force estimation problem for a simple 2D
conceptual model and compared with an incorrect application of the tendon excursion method. The relative errors between
the two solutions vary between 0% and 100%.
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1. Introduction

Musculoskeletal systems such as the shoulder, the hip or

the knee are largely modelled as a set of rigid bodies,

representing the bones, connected together by ideal

mechanical joints, representing the anatomical joints.

The muscles are modelled as massless, frictionless cables

wrapping over the bones from origin to insertion, with a

uniform tension throughout the cable. The bones and joints

define the system and the muscles act as external force

generators on the system. Therefore, such models fall into

the domain of classical mechanics and are governed by

Newton’s laws of motion.

In Newton’s second law, the link between the force

generated by a muscle and the motion of the system is the

muscle moment-arm. Muscle moment-arms were initially

defined experimentally in cadaveric studies, by relating the

change in muscle length to the change in joint angle

(Brand et al. 1975; An et al. 1983; Otis et al. 1994; Liu

et al. 1997; Ackland et al. 2008). This experimental

definition was formalised using the principle of virtual

work, leading to the tendon excursion definition, by which

the moment-arm is defined as partial derivative of the

muscle length with respect to the joint angle (An et al.

1984).

Because of its simplicity and relation to the

experimental definition, the tendon excursion method has

been widely used to compute and validate model-based

moment-arms (Charlton and Johnson 2001; Garner and

Pandy 2001; Holzbaur et al. 2005). However, it is a

definition which requires caution and a certain amount of

rigour. Because the tendon excursion method is defined

using the principle of virtual work, a concept from

analytical mechanics, it must be applied according to the

same framework, and using the same hypothesis. Thus, the

coordinates used to construct the definition are not just any

joint coordinates, but the generalised coordinates used to

describe the musculoskeletal model. This last point is key:

the tendon excursion method is dependent on the choice of

generalised coordinates and must be used accordingly.

The tendon excursion method has, however, been used

without rigorous justification in a number of cases from the

literature (Herzog and Binding 1992; Raikova and

Prilutsky 2001; Menegaldo et al. 2004; Rankin and

Neptune 2012). This has led to the definition that muscles

define moment-arms only at the joints spanned by the

muscle. A more rigorous application of the method finds

moment-arms at the joints spanned by the muscle and at

the joints attached to the bodies on which the muscles

insert and originate. The moment-arms which are omitted

have a coupling effect between the muscles. In the muscle-

force estimation problem as defined by Happee (1994), the

omission of the coupling effect leads to a relaxation of the

optimisation problem and ultimately a different solution.

This change in solution can also have effects on the joint
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reaction forces. In contrast, if the coupling moment-arms

are not omitted, the estimation problem, can in certain

cases, be infeasible. A point observed in Ingram et al.

(2012), where a musculoskeletal shoulder model is

presented.

The goal of this paper is to present a rigorous, clear and

unambiguous definition of muscle moment-arm, using

screw theory. The definition is independent of the choice of

coordinates, and yields a systematic method of computing

muscle moment-arms. The effect of considering the

coupling terms or not is assessed by solving a muscle-

force estimation problem using a conceptual 2D muscu-

loskeletal model similar to the that presented in Herzog and

Binding (1992). The estimation problem is solved using

inverse dynamics and static optimisation. The optimisation

problem is solved using a geometric method which

computes an initial solution using a pseudo-inverse of the

moment-arm matrix defining the moment of force/muscle-

force map. The initial solution is modified by parameteris-

ing the final solution in terms of the matrix null-space. The

results are analysed in terms of the estimated muscle forces

and the joint reaction forces. Two calculations of moment-

arms are compared: (1) total moment-arms and (2)

approximation without coupling moment-arms.

