Search for $A' \rightarrow \mu^+\mu^−$ Decays

R. Aaij et al.*
(LHCb Collaboration)

(Received 18 October 2019; revised manuscript received 12 December 2019; published 29 January 2020)

Searches are performed for both promptlike and long-lived dark photons, A', produced in proton-proton collisions at a center-of-mass energy of 13 TeV. These searches look for $A' \rightarrow \mu^+\mu^−$ decays using a data sample corresponding to an integrated luminosity of 5.5 fb$^{-1}$ collected with the LHCb detector. Neither search finds evidence for a signal, and 90% confidence-level exclusion limits are placed on the γ–A' kinetic mixing strength. The promptlike A' search explores the mass region from near the dimuon threshold up to 70 GeV and places the most stringent constraints to date on dark photons with $214 < m(A') \lesssim 740$ MeV and $10.6 < m(A') \lesssim 30$ GeV. The search for long-lived $A' \rightarrow \mu^+\mu^−$ decays places world-leading constraints on low-mass dark photons with lifetimes $\mathcal{O}(1)$ ps.

DOI: 10.1103/PhysRevLett.124.041801

Substantial effort has been dedicated recently [1–3] to searching for the dark photon (A'^0), a hypothetical massive vector boson that could mediate the interactions of dark matter particles [4], similar to how the ordinary photon mediates the electromagnetic (EM) interactions of charged standard model (SM) particles. The dark photon does not couple directly to SM particles; however, it can obtain a small coupling to the EM current due to kinetic mixing between the SM hypercharge and A' field strength tensors [5–12]. This coupling, which is suppressed relative to that of the photon by a factor labeled ϵ, would provide a portal through which dark photons can be produced in the laboratory, and also via which they can decay into visible SM final states. If the kinetic mixing arises due to processes described by one- or two-loop diagrams containing high-mass particles, possibly even at the Planck scale, then $10^{-12} \lesssim \epsilon^2 \lesssim 10^{-4}$ is expected [2]. Exploring this few-loop ϵ region is one of the most important near-term goals of dark-sector physics.

Dark photons will decay into visible SM particles if invisible dark-sector decays are kinematically forbidden. Constraints have been placed on visible A' decays by previous beam-dump [12–28], fixed-target [29–32], collider [33–38], and rare-meson-decay [39–48] experiments. These experiments ruled out the few-loop region for dark-photon masses $m(A') \lesssim 10$ MeV ($c = 1$ throughout this Letter); however, most of the few-loop region at higher masses remains unexplored. Constraints on invisible A' decays can be found in Refs. [49–61]; only the visible scenario is considered here.

Many ideas have been proposed to further explore the $[m(A'), \epsilon^2]$ parameter space [62–82]. The LHCb Collaboration previously performed a search based on the approach proposed in Ref. [76] using data corresponding to 1.6 fb$^{-1}$ collected in 2016 [83]. The constraints placed on promptlike dark photons, where the dark-photon lifetime is small compared to the detector resolution, were the most stringent to date for $10.6 < m(A') < 70$ GeV and comparable to the best existing limits for $m(A') < 0.5$ GeV. The search for long-lived dark photons was the first to achieve sensitivity using a displaced-vertex signature, though only small regions of $[m(A'), \epsilon^2]$ parameter space were excluded.

This Letter presents searches for both promptlike and long-lived dark photons produced in proton-proton, pp, collisions at a center-of-mass energy of 13 TeV, looking for $A' \rightarrow \mu^+\mu^−$ decays using a data sample corresponding to an integrated luminosity of 5.5 fb$^{-1}$ collected with the LHCb detector in 2016–2018. The strategies employed in these searches are the same as in Ref. [83], though the threefold increase in integrated luminosity, improved trigger efficiency during 2017–2018 data taking, and improvements in the analysis provide much better sensitivity to dark photons. The promptlike A' search is performed from near the dimuon threshold up to 70 GeV, achieving a factor of 5 (2) better sensitivity to ϵ^2 at low (high) masses than Ref. [83]. The long-lived A' search is restricted to the mass range $214 < m(A') < 350$ MeV, where the data sample potentially has sensitivity and provides access to much larger regions of $[m(A'), \epsilon^2]$ parameter space.

