A global branch of solutions to a semilinear equation on an unbounded interval

C. A. Stuart
Département de Mathématiques, EPFL, CH-1015 Lausanne, Switzerland

(MS received 4 April 1985)

Synopsis
For a semilinear second order differential equation on \((0, \infty)\), conditions are given for the bifurcation and asymptotic bifurcation in \(L^p\) of solutions to the Neumann problem. Bifurcation occurs at the lowest point of the spectrum of the linearised problem. Under stronger hypotheses, there is a global branch of solutions. These results imply similar conclusions for the same equation on \(\mathbb{R}\) with appropriate symmetry.

1. Introduction
We consider the following Neumann problem:
\[
\begin{align*}
 u''(x) + \lambda u(x) + q(x)f(u(x), u'(x)) &= 0 \quad \text{for } x > 0, \\
 u'(0) = \lim_{x \to \infty} u(x) &= 0,
\end{align*}
\]
where the functions \(q\) and \(f\) satisfy:

(H1) \(q \in C(\mathbb{R}_+, \mathbb{R})\) and \(\lim_{x \to \infty} q(x) = L\) with \(L > 0\);

(H2) \(f \in C^1(\mathbb{R}^2, \mathbb{R})\) with \(f(0, 0) = 0\) and \(\text{grad} f(0, 0) = (0, 0)\);

(H3) there exist positive constants \(a\) and \(A\) such that
\[
 k^{-2}D_1f(k^a s, k^{a+1} t) \to A |s|^{2/a},
\]
\[
 k^{-1}D_2f(k^a s, k^{a+1} t) \to 0 \quad \text{as } k \to 0^+,
\]
uniformly for \((s, t)\) in bounded subsets of \(\mathbb{R}^2\).

A classical solution to (N) is a pair \((\lambda, u)\) where \(\lambda \in \mathbb{R}, u \in C^2(\mathbb{R}_+, \mathbb{R})\) and (N) is satisfied. It is convenient to reformulate this problem using Sobolev spaces [1, Chap. VIII]. Let
\[
 X = \{u \in W^{2,1}((0, \infty)): u'(0) = 0\}
\]
with the norm
\[
 \|u\|_X = |u|_1 + |u'|_1 + |u''|_1, \quad \text{for } u \in X.
\]
where \(|u|_p\) denotes the usual norm in \(L^p((0, \infty)) = L^p\) for \(1 \leq p \leq \infty\). Then
\[
 X \subset C^1(\mathbb{R}_+, \mathbb{R}) \cap L^p \quad \text{for } 1 \leq p \leq \infty \quad \text{and} \quad \lim_{x \to \infty} u(x) = \lim_{x \to \infty} u'(x) = 0 \quad \text{for all } u \in X.
\]
Hence we see that \((\lambda, u)\) is a classical solution to (N) provided that \((\lambda, u) \in \mathbb{R} \times X\) and (N) is satisfied almost everywhere on \(\mathbb{R}_+\).
This paper is concerned with the bifurcation of solutions to (N) from the point
(0, 0) in \(R \times L^p \). The question has already been studied in several contexts when \(f \)
is independent of \(u' \). Variational methods are used in [6,7], the topological
degree is used in [9,10] and in [12] the case where \(q(x) = 1 \) for all \(x \geq 0 \) is solved
by quadrature. From these contributions we know that when

(i) \(q \) is non-increasing and satisfies (H1),
(ii) \(f(s, t) = |s|^{2/a} s \) for all \((s, t) \in R^2 \),

there is bifurcation in \(L^p \) if and only if \(ap > 1 \).

We show how a suitable scaling of the variables can be used to reduce (N) to a
situation where the implicit function theorem establishes the bifurcation of a
continuous branch of solutions to (N) in \(R \times L^p \) provided that \(ap > 1 \). Scaling has
been used in a similar way to deal with bifurcation for certain integral equations
involving convolutions [3,4]. Recently scaling has also been used to establish
bifurcation at an eigenvalue where the linearisation is not a Fredholm operator
[5]. We recall, however, that the linearisation of (N) has no eigenvalues in \(L^p \) for
\(p \geq 1 \).

