EFPL Technical Report 1C/2005/014

Towards P2P-based Semantic Web Service
Discovery with QoS Support *

Le-Hung Vu, Manfred Hauswirth and Karl Aberer

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
{lehung.vu, manfred.hauswirth, karl.aberer}@epfl.ch

Abstract. The growing number of web services advocates distributed
discovery infrastructures which are semantics-enabled and support qual-
ity of service (QoS). In this paper, we introduce a novel approach for
semantic discovery of web services in P2P-based registries taking into
account QoS characteristics. We distribute (semantic) service advertise-
ments among available registries such that it is possible to quickly iden-
tify the repositories containing the best probable matching services. Ad-
ditionally, we represent the information relevant for the discovery process
using Bloom filters and pre-computed matching information such that
search efforts are minimized when querying for services with a certain
functional/QoS profile. Query results can be ranked and users can pro-
vide feedbacks on the actual QoS provided by a service. To evaluate
the credibility of these user reports when predicting service quality, we
include a robust trust and reputation management mechanism.

1 Introduction

The increasing number of web services demands for an accurate, scalable, ef-
fective and reliable solution to look up and select the most appropriate services
for the requirements of the users. This is specifically complicated if numerous
services from various providers exist, all claiming to fulfill users’ needs. To solve
these problems, a system basically has to provide expressive semantic means for
describing web services including functional and non-functional properties such
as quality of service (QoS), semantic search capabilities to search distributed
registries for services with a certain functional and QoS profile, and mechanisms
for allowing users to provide feedbacks on the perceived QoS of a service that
can be evaluated by the system regarding their trustworthiness.

In this paper we present our approach to address these issues. It is based on
requirements from a real-world case study of Virtual Internet Service Providers

* The work presented in this paper was (partly) carried out in the framework of
the EPFL Center for Global Computing and was supported by the Swiss National
Funding Agency OFES as part of the European project DIP (Data, Information,
and Process Integration with Semantic Web Services) No 507483. Le-Hung Vu is
supported by a scholarship of the Swiss federal government for foreign students.

EFPL Technical Report 1C/2005/014

(VISP) [1]. In a nutshell, the idea behind the VISP business model is that In-
ternet Service Providers (ISPs) describe their services as semantic web services,
including QoS such as availability, acceptable response time, throughput, etc.,
and a company interested in providing Internet access, i.e., becoming a VISP,
can look for its desired combination of services taking into account its QoS and
budgeting requirements, negotiate and provide its service. The VISP then uses
this service for its own applications, e.g. creating a new Internet service product
for end-users. At the moment this business model exists, but is done completely
manually.

Since many ISPs can provide the basic services at different levels and with
various pricing models, dishonest providers could claim arbitrary QoS properties
to attract interested parties. The standard way to prevent this is to allow users of
the service to evaluate a service and provide feedbacks. However, the feedback
mechanism has to ensure that false ratings, for example, badmouthing about
a competitor’s service or pushing own rating level by fake reports or collusion
with other malicious parties, can be detected and dealt with. Consequently, a
good service discovery engine would have to take into account not only the
functional suitability of services but also its prospective quality offered to end-
users regarding to the trustworthiness of both providers and consumer reports.
According to several recent studies [29, 31], this issue of evaluating the credibility
of user reports is one of the essential problems to be solved in the e-Business
application area.

In the following we assume that web services are being described semanti-
cally including QoS properties, for example, using WSMO [3], descriptions can
be stored in distributed registries, and users can provide feedbacks on the ex-
perienced QoS. Based on these realistic assumptions we will devise a framework
for P2P-based distributed service discovery with QoS support.

Existing architectures for web service discovery can be categorized along the
following dimensions:

The approach used for web service description: Here we can distinguish
explicit categorization using a web service ontology, for example, as used by
UDDI, but also by METEOR-S [6] and HyperCup [7], from semantic-based
description based on service properties, as, e.g., in WSPDS [8]. In our system
we follow the second approach.

The approach used for the search architecture: Here we can distinguish
approaches based on central directories from distributed or peer-to-peer ar-
chitectures, as used e.g., in WSPDS. We will devise a distributed approach
and for improved efficiency use a structured overlay network approach, in
contrast to WSPDS, which employs unstructured overlay networks.