Both the production and decay kinematics of the $A' \rightarrow \mu^+\mu^−$ and $\gamma' \rightarrow \mu^+\mu^−$ processes are identical, since dark photons produced in pp collisions via γ–A' mixing inherit...
the production mechanisms of off-shell photons with $m(\gamma^*) = m(A')$. Furthermore, the expected $A' \rightarrow \mu^+\mu^-$ signal yield is related to the observed prompt $\gamma^* \rightarrow \mu^+\mu^-$ yield in a small $\pm \Delta m$ window around $m(A')$, $n_{\text{ex}}(m(A'))$, by [76]

$$n_{\text{ex}}^A(m(A'), e^2) = e^2 \left[\frac{n_{\text{ob}}^A(m(A'))}{2\Delta m} \right] F[m(A')|e^2_A(m(A'), \tau(A'))],$$

(1)

where the dark-photon lifetime $\tau(A')$ is a known function of $m(A')$ and e^2, F is a known $m(A')$-dependent function, and $e^2_A(m(A'), \tau(A'))$ is the $\tau(A')$-dependent ratio of the $A' \rightarrow \mu^+\mu^-$ and $\gamma^* \rightarrow \mu^+\mu^-$ detection efficiencies. For promptlike dark photons, $A' \rightarrow \mu^+\mu^-$ decays are experimentally indistinguishable from prompt $\gamma^* \rightarrow \mu^+\mu^-$ decays, resulting in $e^2_A(m(A'), \tau(A')) = 1$. This facilitates a fully data-driven search where most experimental systematic effects cancel, since the observed $A' \rightarrow \mu^+\mu^-$ yields $n_{\text{ob}}^A(m(A'))$ can be normalized to $n_{\text{ex}}^A(m(A'), e^2)$ to obtain constraints on e^2 without any knowledge of the detector efficiency or luminosity. When $\tau(A')$ is larger than the detector decay-time resolution, $A' \rightarrow \mu^+\mu^-$ decays can potentially be reconstructed as displaced from the primary pp vertex (PV) resulting in $e^2_A(m(A'), \tau(A')) \neq 1$; however, only the $\tau(A')$ dependence of the detection efficiency is required to use Eq. (1). Finally, Eq. (1) is altered for large $m(A')$ to account for additional kinetic mixing with the Z boson [84,85].

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$ described in detail in Refs. [86,87]. The promptlike A' search is based on a data sample that employs a novel data-storage strategy made possible by advances in the LHCb data-taking scheme introduced in 2015 [88,89], where all online-reconstructed particles are stored, but most lower-level information is discarded, greatly reducing the event size. In contrast, the data sample used in the long-lived A' search is derived from the standard LHCb data stream. Simulated data samples, which are used to validate the analysis, are produced using the software described in Refs. [90–92].

The online event selection is performed by a trigger [93] consisting of a hardware stage using information from the calorimeter and muon systems, followed by a software stage that performs a full event reconstruction. At the hardware stage, events are required to have a muon with momentum transverse to the beam direction $p_T^\mu > 1.8$ GeV, or a dimuon pair with $p_T(\mu^+)p_T(\mu^-) > (1.5$ GeV)2. The long-lived A' search also uses events selected at the hardware stage due to the presence of a high-p_T hadron that is not associated with the $A' \rightarrow \mu^+\mu^-$ candidate. In the software stage, where the p_T resolution is substantially improved, cf. the hardware stage, $A' \rightarrow \mu^+\mu^-$ candidates are built from two oppositely charged tracks that form a good-quality vertex and satisfy stringent muon-identification criteria, though these criteria were loosened considerably in the low-mass region during 2017–2018 data taking. Both searches require $p_T(A') > 1$ GeV and $2 < \eta(\mu) < 4.5$. The promptlike A' search uses muons that are consistent with originating from the PV, with $p_T(\mu) > 1.0$ GeV and momentum $p(\mu) > 20$ GeV in 2016, and $p_T(\mu) > 0.5$ GeV, $p(\mu) > 10$ GeV, and $p_T(\mu^+)p_T(\mu^-) > (1.0$ GeV)2 in 2017–2018. The long-lived A' search uses muons that are inconsistent with originating from any PV with $p_T(\mu) > 0.5$ GeV and $p(\mu) > 10$ GeV, and requires $2 < \eta(A') < 4.5$ and a decay topology consistent with a dark photon originating from a PV.