Under the more restrictive assumptions (L1) to (L3), we are able to prove that
this branch of solutions can be extended to a curve parametrised by \(\lambda \) for all
\(\lambda \in (-\infty, 0) \). Furthermore, the functions \(u \) corresponding to solutions on this curve
are positive.

To state our results for (N), we first introduce an “asymptotic limit for (N)”:

\[
\begin{align*}
 v''(x) - v(x) + B |v(x)|^{2/a} v(x) &= 0 \quad \text{for} \quad x > 0, \\
 v'(0) &= 0 \quad \text{and} \quad \lim_{x \to \infty} v(x) = 0,
\end{align*}
\]

\[\text{(N)} \]

where \(B = aAL/(2 + a) \) and \(L, a \) and \(A \) are the constants appearing in (H1) and
(H3). An elementary phase-plane analysis shows that (N)\(_\infty\) has a unique solution,
denoted by \(v_0 \), and that \(v_0 \) is positive and decreasing.

THEOREM 1. (Bifurcation). Let the conditions (H1), (H2) and (H3) be satisfied.
Then there exist \(\eta > 0 \) and \(v \in C([0, \eta], X) \) such that \(v(0) = v_0 \) and, for \(0 < k < \eta \),
\((-k^2, u_k)\) is a non-trivial classical solution to (N) where \(u_k(x) = k^{a} v(k)(kx) \) for
\(x \geq 0 \).

Remark. For \(1 \leq p \leq \infty \), \(|u_k|_p = k^{a-(1/p)} |v(k)|_p \) and \(|v(k)|_p \to |v_0|_p \) as \(k \to 0^+ \).
Furthermore, \(k \mapsto (-k^2, u_k) \) is a continuous curve in \(R \times L^p \) for \(1 \leq p \leq \infty \) and
\((-k^2, u_k) \to (0, 0) \) as \(k \to 0^+ \) provided that \(ap > 1 \).

Under stronger assumptions, we can improve this local result and show that the
above curve extends globally.

(L1) \(q \in C^1(R_+, R) \) with \(q'(x) \leq 0 \) for all \(x \geq 0 \) and \(\lim_{x \to \infty} q(x) = L \) where \(L > 0 \).

(L2) \(h \in C^1(R_+, R) \) with \(h(0) = h'(0) = 0 \) and \(s^2h'(s) > sh(s) > rH(s) > 0 \) for all
\(s > 0 \) where \(r > 2 \) and \(H(s) = \int_0^s h(t) \, dt \).

(L3) There exist positive constants \(a \) and \(A \) such that \(k^{-2}h'(k^{a}s) \to As^{2/a} \) as
\(k \to 0^+ \).

Apart from permitting a global analysis, these hypotheses also ensure that the
solutions on the branch have the same qualitative behaviour as v_0. Let

$$K = \{ u \in X : u(x) > 0 \text{ and } u'(x) < 0 \text{ for all } x > 0 \}.$$

Theorem 2. (Global continuation). Let the conditions (L1), (L2) and (L3) be satisfied and set $f(s, t) = h(|s|)$ for all $(s, t) \in \mathbb{R}^2$. Then there exists $u \in \mathcal{C}^1((-\infty, 0), X)$ such that for all $\lambda < 0, (\lambda, u(\lambda))$ is a (non-trivial) solution to (N) and $u(\lambda) \in K$. Furthermore, for $0 < \sqrt{-\lambda} < \eta$, $u(\lambda) = u_{\sqrt{-\lambda}}$ where u_k is the solution given in Theorem 1.

The local result is proved in Section 2 and the global continuation is established in Section 3.

Remarks. 1. Solutions to the Neumann problem (N) can be used to construct solutions to the following related problem:

$$
\begin{align*}
\left. \begin{array}{l}
u''(x) + \lambda \nu(x) + q(x)\nu(x), \nu'(x) = 0 \quad \text{for } x \in \mathbb{R}, \\
\lim_{x \to -\infty} \nu(x) = \lim_{x \to \infty} \nu(x) = 0,
\end{array}\right\} \\
\text{(D)}
\end{align*}
$$

provided that

(a) $q \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ is even and satisfies (H1),
(b) $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ satisfies (H2) and (H3) with $f(s, t) = f(s, -t)$ for all $(s, t) \in \mathbb{R}^2$.