For the semantic characterization of Web Services several properties can be
considered. Most obvious are the structural properties of the service interface,
i.e., the input and output parameters of a service. Another important aspect,
in particular for distinguishing services with equivalent functional properties,
relates to QoS characteristics. In our approach we intend to support both aspects.

EFPL Technical Report 1C/2005/014

As described above, for QoS it is of interest to compare announced with actual
performance, for which we take a reputation-based trust management approach.

Other properties of Web Services, in particular the process structure of the
service invocation also have been considered, e.g., Emekci et al. [10], but we
consider these as less important, since they are difficult to use in queries and
they are most likely not used as the primary selection condition in searches and
thus not critical in terms of indexing.

However, we may expect that the service interface will be usually used as
a search condition with good selectivity among a large number of web services.
In order to support these queries we have to index un-ordered key sets (corre-
sponding to a service interface), where the keys are usually taken from a (shared)
domain ontology. This indexing problem has not yet been addressed in the lit-
erature for structured overlay networks. Thus we will propose in this paper an
approach for supporting multiple-key sets as index terms in a structured peer-
to-peer overlay architecture. In addition, the search algorithm exploits the gen-
eralization hierarchy of the underlying ontology for approximate matching and
will use QoS information to rank the search results according to user preference.

2 Related Work

Our framework uses a novel ontology-based approach to distribute service ad-
vertisements appropriately among a P2P network of registries. This method is
different from that of METEOR-S [6] and HyperCup [7] as we do not base it
on a classification system expressed in service or registry ontologies. In these
approaches, the choosing of a specific registry to store and search for a service
advertisement depends on the type of the service, e.g. business registry is used
for storing information of business-related services. In fact, these proposals is
good in terms of organizing registries to benefit service management rather than
for the service discovery itself. It is relatively simple when publishing and updat-
ing service description information based on their categories. However, it would
be difficult for users to search for certain services without knowing details of this
classification, and it would be hard to come up with such a common service or
registry ontology. To some extent our approach is similar to WSPDS [8], but our
methods are specifically targeted at structured P2P overlay networks in order to
support more efficient service publishing and discovery. We use our P-Grid P2P
system [2] as the underlying infrastructure, which at the time of this writing, is
among the very few P2P systems which support maintenance and updating of
stored data. [9] indexes service description files (WSDL files) by a set of key-
words and uses a Hilbert-Space Filling Curve to map the n-dimensional service
representation space to an one-dimensional indexing space and hash it onto the
underlying DHT-based storage system. However, the issue of characterizing a
semantic service description as a multi-key query in order to support semantic
discovery of services has not yet been mentioned in this work. As aforementioned,
Emekci et al [10] suggest to search services based on their execution paths ex-
pressed as finite path automata which we consider less important since this is

EFPL Technical Report 1C/2005/014

difficult to use as primary selection condition in queries as user would need to
know exactly the execution of their required services.

Although the traditional UDDI registry model [15] does not refer to QoS,
many proposals have been devised to extended the original model and describe
service quality capabilities, e.g., QML, WSLA and WSOL [16]. The issue of
trust and reputation management in Internet-based applications as well as in
P2P systems has also been a well-studied problem [17,18]. However, current
QoS provisioning models have not sufficiently considered the problem of eval-
uating the credibility of reporting users. The existing approaches either ignore
this issue totally [19-22] or employ simple methods which are not robust against
various cheating behaviors [10,27]. Consequently, the quality of ranking results
of those systems will not be assured if there are dishonest users trying to boost
the quality of their own services and badmouthing about the others. [28] suggests
augmenting service clients with QoS monitoring, analysis and selection capabil-
ities. This is a bit unrealistic as each service consumer would have to take the
heavy processing role of both a registry and a reputation system. Other solu-
tions [23-26] use mainly third-party service brokers or specialized monitoring
agents to collect performance of all available services in registries, which would
be expensive in reality.