The promptlike A' sample is contaminated by prompt $\gamma^* \rightarrow \mu^+\mu^-$ production, various resonant decays to $\mu^+\mu^-$, whose mass-peak regions are avoided in the search, and by the following types of misreconstruction: (hh) two prompt hadrons misidentified as muons, ($h\mu_Q$) a misidentified prompt hadron combined with a muon produced in the decay of a heavy-flavor quark Q that is misidentified as prompt, and ($\mu_Q\mu_Q$) two muons produced in Q-hadron decays that are both misidentified as prompt. Contamination from a prompt muon and a misidentified prompt hadron is negligible, though it is accounted for automatically by the method used to determine the sum of the hh and $h\mu_Q$ contributions. The impact of the $\gamma^* \rightarrow \mu^+\mu^-$ background is reduced (cf. Ref. [83]) by constraining the muons to originate from the PV when determining $m(\mu^+\mu^-)$. This improves the resolution $\sigma[m(\mu^+\mu^-)]$ by about a factor of 2 for small $m(A')$. The misreconstructed backgrounds are highly suppressed by the stringent requirements applied in the trigger; however, substantial contributions remain for $m(A') > 1.1$ GeV. In this mass region, dark photons are expected to be predominantly produced in Drell-Yan processes, from which they would inherit the well-known signature of dimuon pairs that are largely isolated. Therefore, the signal sensitivity is enhanced by applying the anti-k_T-based [94–96] isolation requirement described in Refs. [83,97] for $m(A') > 1.1$ GeV.

The observed promptlike $A' \rightarrow \mu^+\mu^-$ yields, which are determined from fits to the $m(\mu^+\mu^-)$ spectrum, are normalized using Eq. (1) to obtain constraints on e^2. The $n_{\text{ob}}^A(m(A'))$ values in Eq. (1) are obtained from binned extended maximum likelihood fits to the min[$\chi^2_{\text{IP}}(\mu^\pm)$] distributions, where $\chi^2_{\text{IP}}(\mu)$ is defined as the difference in the vertex-fit χ^2 when the PV is reconstructed with and without the muon. The min[$\chi^2_{\text{IP}}(\mu^\pm)$] distribution provides excellent discrimination between prompt muons and the displaced muons that constitute the $\mu_Q\mu_Q$ background. The $\chi^2_{\text{IP}}(\mu)$ quantity approximately follows a χ^2 probability density function (PDF), with 2 degrees of freedom, and therefore, the min[$\chi^2_{\text{IP}}(\mu^\pm)$] distributions have minimal
dependence on mass for each source of dimuon candidates. The prompt-dimuon PDFs are taken directly from the data at \(m(J/\psi)\) and \(m(Z)\), where prompt resonances are dominant. Small corrections are applied to obtain these PDFs at all other \(m(A')\), which are validated near threshold, at \(m(\phi)\), and at \(m(\Upsilon(1S))\), where the data predominantly consist of prompt-dimuon pairs. Based on these validation studies, a shape uncertainty of 2% is applied in each \(\min[\chi^2_{\text{IP}}(\mu^\pm)]\) bin. Same-sign \(\mu^+\mu^-\) candidates provide estimates for the PDF and yield of the \(hh\) and \(h\mu_q\) contributions, where each involves misidentified prompt hadrons. The \(\mu^+\mu^-\) yields are corrected to account for the difference in the production rates of \(\pi^+\pi^-\) and \(\pi^0\pi^0\), which are determined precisely from the data using dipion candidates weighted to account for the kinematic dependence of the muon misidentification probability, since the \(hh\) background largely consists of \(\pi^+\pi^-\) pairs where both pions are misidentified. The uncertainty due to the finite size of the \(\mu^+\mu^-\) sample in each bin is included in the likelihood. Simulated \(Q\)-hadron decays are used to obtain the \(\mu_Q\mu_Q\) PDFs, where the dominant uncertainties are from the relative importance of the various \(Q\)-hadron decay contributions at each mass. Example \(\min[\chi^2_{\text{IP}}(\mu^\pm)]\) fits are provided in Ref. [97], while the resulting promptlike candidate categorization versus \(m(\mu^+\mu^-)\) is shown in Fig. 1. Finally, the \(n_{\text{obs}}[m(A')]\) yields are corrected for bin migration due to bremsstrahlung, which is negligible except near the low-mass tails of the \(J/\psi\) and \(\Upsilon(1S)\), and the small expected Bethe-Heitler contribution is subtracted [76], resulting in the \(n_{\text{ex}}[m(A'), e^2]\) values shown in Fig. S2 of Ref. [97].