In fact, under these conditions a solution (λ, ν) to (N) is made into a solution to (D) by simply extending ν to be an even function on \mathbb{R}. Thus results similar to Theorems 1 and 2 hold for the problem (D) under the assumptions (a) and (b). When q is not even, the problem (D) cannot be reduced to (N) and the situation is much more complicated [8].

2. The method of scaling can also be applied to the N-dimensional generalisation of (D):

$$
\Delta \nu(x) + \lambda \nu(x) + q(x)\nu(x) = 0 \quad \text{for } x \in \mathbb{R}^N,
$$

provided that q is radially symmetric. This remark will be amplified elsewhere.

2. Bifurcation by scaling

In this section we prove Theorem 1 by reducing the problem (N) to a situation in which the implicit function can be applied.

Lemma 2.1. Let the function f satisfy the conditions (H2) and (H3). Given $\varepsilon > 0$ and a bounded subset D of \mathbb{R}^2, there exists $\delta > 0$ such that

$$
|k^{-(2+a)}f(k^a, x, k^{a+1}t) - \frac{aA}{2 + a} | |s|^{2/a} |t| < \varepsilon \{ |s| + |t| \}
$$

for $0 < k < \delta$ and $(s, t) \in D$.

Proof. For \(k > 0 \) and \((s, t) \in \mathbb{R}^2\),
\[
\left| k^{-(2+a)} f(k^a s, k^{a+1} t) - \frac{aA |s|^{2/a}}{2+a} \right|
= \left| \int_0^1 \left\{ k^{-(2+a)} \frac{d}{dr} f(rk^a s, rk^{a+1} t) - A |rs|^{2/a} s \right\} dr \right|
\leq \int_0^1 |k^{-2} D_1 f(rk^a s, rk^{a+1} t) - A |rs|^{2/a} f(rk^a s, rk^{a+1} t) | dr |s|
+ \int_0^1 |k^{-1} D_2 f(rk^a s, rk^{a+1} t) | dr |t|.
\]

The result now follows from (H3).
For \((k, u) \in \mathbb{R} \times X\), we define a function \(F \) as follows:
\[
F(k, u)(x) = \begin{cases}
q(x/|k|) |k|^{-(2+a)} f(|k|^a u(x), |k|^{a+1} u'(x)) & \text{if } k \neq 0, \\
B |u(x)|^{2/a} u(x) & \text{if } k = 0,
\end{cases}
\]
where \(B = aAL/(2+a) \).

Lemma 2.2. Let the conditions (H1), (H2) and (H3) be satisfied.
(a) \(F \) maps \(\mathbb{R} \times X \) continuously into \(L^1 \).
(b) For each \(k \in \mathbb{R} \), \(F(k, \cdot) : X \to L^1 \) is Fréchet differentiable and for \(u, v \in X \),
\[
D_u F(k, u)v(x) = \begin{cases}
q(x/|k|) |k|^{-2} D_1 f(|k|^a u(x), |k|^{a+1} u'(x)) v(x) & \text{if } k \neq 0, \\
+ |k|^{-1} D_2 f(|k|^a u(x), |k|^{a+1} u'(x)) v'(x) & \text{if } k = 0.
\end{cases}
\]
(c) \(D_u F \) maps \(\mathbb{R} \times X \) continuously into the Banach space of all bounded linear operators from \(X \) into \(L^1 \).

Proof. We recall that \(X \) is continuously embedded in \(W^{1,\infty}(0, \infty) \). The lemma is then established in a standard manner using (H3) and Lemma 2.1.

Lemma 2.3. Let the conditions (H1), (H2) and (H3) be satisfied. Let \(u(x) = k^n v(kx) \) for \(x \geq 0 \) and \(k > 0 \). The following statements are equivalent.
(i) \((-k^2, u) \in \mathbb{R} \times X\) is a solution to (N).
(ii) \(v \in X \) and \(v''(x) - v(x) + F(k, v)(x) = 0 \) for \(x > 0 \).