An advanced feature of our architecture is that we perform the service selec-
tion and ranking (based on their matching level to user queries both in terms
of functionality and QoS) as well as taking into account trust and reputation
adequately. Our QoS provisioning model is developed from [20,22,27,31] us-
ing concepts of integrating QoS into service description by [19] and [23]. The
trust and reputation management mechanism originally combines and extends
ideas of [30,32-35] and is the first solution to address the most important issues
adequately.

3 A Model for P2P-based Web Service Discovery with
with QoS Support

Fig. 1 shows the conceptual model of our distributed service discovery frame-
work.

Service advertisements with embedded QoS information are published in
P2P-based registries by various providers (1), and users can query for services
with certain functionalities and required QoS levels (2) using any registry peer
as their access point. The P2P-based registries then take care of routing the
request to the peer(s) that can answer it (3). The results will be returned to
the user (4) and this user may invoke one of the found services. Additionally,
users can express feedbacks on the QoS they could obtain from a service to the
registry peers managing that service (6).

The evaluation of QoS reports by the registry peers has to account for ma-
licious reporting and collusive cheating of users (7) to get a correct view of the
QoS properties of a service. Additionally, we also allow trusted agents in the
model to provide QoS monitoring for certain services in the system (8). Their

EFPL Technical Report 1C/2005/014

7. Collusive cheating

5. Invoke

6.Qo5
Feedback: 2. Query

2 , 1. Publish :
Registry peer 1 \ it Service
Provider
3. Forward
queries
/ Return
results Registry peer n 8. QoS5 reports Trusted
agents
- P2P Network
p—

Fig. 1. Framework model

reports are combined with normal user reports to fine-tune the actual QoS char-
acteristics of a service. In contrast to other models we do not depend on trusted
agents but see them as an additional source of information and assume that only
a small number of these agents exists as such services usually are costly to set
up and maintain.

Fig. 2 shows the internal architecture of a registry peer.

The communication module provides an information bus to connect the other
internal components, interacts with external parties, i.e., users, trusted agents,
and service providers, to get service advertisements, QoS data, and feedbacks,
and provides this information to the internal components. Additionally, it is
the registry peer’s interface to other registry peers (query forwarding, exchange
of service registrations and QoS data) and for the user to submit queries and
receive results. The query processing module analyzes a semantic web service
query into user’s required functionality and the corresponding QoS demand of
the needed service and then forwards them to the matchmaker module. The
matchmaker compares the functional requirements specified in a query with the
available advertisements from the service management module to select the best
matching services in terms of functionality. The list of these services is then
sent to the QoS support module, which performs the QoS-based selection and
ranking, based on QoS information provided in the service advertisements and
QoS feedback data reported by the users. Providers are also able to query QoS
of their own services and decide whether they should improve their services’
performance or not.

EFPL Technical Report 1C/2005/014

Registry peer 1

I— Matchmaker j=—l
Service management

Query l module

pr

module QoS-support
Module

| Registry peer 2
Communication module
Service query /
Service results

Service F Service | QoS Evaluated
query Q05 data giert | query 008

User User Trusted Service
agents Providers

Fig. 2. Registry Peer Structure

4 Service Description, Registration, and Discovery

A semantic service description structure stored in a peer registry includes:

— a WSDL specification of the service.

— service functional semantics, expressed through ontology concepts as pro-
posed by [13].

— optional QoS information in a specific QoS ontology, with the promised QoS
for a specific operation or for the whole service.

During operation of the system this information will be match against se-
mantic queries which consist of:

— user’s functional requirements in terms of service inputs, outputs, precondi-
tions and effects, expressed by ontology concepts.

— optional user’s QoS requirements provided as a list of triples {g;, ni,v;},
where ¢; is the required QoS parameter, n; is the order of importance of ¢;
in the query (as user preference) and v; is the user’s minimal required value
for this attribute.

Quality properties of web services are described by concepts from a QoS
ontology and then embedded into service description file using techniques sug-
gested by WS-QoS [19] and Ran [23]. The ontology language we plan to use to
describe service semantics and define the QoS ontology is WSMO [3], but other
models, e.g., OWL-S would also be applicable. For experimental evaluations, we
have developed a QoS ontology for the VISP use-case including the most relevant
quality parameters for many applications, i.e., availability, reliability, execution
time, price, etc. Due to space limitations we cannot discuss this QoS model in
any further detail here.

