Granular, solid targets made of fluidized tungsten powder or static pebble bed of tungsten spheres, have been proposed and are being studied as an alternative configurations towards high-power (>1MW of beam power) target systems, suitable for a future Super Beam or Neutrino Factory. With the lack of experimental data on this field, a feasibility experiment was performed in HiRadMat facility of CERN/SPS that tried on a pulse-by-pulse basis to address the effect of the impact of the SPS beam (440GeV/c) on a static tungsten granular target. Online instrumentation such as high-speed photography and laser-Doppler vibrometry was employed. Preliminary results show a powder disruption speed of less than 0.6 m/s at 3*10^{11} protons/pulse while the disruption speed appears to be scaling proportionally with the beam intensity.

Experimental target

The trough (length 30 cm, diameter 20 mm) holding the granular target (Tungsten beads of typical 60 μm diameter) is placed in a containment box filled with Helium (nominal 1 bar). Two windows allow optical observation.

ADVANTAGES OF GRANULAR TARGETS

- Quasi-liquid material properties
 - Jet form
 - Easy replenishment
 - Externally cooled and re-circulated
 - Shock wave management
 - Material already hashed
 - No cavitation
 - Shock waves constrained within grains
- Additionally
 - No disturbing impact from eddy currents

Experimental Layout @ HiRadMat

The fast camera (1kHz frame rate) and the laser-Doppler vibrometer (LDV) are placed in a concrete bunker about 35 meter away from the target position protected from prompt radiation. The image and the laser are guided via a system of mirrors.

BEAM PULSE of 2*10^{13} PROTONS

The image recorded at beam impact ... and 37 ms later. Powder reaches maximum height of 6 mm.

Preliminary results

The maximum velocity of the tungsten beads as a function of the proton pulse intensity.

The LDV measurement position was altered between inner and outer trough.