Proof. Trivial.

Proof of Theorem 1. Let \(Tu = u'' - u \) and let \(G(k, u) = Tu + F(k, u) \). Then \(T : X \to L^1 \) is an isomorphism and \(G : \mathbb{R} \times X \to L^1 \) is continuous. Furthermore, for \(u, v \in X \) and \(k \in \mathbb{R} \), \(D_u G(k, u)v = Tv + D_u F(k, u)v \). Thus \(G(0, v_0) = 0 \) where \(v_0 \) is the unique solution to (N)\(\infty \) in \(X \).

Hence, by Lemma 2.2 and the implicit function theorem (see for example [2, p. 222]), it is sufficient to show that \(D_u G(0, v_0) : X \to L^1 \) is an isomorphism.

Let \(C v(x) = Al v_0(x)^{2/a} v(x) \) for \(v \in X \). Then \(C : X \to L^1 \) is a compact linear operator and \(D_u G(0, v_0) = T + C \). Since \(T : X \to L^1 \) is an isomorphism, we need only show that \(T + C \) is injective. For this, we suppose that \(v \in X \) and \((T + C)v = 0\).
Solutions to a semilinear equation

Then

$$v''(x) - v(x) + AL |v_0(x)|^{2/a} v(x) = 0 \quad \text{for } x > 0. \quad (2.1)$$

From (2.1) and (N)_\infty, we have that \(\int_0^\infty |v_0(x)|^{2/a} v_0(x) v(x) \, dx = 0 \) and so \(v \) has at least one zero, denoted by \(z \), in \((0, \infty) \). On setting \(w(x) = v_0(x) \), we have that

$$w''(x) - w(x) + AL |v_0(x)|^{2/a} w(x) = 0 \quad \text{for } x > 0 \quad (2.2)$$

since \(v_0 \) satisfies \((N)_\infty \). From (2.1), we obtain

$$-v'(z)w(z) + \int_z^\infty \{ -v'(x)w'(x) - v(x)w(x) + AL |v_0(x)|^{2/a} v(x)w(x) \} \, dx = 0$$

and from (2.2),

$$\int_z^\infty \{ -v'(x)w'(x) - v(x)w(x) + AL |v_0|^{2/a} v(x)w(x) \} \, dx = 0.$$

Hence, \(v'(z) = 0 \) and so, by (2.1), we must have \(v(x) = 0 \) for all \(x \geq 0 \).

This completes the proof of the theorem.

3. Global continuation

Throughout this section we suppose that \(f: \mathbb{R}^2 \to \mathbb{R} \) is defined by

$$f(s, t) = \begin{cases} h(|s|) \frac{|s|}{s} & \text{for } (s, t) \in \mathbb{R}^2 \quad \text{with } s \neq 0, \\ 0 & \text{for } s = 0 \quad \text{and } t \in \mathbb{R}, \end{cases}$$

where the function \(h \) satisfies the conditions (L2) and (L3). It is easily seen that \(f \) satisfies the hypotheses (H2) and (H3) and the problem (N) can be written as

$$\begin{cases} u''(x) + \lambda u(x) + q(x) g(|u(x)|) u(x) = 0 \quad \text{for } x > 0, \\ u'(0) = 0 \quad \text{and } \lim_{x \to \infty} u(x) = 0, \end{cases}$$

where \(g(s) = s^{-1} h(s) \) for \(s > 0 \). For the proofs which follow, we note some simple consequences of the assumptions (L2) and (L3).

(i) The function \(s^{-\gamma} H(s) \) is increasing for \(s \) in \(\mathbb{R}_+ \).

(ii) There is an increasing function \(g \in C(\mathbb{R}_+, \mathbb{R}) \) such that \(sg(s) = h(s) \) for all \(s \geq 0 \), \(g(0) = 0 \) and \(\lim_{s \to \infty} g(s) = \infty \).