EFPL Technical Report 1C/2005/014

4.1 A Closer Look at Semantic Service Descriptions

In our architecture, a semantic service description, i.e. a service advertisement
or a service query, will be associated with a multi-key vector, which we call the
the characteristic vector of the service. Based on this vector service advertise-
ments are assigned to peer registries. Similarly, discovery of registries containing
services relevant to a user query is also based on the characteristic vector of the
query itself.

First, all ontological concepts representing inputs and outputs of a web ser-
vice will be categorized into different Concept Groups based on their semantic
similarity. Each group has a root concept defined as the one with the highest
level in the ontology graph compared with the other member concepts. With-
out constraining general applicability we assume that all registries agree on one
ontology of concepts. To uniquely represent a service query/advertisement in-
dependently of the order of service parameters, a total ordering of the concept
groups is defined as follows:

Definition 1. A concept group CG, is considered as having higher order (>)
than another group CGy if one of these following conditions meets:

1. The level of CG, in the ontology graph is higher than that of CG,.
2. Both CG, and CGy have the same level and CG, is in the left of CGy in
the ontology graph.

A semantic service description, i.e., an advertisement or a query, is char-
acterized by the concept groups that its input and output parameters belong
to. [5] defines a mapping of ontological concepts onto numerical key values. A
group of similar concepts is then associated with a Bloom key built by applying
k hash functions hy, hs, - - -, hg to the key of each group’s member, allowing us to
quickly check the membership of any concept to that group [4]. For each input
I; (or output O;) of a service, we find the concept group CG; that it belongs to.
The characteristic vector of this service is then represented by the ordered list
of corresponding Bloom keys of all CG;s.

The partitioning of ontological concepts is illustrated in Fig. 3 where Cj is
an ontological concept and CG; is a concept group. The task of fragmenting
the ontology graph is similar to that of relational and semi-structured database
systems, which could be performed semi-automatically by the system with ad-
ditional user support.

The root concepts of CGy, CGs, CG3, CGy, CGs and CGg are Cy, Cs,
Cy, Cs, Cg and Cy, respectively. The total ordering of all concept groups is
CG1 > CG2 > CG3 > CGy > CG5 > CGg. As an example, let us assume
that we have a service description S; with inputs C7, Ci4, Cio and outputs
C12, Cie which belong to concept groups CGy, CGg, CG2 and CGy, CGjs,
respectively. Regarding the above ordering relation, this service description is
then represented by the characteristic vector V. = {ki,ka, ke, kq, k3, ks }, where
k; is CG;’s Bloom key and kg4 is a dump value to separate Si’s inputs and
outputs.

EFPL Technical Report 1C/2005/014

CGy

Fig. 3. Ontology graph partitioning

Although we are using only inputs and outputs of a service in its multiple-
key representation, we believe that the extension of this idea to other features in
a semantic service description, e.g. preconditions, effects, or service description
keywords, could be done in a similar fashion. The strategy used for partitioning
the ontological graph will not affect the correctness but mainly the efficiency
of the discovery algorithm. For instance, although it is tempting to allow a
concept to belong to more than one group while partitioning, this increases the
discovery time because we need to contact different registries to search for all
possibly matching services. Therefore, we prefer to have only one group for each
concept.

4.2 Mapping of Service Advertisements to Registries

Each registry peer is responsible for managing certain web services that operate
on a certain set of concepts. The mechanism to assign these sets to peers works
as follows:

1. Each vector V; = {ki1, ki, ..., kin}, where k;; (j = 1..n) is a group’s Bloom
key or dump value kg4, is mapped to a combined key K; using a special
function H, that includes all features of each individual member key k;;.

2. Using the existing DHT-based search mechanism of the underlying P-Grid
network [2], we can easily find the identifier RP; of the registry peer that
corresponds to the key Kj;.

3. The registry peer RP; is responsible for storing the description of those
services with the same characteristic vector V;.