2. Methods

2.1 A definition of muscle moment-arm

In classical mechanics, a force f, applied on a rigid bodyB
at point A, creates a moment of force at any other point B

of the body (Figure 1). The moment of force t is defined as

the cross product between the vector r from points B to A

and the force.4 The force and its moment, if grouped

together in an ordered pair, define a screw or wrench with

respect to point B in this case (Ball 1876; Whittaker 1927;

Gruber and Benoit 1998):

SB ¼ ðf; r £ fÞB ¼ j f jðd; r £ dÞB ¼ j f jðd; mÞB: ð1Þ

The associated moment-arm m is defined by the same

cross product but with a normalised force vector d. This

definition of moment-arm applies to a single body subject

to a single force, and has a geometric interpretation. The

norm of the moment-arm represents the distance from

point B to the line defined by vector d passing through A, a

quantity called the lever-arm. The moment-arm is,

therefore, a purely geometric quantity associated with a

given point on the body, which depends only on the

direction of the force and its point of application.

There is another interpretation of the moment-arm. If

the body is attached to a fixed point through a spherical

joint at the point B, and no other force is applied to the

body, then the moment-arm vector defines the instan-

taneous axis of rotation of the body around the joint.

As stated in the introduction, a musculoskeletal system

is defined by a number of bones and joints, while the

muscles act as external force generators. In terms of

classical mechanics, there are multiple bodies Bi

connected by multiple joints Ji. Each muscle is modelled

as a massless, frictionless cable. Pulley mechanics are used

to compute the points of application and direction of the

forces applied by the muscles on the bodies. Accordingly,

a cable applies a force at the first point of attachment,

parallel to the cable and pointing along the cable, and a

second force at the second point of attachment, parallel to

the cable and pointing along the cable. If the muscle wraps

over a bone, it applies two forces on the bone at the initial

and final points of contact which are pointing in opposite

directions parallel to the cable and of same magnitude.

According to this description, a muscle applies multiple

forces f k to the bodies and creates moment-arms for every

body to which it applies a force. The moment-arm of a

force is defined with respect to a specific point B on the

body. Thus, muscle moment-arms are also defined with

respect to a specific point, usually one of the joints

attached to the body.

For a specific muscle, the moment-arms on each body

are computed by isolating each body and considering the

forces applied by the muscle on the body, keeping in mind

that forces are transmitted through the joints. The total

moment-arm is then defined as the sum of the moment-

arms created by each force f k at one of the joints Ji
associated with the body

SJi ¼
Xm
k¼1

f k; rk £ f k
� � ¼ j f j

Xm
k¼1

dk; rk £ dk

� �
: ð2Þ

The total moment-arm is obtained by dividing the total

moment-force by the norm of the force

mJi ¼
1

j f j
Xm
k¼1

rk £ f k ¼
Xm
k¼1

rk £ dk: ð3Þ

Thus, by proceeding systematically, the moment-arm

around each joint is calculated exactly.

To illustrate the definition, consider the conceptual 2D

musculoskeletal system represented in Figure 2, similar to

the model from Herzog and Binding (1992). The model

includes 10 muscles. Two muscles, M1 and M2 span the

first joint. Another two muscles, M5 and M6 span the
Figure 1. Diagram of the classical mechanics definition of
muscle moment-arm.
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second joint. A third pair of muscles M9 and M10 spans

the third joint. A pair of muscles M3 and M4 spans both

the first and second joints while the last pair of muscles

M7 andM8 spans the second and third joints. The muscles

wrap around two bony protrusions modelled as circles:

W1 and W2. Centred at the second and third joints,

respectively, W1 is attached to the first bone while W2 is

attached to the second bone. This point is important

because it gives a particular set of moment-arms following

the previously stated definition. If the wrappings were

changed by associating W1 with the second bone and W2

with the third, the moment-arms would be different.