(iii) On setting \(\theta = \gamma(r - 2) \), we have that

$$0 < g(s) < \theta \{ g(s) - 2s^{-2} H(s) \} \quad \text{for all } s > 0.$$

(iv) Setting \(j(s) = s^{-\gamma} H(s) \) for \(s > 0 \), we have that \(j \) is increasing on \((0, \infty) \) with

$$\lim_{s \to 0} j(s) = 0 \quad \text{and} \quad \lim_{s \to \infty} j(s) = \infty.$$

(v) \(f(s, t) = g(|s|) s \) for all \((s, t) \in \mathbb{R}^2 \).

We begin by showing that the branch of solutions of (N) given by Theorem 1 lies in the set \(K \). Then we show that a branch of solutions cannot leave \(K \). Finally,
by a priori estimates and the implicit function theorem, we prove that the branch
can be extended globally to cover \((-\infty, 0)\).

Lemma 3.1. Let the conditions (L1), (L2) and (L3) be satisfied and let \(v \in C([0, \eta], X)\) be the function given by Theorem 1. There exists \(k_0 > 0\) such that \(v(k) \in K\) for \(0 < k < k_0\).

Proof. From the phase-plane for \((N)_\infty\), we see that \(v(0) = v_0 \in K\). For \(0 < k < \eta\), \(v(k) \in X\) and satisfies

\[v''(x) + \left\{-1 + q(x/k)k^{-2}g(k^a|v(x)|)\right\}v(x) = 0 \quad \text{for} \quad x > 0. \tag{3.1}\]

By adapting Lemma 2.1 to the stronger hypotheses we obtain the following. Given \(\epsilon > 0\) and a bounded subset \(D\) of \(R\), there exists \(\delta > 0\) such that

\[
\left| k^{-2}g(k^a|s|) - \frac{aA}{2 + a} |s|^{2/a} \right| < \epsilon
\]

for \(0 < k < \delta\) and \(s \in D\).

Thus, since \(\lim_{x \to \infty} v_0(x) = 0\), there exists \(z > 0\) such that

\[
\left\{-1 + \frac{q(0)aA |v_0(x)|^{2/a}}{2 + a}\right\} < -\frac{1}{2} \quad \text{for all} \quad x \geq z.
\]

Hence there is an open neighbourhood \(U\) of \((0, v_0)\) in \(R \times X\) such that

\[
\left\{-1 + q(x/k)k^{-2}g(k^a|v(x)|)\right\} < -\frac{1}{4} \quad \text{for all} \quad x \geq z.
\]

provided that \((k, v) \in U\).

If \((k, v) \in U\) and (3.1) is satisfied, it follows that

\[
v'(x)v(x) + \int_x^\infty v'(y)^2 \, dy = \int_x^\infty \left\{-1 + q(y/k)k^{-2}g(k^a|v(y)|)\right\}v(y)^2 \, dy
\]

\[< -\frac{1}{4} \int_x^\infty v(y)^2 \, dy \quad \text{for all} \quad x \geq z.
\]

This proves that \(v'(x)v(x) < 0\) for all \(x \geq z\), and since \(v_0 \in K\), we can conclude that \(v(x) > 0\) and \(v'(x) < 0\) for all \(x \geq z\), provided that \((k, v) \in U\) and satisfies (3.1). On choosing a sufficiently small neighbourhood \(U\) of \((0, v_0)\), the result now follows from the continuous embedding of \(X\) in \(C^1(R_+, R)\).

Lemma 3.2. Let the conditions (L1), (L2) and (L3) be satisfied.

(a) The solutions to \((N)\) form a closed subset of \(R \times X\).

(b) If \((\lambda, u)\) is a solution to \((N)\) with \(\lambda < 0\) and \(u \in \bar{K}\) (the closure of \(K\) in \(X\)), then \(u \in K \cup \{0\}\).

(c) If \((\lambda, u)\) is a solution to \((N)\) with \(\lambda < 0\) and \(u \in K\), there is an open

neighbourhood \(U\) of \((\lambda, u)\) in \(R \times X\) such that \(v \in K\) whenever \((\mu, v) \in U\) and satisfies \((N)\).