The promptlike \(n_{\text{ex}}[m(A')]\) mass spectrum is scanned in steps of \(\sigma[\mu^+\mu^-]/2\) searching for \(A' \rightarrow \mu^+\mu^-\) contributions [97] using the strategy from Ref. [83]. At each mass, a binned extended maximum likelihood fit is performed in a \(\pm 12.5\sigma[m(\mu^+\mu^-)]\) window around \(m(A')\). The profile likelihood is used to determine the \(p\) value and the upper limit at 90% confidence level (C.L.) on \(n_{\text{ex}}[m(A')]\). The signal is well modeled by a Gaussian distribution whose resolution is determined with 10% precision using a combination of simulated \(A' \rightarrow \mu^+\mu^-\) decays and the observed \(p_T\)-dependent widths of the large resonance peaks in the data. The mass-resolution uncertainty is included in the profile likelihood. The method of Ref. [98] selects the background model from a large set of potential components, which includes all Legendre modes up to tenth order and dedicated terms for known resonances, by performing a data-driven process whose uncertainty is included in the profile likelihood following Ref. [99]. No significant excess is found in the promptlike \(m(A')\) spectrum after accounting for the trials factor due to the number of signal hypotheses.

Dark photons are excluded at 90% C.L. where the upper limit on \(n_{\text{obs}}[m(A')]\) is less than \(n_{\text{ex}}[m(A'), e^2]\). Figure 2 shows that the constraints placed on promptlike dark photons are the most stringent for \(214 < m(A') \lesssim 740\) MeV and \(10.6 < m(A') \lesssim 30\) GeV. The low-mass constraints are the strongest placed by a promptlike \(A'\) search at any \(m(A')\). These results are corrected for inefficiency and changes in the mass resolution that arise due to \(\tau(A')\) no longer being negligible at such small values of \(e^2\). The high-mass constraints are adjusted to account for additional kinetic mixing with the Z boson [84,85], which alters Eq. (1). Since the LHCb detector response is independent of which \(q\bar{q}\) \(\rightarrow A'\) process produces the dark photon above 10 GeV, it is straightforward to recast the results in Fig. 2 for other models [100,101].