EFPL Technical Report 1C/2005/014

Eventually, the question of searching for a semantic service description be-
comes the problem of finding results for a multi-keyword query in the P2P net-
work, which can be solved by using one of the two following approaches. The
first one is simply concatenating all k;;s together and then using this as the
search key in the P-Grid network [2]. The second possibility is to deploy another
type of peers in the network as index peers to keep identifiers of those registries
managing keywords relating to various combination of k;;s.

We decided to use the first method because in this way, the keyword generat-
ing function H. will generate similar keys K;s for services with similar character-
istic vectors {ki1, ki2,. .., kin}. Since P-Grid uses prefiz-based query routing as
its search strategy, services corresponding to similar K;s, which are likely to offer
comparable functionalities, will be assigned to registries adjacent to each other
(P-Grid clusters related information). This is not only beneficial while searching
for services with wildcard parameters but also advantageous for exchanging QoS
reports and user information among neighboring registries later during the QoS
predicting process.

4.3 Pre-computation of Service Matching Information to Support
Semantic Service Discovery

Since the publishing task usually happens once and is not a computationally
intensive process, we can devote more time in this stage to reduce later discovery
time, as suggested by Srinivasan et al [12]. However, their proposed method is
not scalable since it requires to store the matching information of all services
which match each concept ¢; in the ontology, thus producing much redundant
information. Hence, we improve their method by observing that if a concept ¢;
of a group CGj, is similar to another concept ¢; (also belonging to this group),
then both of them should have approximately the same distance, i.e., the same
level of semantic similarity, to the root concept of CG;.

Accordingly, for each CG;, we store a matching list containing semantic dis-
tances from each parameter of each service to C'G;’s root concept. For example,
assuming that we have a registry peer responsible for managing those services
which operate on the list of concept groups CG1, CGs,. .., CGg. Then in the
matching table of this registry, we store for each group CG; a list L; of records
{[Si1,d1],[Si2,d2], - -, [Sin,dn]}, where S;; represents a web service, d; € [0,1]
is the semantic similarity between the concept represented by one parameter of
Si; with the root concept of CG;, j =1,:--,n, and n is the number of services
in this registry. The semantic similarity between two ontology concepts is com-
puted based mainly on the distance between them in the ontology graph and
the number of their common properties as defined by [11,14].

A query for a service can be submitted to any registry peer and is then
forwarded by P-Grid’s routing strategy to a registry most possibly containing
matching services. For each service query’s parameter ¢; belonging to group
CG@;, the discovery algorithm at this registry computes its matching level d;
with CG;’s root concept rc;. Afterward, it finds the list L; of those services
having an approximate matching level d! with r¢;, i.e., d! ~ d;, by browsing

EFPL Technical Report 1C/2005/014

the matching list of each r¢;. We then intersect all L;s to get the list L. of
possibly matching services. Note that if ¢;; and ¢;» have the same matching level
d; with CG;’s root concept, we can only conclude that ¢;; and c¢;2 are possibly
similar. Consequently, simply intersecting all L;s does not help us in finding the
services which accurately match the query as in [12]. However, they do allow us
to select the list of all possible matches and filter out non-related services, which
really reduces the searching time in case the number of registered services is
high. Actually, we utilize another semantic matchmaking algorithm, e.g. [11], to
further select from L. the list L of most suitable services in terms of functionality.

For supporting queries with QoS requirements, we use another table to store
the matching information for most frequently accessed QoS attributes. The list
of these attributes is initialized with popular QoS concepts, e.g., availability,
reliability, execution-time, etc., and is updated periodically to capture changes
in user demands. For other QoS attributes, the registry can derive them from
the stored information of the published services and perform similar actions.
With each QoS attribute g; in this QoS matching table, we have a list Lgos; of
records {Si;, mij, promised;;, predicted;;} where S;; identifies a service, m;; is
the semantic similarity between g; and the QoS attribute g;; supported by S;;,
promised;; is the value of ¢;; advertised by S;;’s provider and predicted;; is the
value of g;; predicted by our QoS-based service selection and ranking engine,
respectively. Apparently, we only store in Lgos; information of those S;;s with
m;js greater than a specific threshold. The values of promised;;s and predicted;;s
should also be normalized regarding to service-specific and call-specific context
information.