The moment-arms of muscle M8 around the joints are

computed explicitly by isolating each body with the forces

applied by the muscle (Figure 3). Starting with the distal

body B3, the muscle applies a force f 2 at point P4. This

force is transmitted through the third joint J3 to the second

body B2. The force is transmitted again through the

second joint J2 to the first body B1. The muscle also

applies a force2f 2 directly on the first body at P3 and two

equal and opposite forces f 1 and 2f 1 at P1 and P2, which

cancel each other. All the forces have the same norm j f 8j.
The muscle moment-arm at the third joint J3 is

defined by

SJ3 ¼ f 2; J3P4

! £ f 2

� �
) mJ3 ¼

1

j f 8j J3P4

! £ f 2

� �
: ð4Þ

The muscle moment-arm at the second joint J2 is

defined by

SJ2 ¼ f 2; J2J3
! £ f 2

� �
) mJ2 ¼

1

j f 8j J2J3
! £ f 2

� �
: ð5Þ

The muscle moment-arm at the first joint J1 is defined by

SJ1 ¼ f 2; J1J2
! £ f 2

� �
2 f 2; J1P3

! £ f 2

� �

¼ 0; J1J2
!

2 J1P3

!� �
£ f 2

� �
;

) mJ1 ¼
1

j f 8j J1J2
!

2 J1P3

!� �
£ f 2:

ð6Þ

Muscle M8 does not span the first joint J1, but it does

create a moment-arm around this joint. The moment-arms

for the other muscles are computed in a similar manner. It

should be noted that while the muscle creates a moment-

arm at the joint which it does not span, it does not,

however, create a force. The resulting forces of the muscle

at the joints not spanned by the muscle are always zero.

This point provides a means of verifying the application of

the definition.

To demonstrate the result of non-zero moment-arms

around joints not spanned by the muscle using the tendon

excursion method, a coordinate ui is associated with each

joint representing the absolute angle with respect to the

absolute y-axis (Figure 4). The configuration of the system

in Figure 2 is defined as the initial configuration. In this

Figure 2. Diagram of a conceptual 2D musculoskeletal system.

Figure 3. Diagram of the forces applied by muscle M8 on the
different bodies. Figure 4. Diagram of the joint coordinate definitions.
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configuration, the length of muscle M8 is defined as

L8 ¼ J2P2

!
2 J2P1

!��� ���
2
þ J2P4

!
2 J2P3

!��� ���
2
þdðP2;P3Þ; ð7Þ

where k·k2 is the Euclidean norm and dðP2;P3Þ is the

length of the circular arc between the wrapping contact

points P2 and P3:

dðP2;P3Þ ¼ R arc cos 12
J2P3

!
2 J2P2

!��� ���2
2

2R2

0
B@

1
CA

�������

�������
;

R ¼ J2P2

!��� ���
2
¼ J2P3

!��� ���
2
;

ð8Þ

as defined in Garner and Pandy (1999).

The angle of the first joint is then changed by Du1,
while leaving the other two joints in their initial

configuration (Figure 5). The new configuration is

superimposed to the initial configuration and the origin

O of both configurations is set at the centre of the second

joint J2 (Figure 5). With respect to this reference system

points P3 and P4 remain unchanged. Because the distance

between the origin of muscle P1 and the centre of the

second joint has not changed, the triangles DP1J2P2 and

DP0
1J2P

0
2 are equivalent but rotated with respect to one

another (Figure 5). Therefore, the distances (P1, P2) and

(P0
1, P

0
2) are the same. However, the arc lengths P2, P3 and

P0
2, P

0
3 are different because the wrapping point P2 – P0

2

while P3 ¼ P0
3. Thus, the muscle length has changed and is

now defined by

L08 ¼ J2P
0
2

!
2 J2P

0
1

!����
����
2

þ J2P
0
4

!
2 J2P

0
3

!����
����
2

þd P0
2;P

0
3

� �

¼ L8 þ d P0
2;P

0
3

� �
2 dðP2;P3Þ:

ð9Þ

Applying the tendon excursion method to the previous

result leads to the moment-arm around the first joint

mJ1 ¼ lim
Du1!0

2
L082L8

Du1
¼ lim

Du1!0
2
d P0

2;P
0
3

� �
2d P2;P3

� �
Du1

– 0:

ð10Þ
With a bit of mathematical development (not presented

here), this limit is shown to be non-zero as will be

illustrated in the following section.