Proof. (a) Trivial.

(b) Suppose that \(u \neq 0\). Since \(u\) satisfies \((N)\) it can only have simple zeros. This
implies that \(u(x) > 0 \) for all \(x \geq 0 \). On setting \(w(x) = u'(x)/u(x) \), we find that

\[
w'(x) = \frac{u''(x)}{u(x)} - \left(\frac{u'(x)}{u(x)} \right)^2
\]

and

\[
u'(x)^2 + \lambda u(x)^2 + 2q(x)H(u(x)) = -\int_x^\infty 2q'(y)H(u(y)) \, dy \quad \text{for} \quad x \geq 0.
\]

Thus,

\[
w'(x) = q(x)\left\{ \frac{2H(u(x))}{u(x)^2} - g(u(x)) \right\} + \frac{1}{u(x)^2} \int_x^\infty 2q'(y)H(u(y)) \, dy
\]

\[
< -\frac{1}{\theta} q(x)g(u(x)) \quad \text{(by (iii))}
\]

\[
< 0.
\]

Since \(w(0) = 0 \), it follows that \(u'(x) < 0 \) for all \(x > 0 \) and so \(u \in K \).

(c) For \(u \in K \), we have \(u(x) > 0 \) for \(x \geq 0 \) and since \(u \) satisfies (N) we also have that \(u''(x) + (\lambda + q(x)g(u(x)))u(x) = 0 \) for \(x > 0 \). Furthermore, \(\lim_{x \to \infty} u(x) = 0 \) and so there exists \(z > 0 \) such that \(\lambda + q(x)g(u(x)) \leq \frac{1}{2} \lambda < 0 \) for all \(x \geq z \). The result is now established in the same way as Lemma 3.1.

Lemma 3.3. Let the conditions (L1), (L2) and (L3) be satisfied. Let \((\lambda, u) \) be a solution to (N) with \(\lambda < 0 \) and \(u \in K \). Set \(k = \sqrt{-\lambda} \).

(a) \(0 < 2LH(u(x)) \leq k^2 u(x)^2 - u'(x)^2 \leq 2q(x)H(u(x)) \) for \(x \geq 0 \).

(b) \(\lim_{x \to \infty} u'(x)/u(x) = -k \) and, for all \(\varepsilon > 0 \), \(\lim_{x \to \infty} e^{(k-\varepsilon)x}u(x) = 0 \).

Proof. (a) By (N), \(u'(x)^2 - k^2 u(x)^2 = \int_x^\infty 2q(y)H(u(y)) \, dy \) for \(x \geq 0 \). But \(q'(y) \leq 0 \) and \(H(u(y))' \leq 0 \) by (L1), (L2) and the assumption that \(u \in K \). Hence we obtain,

\[
-2q(x)H(u(x)) \leq \int_x^\infty 2q(y)H(u(y)) \, dy \leq -2LH(u(x)).
\]

This proves (a).

(b) By (L1) and (L2), \(\lim_{x \to \infty} q(x) = L \) and \(\lim_{x \to \infty} j(x) = 0 \). From (a) it now follows that \(\lim_{x \to \infty} u'(x)/u(x) = -k \) and, given \(\varepsilon > 0 \), there exists \(z \geq 0 \) such that \(u'(x) \leq (k + \varepsilon)u(x) \) for all \(x \geq z \). This implies that \(e^{(k-\varepsilon)x}u(x) \) is a decreasing function of \(x \) on \([z, \infty)\). The proof is complete.