For the long-lived \(A'\) search, contamination from prompt particles is negligible due to a stringent criterion applied in the trigger on \(\min[\chi^2_{\text{IP}}(\mu^\pm)]\) that requires muons be inconsistent with originating from any PV. Therefore, the dominant background contributions are as follows: photons that convert into \(\mu^+\mu^-\) in the silicon-stripe vertex detector that surrounds the \(pp\) interaction region known as the VELO [103], \(b\)-hadron decay chains that produce two muons, and the low-mass tail from \(K^0_S \rightarrow \pi^+\pi^-\) decays, where both pions are misidentified as muons (all other strange decays are negligible). A \(p\) value is assigned to the photon-conversion hypothesis for each long-lived \(A' \rightarrow \mu^+\mu^-\) candidate using properties of the decay vertex and muon tracks, along with a high-precision three-dimensional material map produced from a data sample of secondary hadronic interactions [104]. An \(m(A')\)-dependent requirement is applied to these \(p\) values that results in conversions having
negligible impact on the sensitivity, though they are still accounted for to prevent pathologies when there are no other background sources. The remaining backgrounds are highly suppressed by the decay topology requirement applied in the trigger. Furthermore, since muons produced in b-hadron decays are often accompanied by additional displaced tracks, events are rejected if they are selected by the inclusive heavy-flavor software trigger $[105,106]$ independent of the presence of the $A' \to \mu^+ \mu^-$ candidate. In addition, boosted decision tree classifiers are used to reject events containing tracks consistent with originating from the same b-hadron decay as the signal muon candidates $[107]$.

The long-lived A' search is also normalized using Eq. (1); however, $e_{\gamma}^{A}[m(A'), \tau(A')]$ is not unity, in part because the efficiency depends on the decay time t. The kinematics are identical for $A' \to \mu^+ \mu^-$ and prompt $\gamma \to \mu^+ \mu^-$ decays for $m(A') = m(\gamma)$; therefore, the t dependence of $e_{\gamma}^{A}[m(A'), \tau(A')]$ is obtained by resampling prompt $\gamma \to \mu^+ \mu^-$ candidates as long-lived $A' \to \mu^+ \mu^-$ decays, where all t-dependent properties, e.g., $\min |\chi^2|_{\text{D0}}(\mu^\pm)$, are recalculated based on the resampled decay-vertex locations (the impact of background contamination in the prompt $\gamma \to \mu^+ \mu^-$ sample is negligible). This approach is validated using simulation, where prompt $A' \to \mu^+ \mu^-$ decays are used to predict the properties of long-lived $A' \to \mu^+ \mu^-$ decays. The relative uncertainty on $e_{\gamma}^{A}[m(A'), \tau(A')]$ is estimated to be 5%, which arises largely due to limited knowledge of how radiation damage affects the performance of the VELO as a function of the distance from the pp interaction region. The looser kinematic, muon-identification, and hardware-trigger requirements applied to long-lived $A' \to \mu^+ \mu^-$ candidates, cf. promptlike candidates, also increase the efficiency. This t-independent increase in efficiency is determined using a control data sample of dimuon candidates consistent with originating from the PV but otherwise satisfying the long-lived criteria. The $n_{A'}^{\text{ob}}[m(A'), e^2]$ values obtained using these data-driven $e_{\gamma}^{A}[m(A'), \tau(A')]$ values (discussed in more detail in Ref. $[97]$), along with the expected promptlike $A' \to \mu^+ \mu^-$ yields, are shown in Fig. 3.

The long-lived $m(A')$ spectrum is also scanned in discrete steps of $\sigma(m(\mu^+ \mu^-))/2$ looking for $A' \to \mu^+ \mu^-$ contributions $[97]$; however, discrete steps in $\tau(A')$ are also considered here. Binned extended maximum likelihood fits are performed to the three-dimensional feature space of $m(\mu^+ \mu^-)$, t, and the consistency of the decay topology as quantified in the decay fit χ^2_{DF}, which has 3 degrees of freedom. The photon-conversion contribution is derived in each $[m(\mu^+ \mu^-), t, \chi^2_{\text{DF}}]$ bin from the number of dimuon candidates that are rejected by the conversion criterion. Both the b-hadron and K^0_S contributions are modeled in each $[t, \chi^2_{\text{DF}}]$ bin by second-order polynomials of the energy released in the decay $\sqrt{m(\mu^+ \mu^-)^2 - 4m(\mu^-)^2}$. These contributions are validated using the following large control data samples: candidates that fail the b-hadron suppression requirements and candidates that fail, but nearly satisfy, the stringent muon-identification requirements. The profile likelihood is used to obtain the p values and confidence intervals on $n_{A'}^{\text{ob}}[m(A'), \tau(A')]$. No significant excess is observed in the long-lived $A' \to \mu^+ \mu^-$ search (the three-dimensional data distribution and the background-only pull distributions are provided in Ref. $[97]$).