2.2 A muscle-force estimation problem

The bones of the musculoskeletal system (Figure 2) are

given masses mi, lengths li and inertia tensors Ii. The

centre of gravity of each bone is located at the mid point,

and the system is such that the y-axis is aligned with the

direction of gravity. The mass, length and inertia of each

bone are defined as 1 (kg), (m) and (kgm2).

Using the coordinates defined previously and their

derivatives and choosing the positive rotation as counter-

clockwise, a dynamic model is defined (Yeung 1995). The

model is of the form

x ¼ u1 u2 u3
� �T

; z ¼ _x; ð11Þ

MðxÞ_z ¼ hðx; zÞ þ t; ð12Þ
where MðxÞ is the dynamic inertia matrix, hðx; zÞ contains
the internal dynamics due to gravity, coriolis, etc. Vector t

is the moment of force applied by the muscles. The muscle

forces f are linked to the torque vector through the

moment-arms, which are grouped into a matrix leading to

the relation

t ¼ WðxÞ·f: ð13Þ
The moment-arm matrix WðxÞ is dependent on the

configuration x. Using the approach described in the

previous section, the moment-arm matrix has the

following structure:

WðxÞ¼
w1;1 w1;2 w1;3 w1;4 w1;5 w1;6 w1;7 w1;8 0 0

0 0 w2;3 w2;4 w2;5 w2;6 w2;7 w2;8 w2;9 w2;10

0 0 0 0 0 0 w3;7 w3;8 w3;9 w3;10

0
BBBB@

1
CCCCA:

ð14Þ
where wi;j are the moment-arms of muscle j around joint i.

Thus, the torque–force relation defines a locally linear

map. For each static configuration the map is linear, but the

dependency on the configuration is nonlinear.

To illustrate the point that the tendon excursion

method and the presented definition yield identical

moment-arms, the moment-arms are computed for all the
Figure 5. (Colour online) Diagram of the superimposed
configurations. The equivalent triangles are in orange and blue.
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muscles in the initial configuration using both methods.

The tendon excursion method is applied using

Dui ¼ 1026. The position of the muscle origin and

insertion points is given in Table 1 for the initial

configuration. The bones are all considered of length 1m.

The radius of the wrapping circles is taken as r ¼ 0:15m.

The absolute value of the relative error between the

moment-arms is given by the matrix

ErrRel¼1023·

2:27 2:26 1:45 0 1:56 0 0:01 0:05 0 0

0:01 0:88 1:56 0:01 0:12 0:09 0 1:37

0 0 0 0 0 0 0:06 0:03 0 1:37

0
BBBB@

1
CCCCA;

ðErrRelÞij¼
wTendon excursion method
i;j 2wExact definition

i;j

wExact definition
i;j

�����
�����:

Thus, the tendon excursion method and the presented

definition yield identical moment-arms minus the

numerical precision.

The muscle-force estimation problem is defined in this

paper as the following problem. Given a dynamic motion

of the system: xðtÞ, zðtÞ, _zðtÞ and the associated joint

torques tðtÞ, obtained through inverse dynamics, the

muscle forces are estimated at any time tk through a static

optimisation problem. The cost function is defined as the

mean square muscle stress. Muscle stress is defined as the

force within the muscle divided by the physiological cross-

section area (PCSA). The problem is also subject to lower

and upper bounds on the muscle forces:

min gðf kÞ ¼
X10
i¼1

ðf iÞk
PCSAi

� �2

; ð15Þ

s:t: tðtkÞ ¼ WðxðtkÞÞ·f k; torque–force constraint;

ð16Þ

0 # f k # fmax; min=max force: ð17Þ
The optimisation problem is solved using a geometric

method described subsequently. The maximum force and

PCSA values are defined for all muscles in pairs of two

(Table 2).