Lemma 3.4. Let the conditions (L1), (L2) and (L3) be satisfied. There exist increasing functions \(A \) and \(B \in C((-\infty, 0), R) \) such that

\[
A(\lambda) \leq B(\lambda) \quad \text{for all} \quad \lambda < 0,
\]

\[
0 < A(\lambda) \leq |u|_* = u(0) \leq B(\lambda)
\]

and

\[
A(\lambda) \leq \|u\|_* \leq B(\lambda) \left\{ \frac{1}{\sqrt{-\lambda}} + \theta2\sqrt{-\lambda} \right\}
\]
whenever \((\lambda, u)\) is a solution to \((N)\) with \(\lambda < 0\) and \(u \in K\). Furthermore, \[
\lim_{\lambda \to -\infty} A(\lambda) = +\infty \quad \text{and} \quad \lim_{\lambda \to 0} B(\lambda) = 0.
\]

Proof. Let \(A(\lambda) = j^{-1}(-\lambda/2q(0))\) and \(B(\lambda) = j^{-1}(-\lambda/2L)\). From Lemma 3.3(a), we see that \(2Lj(u(0)) \leq -\lambda \leq 2q(0)j(u(0))\) and hence \(A(\lambda) \leq u(0) \leq B(\lambda)\) whenever \((\lambda, u)\) is a solution to \((N)\) with \(\lambda < 0\) and \(u \in K\).

Now setting \(w(x) = u'(x)/u(x)\) as in Lemma 3.2(b), we obtain \(w'(x) < -(1/\theta)q(x)g(u(x))\) for all \(x > 0\), with \(w(0) = 0\) and \(\lim_{x \to \infty} w(x) = -\sqrt{-\lambda}\), by Lemma 3.3(b). Hence, \[
\int_0^\infty q(x)g(u(x))\,dx \leq \theta \sqrt{-\lambda}
\]
and, by \((N)\),
\[
-\lambda \int_0^\infty u(x)\,dx = \int_0^\infty q(x)g(u(x))u(x)\,dx \leq u(0)\theta \sqrt{-\lambda} \leq B(\lambda)\theta \sqrt{-\lambda}.
\]
Thus \(|u|_1 \leq B(\lambda)\theta \sqrt{-\lambda}\) and
\[
|u''|_1 \leq -\lambda |u|_1 + \int_0^\infty q(x)g(u(x))u(x)\,dx \leq -2\lambda |u|_1 \leq 2B(\lambda)\theta \sqrt{-\lambda}.
\]

On the other hand,
\[
A(\lambda) \leq u(0) = -\int_0^\infty u'(x)\,dx = |u'|_1 \leq B(\lambda).
\]

Thus, we have that
\[
||u||_x = |u|_1 + |u'|_1 + |u''|_1 \leq |u'|_1 \leq A(\lambda)
\]
and
\[
||u||_x \leq \frac{B(\lambda)\theta}{\sqrt{-\lambda}} + B(\lambda) + 2B(\lambda)\theta \sqrt{-\lambda}
\]
\[
= B(\lambda)\theta \left\{ \frac{1}{\sqrt{-\lambda}} + \frac{1}{\theta} + 2\sqrt{-\lambda} \right\}.
\]

Proof of Theorem 2. For \(\lambda < 0\) and \(u \in X\), let \(N(\lambda, u)(x) = u''(x) + \lambda u(x) + q(x)g(|u(x)|)u(x)\). Then \(N \in C^1((-\infty, 0) \times X, L^1)\) and, for \(u, v \in X\), \(D_uN(\lambda, u)v = Sv + P(u)v\) where \(Sv = v'' + \lambda v\) and \(P(u)v(x) = q(x)h'(|u(x)|)v(x)\). Since \(\lambda < 0\), the mapping \(S: X \to L^1\) is an isomorphism. Furthermore, for \(u \in X\), we have that \(\lim_{x \to \infty} u(x) = 0\) and hence \(P(u): X \to L^1\) is a compact linear operator.

It follows that \(D_uN(\lambda, u) = S + P(u): X \to L^1\) is an isomorphism if and only if it is injective.

To use the implicit function theorem to prove Theorem 2, we must show that \(D_uN(\lambda, u): X \to L^1\) is injective whenever \((\lambda, u)\) is a solution to \((N)\) with \(\lambda < 0\) and \(u \in K\).