Since the relationship between $\tau(A')$ and e^2 is known at each mass $[76]$, the upper limits on $n_{A'}^{\text{ob}}[m(A'), \tau(A')]$ are easily translated into limits on $n_{A'}^{\text{ex}}[m(A'), e^2]$. Regions of the $[m(A'), e^2]$ parameter space where the upper limit on $n_{A'}^{\text{ob}}[m(A'), e^2]$ is less than $n_{A'}^{\text{ex}}[m(A'), e^2]$ are excluded at 90% C.L. Figure 4 shows that sizable regions of $[m(A'), e^2]$ parameter space are excluded, which are much larger than those excluded in Ref. $[83]$.

In summary, searches are performed for promptlike and long-lived dark photons produced in pp collisions at a center-of-mass energy of 13 TeV. Both searches look for $A' \to \mu^+ \mu^-$ decays using a data sample corresponding to an integrated luminosity of 5.5 fb$^{-1}$ collected with the LHCb detector during 2016–2018. No evidence for a signal is
found in either search, and 90% C.L. exclusion regions are set on the $\gamma-A'$ kinetic mixing strength. The promptlike A' search is performed from near the dimuon threshold up to 70 GeV and produces the most stringent constraints on dark photons with $214 < m(A') \lesssim 740$ MeV and $10.6 < m(A') \lesssim 30$ GeV. The long-lived A' search is restricted to the mass range $214 < m(A') < 350$ MeV, where the data sample potentially has sensitivity and places world-leading constraints on low-mass dark photons with lifetimes $\calO(1)$ ps. The threefold increase in integrated luminosity, improved trigger efficiency during 2017–2018 data taking, and improvements in the analysis result in the searches presented in this Letter achieving much better sensitivity to dark photons than the previous LHCb results [83]. The promptlike A' search achieves a factor of 5 (2) better sensitivity to e^2 at low (high) masses than Ref. [83], while the long-lived A' search provides access to much larger regions of $[m(A'), e^2]$ parameter space.

These results demonstrate the excellent sensitivity of the LHCb experiment to dark photons, even using a data sample collected with a hardware-trigger stage that is highly inefficient for low-mass sample collected with a hardware-trigger stage that is LHCb experiment to dark photons, even using a data sample potentially has sensitivity and places world-leading constraints on low-mass dark photons with lifetimes $\calO(1)$ ps. The threefold increase in integrated luminosity, improved trigger efficiency during 2017–2018 data taking, and improvements in the analysis result in the searches presented in this Letter achieving much better sensitivity to dark photons than the previous LHCb results [83]. The promptlike A' search achieves a factor of 5 (2) better sensitivity to e^2 at low (high) masses than Ref. [83], while the long-lived A' search provides access to much larger regions of $[m(A'), e^2]$ parameter space.

These results demonstrate the excellent sensitivity of the LHCb experiment to dark photons, even using a data sample collected with a hardware-trigger stage that is highly inefficient for low-mass $A' \rightarrow \mu^+\mu^-$ decays. The removal of this hardware-trigger stage in Run 3, along with the planned increase in luminosity, should increase the potential yield of $A' \rightarrow \mu^+\mu^-$ decays in the low-mass region by a factor $\calO(100)$ compared to the 2016–2018 data sample. Given that most of the parameter space shown in Fig. 4 would have been accessible if the data sample was only 3 times larger, these upgrades will greatly increase the dark-photon discovery potential of the LHCb experiment.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the following national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); NWO (Netherlands); PIC (Spain); GridPP (United Kingdom); RRCKi and Yandex LLC (Russia); CSCS (Switzerland); IFIN-HH (Romania); CBPF (Brazil); PL-GRID (Poland); and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions, and ERC (European Union); ANR, Labex P2IO, and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF, and Yandex LLC (Russia); GVA, XuntaGal, and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).