For the model under consideration, the coupling terms

are w1;5, w1;6, w1;7, w1;8, w2;9 and w2;10. Omitting these

terms leads to the following moment-arm matrix:

WðxÞ ¼
w1;1 w1;2 w1;3 w1;4 0 0 0 0 0 0

0 0 w2;3 w2;4 w2;5 w2;6 w2;7 w2;8 0 0

0 0 0 0 0 0 w3;7 w3;8 w3;9 w3;10

0
BBBB@

1
CCCCA:

ð18Þ
The moment-arms created by muscles M5, M6, M7 and

M8 around the first joint and the moment-arms created by

muscles M9 and M10 around the second joint are set to

zero. These coupling terms are the moment-arms created

by the muscles which do not span the joints, but still create

moment-arms at these joints. The mechanical equilibrium

is solved using both moment-arm matrices (14) and (18).

Once a solution to the problem is found, the reaction

forces in the three joints are computed using Newton’s

second law of motion applied to each body:

f react;J3 ¼ m3a3 2 fmuscle;B3
þ m3g; ð19Þ

f react;J2 ¼ m2a2 2 fmuscle;B2
þ m2gþ f react;J3 ; ð20Þ

f react;J1 ¼ m1a1 2 fmuscle;B1
þ m1gþ f react;J2 : ð21Þ

Vectors ai are the accelerations of the centres of gravity of

each body. Vectors fmuscle;Bi
are the muscle forces applied

to body Bi.

2.3 Null-space optimisation

In the context of muscle-force estimation, the solution to

the optimisation problem is not defined by the cost

function but rather by constraints (16) and (17). Indeed, the

cost function simply represents a means of choosing a

Table 1. Position (x, y) of muscle origin and insertion points in initial configuration.

Muscle ID 1 2 3 4 5

Origin (20.5, 0) (0.5, 0) (20.3, 0) (0.3, 0) (0.05, 2 0.3)
Insertion (20.05, 2 0.5) (0.05, 2 0.5) (0.3, 2 1.05) (0.3, 2 0.95) (0.4, 2 0.95)
Muscle ID 6 7 8 9 10
Origin (20.05, 2 0.5) (20.05, 2 0.7) (0.05, 2 0.7) (0.5, 2 0.95) (0.6, 2 1.05)
Insertion (0.5, 2 1.05) (0.95, 2 1.3) (1.05, 2 1.4) (1.05, 2 1.8) (0.95, 2 1.8)

Note: Data in m.

Table 2. Maximum force and PCSA values for all muscles.

Muscle ID 1, 2 3, 4 5, 6 7, 8 9, 10

Fmax (N) 400 400 400 400 400
PCSA (cm2) 0.5 0.7 4 0.1 4

D. Ingram et al.510
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solution. And the set of all feasible solutions is defined by

the torque–force relation (16), while the second constraint

(17) limits the search to a subset. Thus, relation (16) can be

directly used to parameterise solution f k:

f k ¼ f 0k þ Nkvk: ð22Þ
This relation expresses the solution as an initial solution

f 0k, which respects relation (16), and a correction term

parameterised by a vector vk. Matrix Nk is the null-space

matrix of the moment-arm matrix. The correction vector

vk is projected onto the null-space of the moment-arm

matrix, such that one can search for a solution, which

respects the second set of constraints, but does not violate

the torque–force constraint. The re-parameterisation of

the optimisation problem in terms of (22) is defined by the

following quadratic program:

min gðvkÞ ¼ 1

2
vTkHvk þ hvk; ð23Þ

s:t: Avk 2 b # 0; min=max force: ð24Þ

A detailed presentation of this re-parameterisation is given

in Aeberhard et al. (2009) and Terrier et al. (2010).