If \((\lambda, u)\) satisfies \((N)\) and \(u \in K\), we have
\[
u''(x) + \lambda u(x) + q(x)h(u(x)) = 0 \quad \text{for all} \quad x > 0 \quad (3.2)
\]
and if \(v \in X \setminus \{0\}\) is such that \(D_uN(\lambda, u)v = 0\), we have
\[
u''(x) + \lambda v(x) + q(x)h'(u(x))v(x) = 0 \quad \text{for all} \quad x > 0. \quad (3.3)
\]
Solutions to a semilinear equation

Hence,
\[\int_0^\infty q(x)\{h(u(x))v(x) - h'(u(x))v(x)u(x)\} \, dx = 0. \]

Since \(sh'(s) > h(s) \) for \(s > 0 \) and \(u(x) > 0 \) for \(x > 0 \), it follows that there exists \(z > 0 \) such that \(v(z) = 0 \). Furthermore, as in the proof of Lemma 3.1, there exists \(z_1 > 0 \) such that \(v'(x)v(x) < 0 \) for all \(x > z_1 \). Thus, replacing \(v \) by \(-v\) if necessary, we can suppose that \(v(z) = 0, v'(z) > 0 \) and \(v(x) > 0 \) for all \(x > z \). On setting \(w(x) = u'(x) \), we have that \(w(x) < 0 \) for all \(x > 0 \) and
\[
-w''(x) + \lambda w(x) + q(x)h'(u(x))w(x) + q'(x)h(u(x)) = 0, \tag{3.4}
\]
From (3.3) and (3.4), it follows that
\[-v'(z)w(z) + \int_z^\infty \left[-v'(x)w'(x) + \lambda v(x)w(x) + q(x)h'(u(x))v(x)w(x) \right] \, dx = 0 \]
and
\[-w'(z)v(z) + \int_z^\infty \left[-w'(x)v'(x) + \lambda v(x)w(x) + q(x)h'(u(x))v(x)w(x) \right] \, dx \\
\quad = - \int_z^\infty q'(x)h(u(x))v(x) \, dx. \]
Thus, \(v'(z)w(z) = -\int_z^\infty q'(x)h(u(x))v(x) \, dx \geq 0 \) and so \(v'(z) \geq 0 \). This contradicts the fact that \(v'(z) > 0 \) and we conclude that \(\mathcal{D}_u N(\lambda, u) : X \to L^1 \) must be injective.

In view of Lemmas 3.1 to 3.4, the proof of Theorem 2 is completed by establishing the following fact. A subsequence converging in \(\mathbb{R} \times X \) can be extracted from any sequence \(\{(\lambda_n, u_n)\} \) of solutions to (N) such that
\[\lambda_n \to \lambda \quad \text{with} \quad \lambda < 0, \]
\[u_n \in K, \]
\[|u_n|_\infty \leq \|u_n\|_X \leq C \quad \text{for all} \quad n. \]

To prove this fact, we note first that since \(u_n \in K \),
\[xu_n(x) \leq \int_0^x u_n(y) \, dy \leq \|u_n\|_X \leq C \quad \text{for all} \quad x > 0. \tag{3.5} \]
By Lemma 3.3(a) and the property (i) of the function \(H \),
\[-\lambda_n u_n(x)^2 - u_n'(x)^2 \leq 2q(x)H(u_n(x)) \leq 2q(0)u_n(x)^rC^{-r}H(C) \quad \text{where} \quad r > 2. \]
Hence, using (3.5), we obtain
\[-\lambda_n - u_n'(x)^2/u_n(x)^2 \leq 2q(0)x^{-r+2}C^{-2}H(C). \]
It follows that there exist \(m \) and \(z \) such that
\[u_n'(x)/u_n(x) \leq -\frac{1}{2}\sqrt{-\lambda} \quad \text{for all} \quad x \geq z \quad \text{and} \quad n \geq m. \]
and consequently,
\[
0 < u_n(x) \leq C \exp \left\{ -\frac{1}{2} \sqrt{-\lambda(x-z)} \right\} \quad \text{for all } x \geq z \text{ and } n \geq m.
\]

By using this estimate and the equation (N), the existence of a subsequence of \(\{u_n\} \) converging in \(X \) is easily established.

This completes the proof of Theorem 2.

Remark. From the results stated in [11], it follows that all positive solutions to (N) belong to the branch given by Theorem 2.

References

(Issued 12 December 1985)