\begin{thebibliography}{99}
\bibitem{Holdom1986} B. Holdom, Two $U(1)'s$ and e charge shifts, Phys. Lett. 166B, 196 (1986).
\bibitem{Bergsma1986} F. Bergsma et al. (CHARM Collaboration), A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. 166B, 473 (1986).
\bibitem{Athanassopoulos1998} C. Athanassopoulos et al. (LSND Collaboration), Evidence for $\nu_{\mu} \rightarrow \nu_e$ oscillations from pion decay in flight neutrinos, Phys. Rev. C 58, 2489 (1998).
\end{thebibliography}

[38] A. Anastasi et al. (KLOE-2 Collaboration), Combined limit on the production of a light gauge boson decaying into $\mu^+\mu^-$ and $\pi^+\pi^-$, Phys. Lett. B 784, 336 (2018).

[42] S. N. Gninenko, Stringent limits on the $\pi^0 \rightarrow \gamma X$, $X \rightarrow e^+ e^-$ decay from neutrino experiments and constraints on new light gauge bosons, Phys. Rev. D 85, 055027 (2012).

[48] A. Anastasi et al. (KLOE-2 Collaboration), Limit on the production of a new vector boson in $e^+e^- \rightarrow U\gamma$, $U \rightarrow \pi^+\pi^-$ with the KLOE experiment, Phys. Lett. B 757, 356 (2016).

[54] S. Adler et al. (E877 Collaboration), Further search for the decay $K^+ \rightarrow \pi^+\nu\bar{\nu}$ in the momentum region $p < 195$ MeV/c, Phys. Rev. D 70, 037102 (2004).

[56] P. Fayet, Constraints on light dark matter and U bosons, from $\psi, \Upsilon, K^+, \pi^0, \eta$ and η' decays, Phys. Rev. D 74, 054034 (2006).

Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia
(associated with LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France)

Institut für Physik, Universität Rostock, Rostock, Germany

Van Swinderen Institute, University of Groningen, Groningen, Netherlands
(associated with Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)

National Research Centre Kurchatov Institute, Moscow, Russia
[associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia]

National University of Science and Technology “MISIS,” Moscow, Russia
[associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia]

National Research University Higher School of Economics, Moscow, Russia
[associated with Yandex School of Data Analysis, Moscow, Russia]

National Research Tomsk Polytechnic University, Tomsk, Russia
[associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia]

University of Michigan, Ann Arbor, Michigan, USA
[associated with Syracuse University, Syracuse, New York, USA]

Deceased.

Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

Also at Laboratoire Leprince-Ringuet, Palaiseau, France.

Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.

Also at Università di Bari, Bari, Italy.

Also at Università di Bologna, Bologna, Italy.

Also at Università di Cagliari, Cagliari, Italy.

Also at Università di Ferrara, Ferrara, Italy.

Also at Università di Genova, Genova, Italy.

Also at Università di Milano Bicocca, Milano, Italy.

Also at Università di Roma Tor Vergata, Roma, Italy.

Also at Università di Roma La Sapienza, Roma, Italy.

Also at AGH-University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.

Also at Hanoi University of Science, Hanoi, Vietnam.

Also at Università di Padova, Padova, Italy.

Also at Università di Pisa, Pisa, Italy.

Also at Università degli Studi di Milano, Milano, Italy.

Also at Università di Urbino, Urbino, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Scuola Normale Superiore, Pisa, Italy.

Also at Università di Modena eReggio Emilia, Modena, Italy.

Also at Università di Siena, Siena, Italy.

Also at MSU—Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at Sezione INFN di Trieste, Trieste, Italy.

Also at School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China.

Also at Physics and Micro Electronic College, Hunan University, Changsha City, China.