2.4 Movement

The planned motion is defined by the following set of

expressions (Figure 6):

u1 ¼ 2
p

8
12 cos 2p

t

T

� �� �
;

u2 ¼ 2
p

6
12 cos 2p

t

T

� �� �
;

u3 ¼ p

2
12 cos 2p

t

T

� �� �
:

ð25Þ

The muscle forces are estimated for a dynamic motion,

with T ¼ 1 s, and the reaction forces in the three joints are

computed.

3. Results

Using the two moment-arm matrices (10) and (14)

yielded two very distinct behaviours. The estimated

muscle forces are presented for each muscle (Figure 7).

The difference was 100% for muscles M1, M2, M5 and

M10. Muscles M5 and M10 were active using the

incorrect definition, while using the correct definition

M10 was not active and M5 was only slightly active.

Certain muscles (M3, M7 and M8) had short periods in

which the two behaviours coincided but were dissimilar

otherwise.

The amplitude of the reaction forces in the three joints

is presented for the entire motion (Figure 8(a)). The

moment-arm matrices (10) and (14) also modified the joint

reaction forces which had the same range of amplitude.

Figure 7. Estimated muscle forces for the different muscles using both the correct and incorrect moment-arm definitions.

Figure 6. Stroboscopic diagram of the motion used to carry out
the estimations.

Computer Methods in Biomechanics and Biomedical Engineering 511

D
ow

nl
oa

de
d 

by
 [

E
PF

L
 B

ib
lio

th
èq

ue
] 

at
 2

2:
42

 2
9 

D
ec

em
be

r 
20

14
 



The relative errors between the two solutions varied

between 0% and almost 100% (Figure 8(b)). The reaction

force in the third joint has the least error and the reaction

force in the first joint has the most error.

4. Discussion

In the introduction, it was stated that the tendon excursion

method is defined using an analyticalmechanics framework

and therefore requires the same level of detail. A number of

examples from the literature used tendon-excursionmethod

without the necessary rigorous justification (Herzog and

Binding 1992; Raikova and Prilutsky 2001; Menegaldo

et al. 2004; Rankin and Neptune 2012), which has led to an

incorrect definition that muscles only generate moment-

arms at the joints spanned by the muscle. The main

weakness of the tendon excursionmethod is its dependency

on the choice of joint coordinates. Therefore, the goal of this

paper was to present a clear and unambiguous definition of

muscle moment-arms. The definition presented is con-

structed using screw theory and classical mechanics,

leading to a geometric definition of muscle moment-arms

independent of the coordinates used to describe the system.

The magnitude of the error made by an inappropriate

application of the tendon excursionmethodwas assessed by

comparing the solutions of a muscle-force estimation

problem for a conceptual 2D musculoskeletal model.

The definition of moment-arms and the proposed

construction method presented in this paper apply to

musculoskeletal models in which the bones are modelled as

rigid bodies, the joints aremodelled as idealmechanical joints

and the muscles are modelled as massless, frictionless cables

wrapping over bony protrusions, approximated using

geometric surfaces. The model is governed by classical

mechanics, by which the system is defined by the bones and

joints, while the muscles act as external force generators, and

can be treaded using pulley mechanics. In this context, the

proposed definition of moment-arm is complete in a

mechanical sense and the method of computation is exact

with respect to the geometry of the model.

The error made from applying the tendon excursion

methodwithout the necessary rigour stems from the location

where the muscles create moment-arms. If applied

inappropriately, the method yields moment-arms only at

the joints spanned by the muscles. In contrast, the definition

presented in this paper yields moment-arms at the joints

spanned by the muscles and at the neighbouring joints

attached to the bodies on which the muscles insert and

originate. Confirmation of this definition was obtained using

the tendon excursion method with absolute coordinates to

compute the moment-arms. An example was given where

identical moment-arms were obtained at the joints spanned

by the muscles and the joints not spanned by the muscles.

Themoment-arms at the joints not spannedby themuscle

create a coupling effect. The muscle-force prediction was

substantially different when coupling moment-arms were

not included. The reason for this difference is that omitting

the coupling terms relaxes the optimisation problem

independent of the cost function. For instance, the two

musclesM9 andM10 are activated to generate the necessary

torque around the third joint. In doing so, a torque is also

generated at the second joint not spanned by the muscles.

This torquemust be compensated for by themuscles directly

affecting this joint such as M5 and M6. However, these

muscles must also create the required torque to generate the

motion. The coupling effect can bebeneficial by reducing the

load on the other muscles or detrimental, making them reach

theirmaximum force quicker. In the 2D setting, this coupling

Figure 8. Comparison of the reaction forces (N) in the joints (a) using the correct and incorrect moment-arm definitions during the entire
motion and relative errors between the joint reaction forces (b) obtained using the correct and incorrect moment-arm definitions.
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effect has little impact on the system’s ability to generate

torque around the joint. However, in a 3D setting, this effect

can lead to the estimation problem being infeasible, a

problem observed in Ingram et al. (2012).

As stated previously, the effect of the coupling terms is

independent of the cost function and the method used to

resolve the optimisation problem. The null-space method

was used both because it has shown promising results

(Aeberhard et al. 2009; Terrier et al. 2010) and because it

helped to pinpoint the nature of the unfeasibility observed

in Ingram et al. (2012) due to its direct use of the map (13)

to construct the solution.

The theoretical problem presented in this paper

highlights the importance of a correct calculation of

moment-arms when using optimisation techniques to

estimate muscle forces. In order for the optimisation

problem to have a solution, the imposed moment of force

must be in the range space of the moment of force/muscle-

force map (13). This remark underlines the essential role

played by the moment-arms, which define this range

space.

Acknowledgement

This study was supported by the Swiss National Science
Foundation (No. K-32K1_122512).

Notes

1. Email: david.ingram@epfl.ch
2. Email: christoph.engelhardt@epfl.ch
3. Email: alexander.terrier@epfl.ch
4. Notation: bold lower-case letters are vectors, bold upper-

case letters are matrices, plain lower-case letters are scalars
and plain upper-case letters are geometric points.

References

Ackland D, Pak P, Richardson M, Pandy M. 2008. Moment arms
of the muscles crossing the anatomical shoulder. J Anat. 213
(4):383–390.

Aeberhard M, Michellod Y, Mullhaupt P, Terrier A, Pioletti D,
Gillet D. 2009. Dynamical biomechanical model of the
shoulder: null space based optimization of the overactuated
system. In: IEEE International Conference on Robotics and
Biomimetics; 2008 Feb 21–26; Bankok, Thailand. ROBIO
2008; February. p. 67–73.

An K, Takahashi K, Harrigan T, Chao E. 1984. Determination of
muscle orientations and moment arms. J Biomech Eng. 106
(3):280–282.

An K, Ueba Y, Chao E, Cooney W, Linscheid R. 1983. Tendon
excursion and moment arm of index finger muscles. J
Biomech. 16(6):419–425.

Ball SR. 1876. Theory of screws: a study in the dynamics of a
rigid body. Dublin: Hodges Publication.

Brand PW, Cantor KC, Ellis JC. 1975. Tendon and pulleys at the
metacarpophalangeal joint of a finger. J Bone Joint Surg. 57
(6):779–784.

Charlton W, Johnson G. 2001. Application of spherical and
cylindrical wrapping algorithms in a musculoskeletal model
of the upper limb. J Biomech. 34(9):1209–1216.

Garner B, Pandy M. 1999. Musculoskeletal model of the upper
limb based on the visible human male dataset. Comput
Methods Biomech Biomed Eng. 4(2):107–124.

Garner B, Pandy M. 2001. A kinematic model of the upper limb
based on the visible human project (VHP) image dataset.
Comput Methods Biomech Biomed Eng. 2(2):93–126.
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