Given the list L of services with similar functionalities, the discovery engine
performs the following QoS-based service selection and ranking algorithm:

Algorithm 1 QosSelectionRanking(ServiceList L, ServiceQuery Q)

1: Derive the list of QoS requirements in Q Ly = [q1, N1, V1], .-, [@s, s, Us]
2: for each quality concept ¢; € L, do

3 for each service S; € L do

4 Search the list Lqos of g; for Si;

5 if S; is found then
6-
7
8

wi; = weight(m;;); {m;; is the semantic similarity between ¢; and ¢;;}
Partial QosScore = wi; %;

QosScore[S;] = QosScore[S;] + X?j - PartialQosScore;

9: else !
10: Remove S; from L;

11: end if

12: end for

13: end for

14: Return the list L sorted by QosScore[S;] s;

10

EFPL Technical Report 1C/2005/014

To facilitate the discovery of services with QoS information, we must eval-
uate how well a service can fulfill a user query by predicting its QoS from the
service’s past performance reported in QoS feedbacks. In our model, we ap-
ply time series forecasting techniques to predict the quality values from various
information sources. Firstly, we use the QoS values promised by providers in
their service advertisements. Secondly, we collect consumers’ feedbacks on QoS
of every service. Thirdly, we use reports produced by trusted QoS monitoring
agents. Furthermore, we developed a probabilistic method to detect possible
frauds when collecting user feedbacks with the assumption that these reports
follow certain probabilistic distributions. Using trusted reports as reference val-
ues, we evaluate feedbacks of other users and apply a clustering algorithm to
discover potential dishonest groups with different behaviors. Reports that fall
out of a certain range of values are considered as incredible and will not be used
in the predicting process.

5 Conclusions and Future Work

In this paper we proposed a new P2P-based semantic service discovery approach
which uses a natural way of assigning service descriptions to registry peers. Also,
we presented a service selection and ranking process based on both functional and
QoS properties. In order to support flexible queries we index un-ordered key sets
where the keys are taken from a shared domain ontology. This indexing problem
has not been addressed in the literature for structured overlay networks so far.
The QoS model includes a user feedback mechanism which is resilient against
malicious behaviors through the application of a trust and reputation manage-
ment technique that allows us to discover all cheating attempts by providers
and service users. As we use a P2P system as the underlying infrastructure, our
system scales well in terms of number of registries, search efficiency, number of
properties in service descriptions, and number of users.

We already implemented the QoS-based service selection and ranking algo-
rithm with trust and reputation evaluation techniques as a QoS support module
in our framework. Many experiments were also performed to prove the effec-
tiveness of our trust and reputation approach under various situations. In the
next stage, we will implement the matchmaker based on the work initiated by
Paolucci et al [11] and the service management module based on the UDDI stan-
dard. The existing implementation of the P-Grid system [2] is used as the basis
for the communication module.

We also plan to extend our model such that registry peers are able to manip-
ulate with different ontologies. Specifically, we will look into the problem of how
to update and propagate ontologies more efficiently in the P2P registry network.
Another enhancement would be to extend the classification criteria to include
service preconditions, effects, and representative keywords of service textual de-
scriptions. In addition, we are studying the possibility of developing and utilizing
a caching mechanism to exploit the locality and frequency of service usages. One

11

EFPL Technical Report 1C/2005/014

more ambitious goal would be to add support for the composition of services in
terms of QoS compatibility.

References

1. DIP Integrated project- Data, Information, and Process Integration with Semantic
Web Services, http://dip.semanticweb.org/.

2. P-Grid: The Grid of Peers, http://www.p-grid.org/.

3. Web Service Modelling Ontologies, http://www.wmso.org/.

4. Space/Time Trade-offs in Hash Coding with Allowable Errors, Burton H. Bloom,
Commun. ACM 13(7): p.p. 422-426, 1970.

5. Efficient Matchmaking And Directory Services, Ion Constantinescu and Boi Falt-
ings, International Conference on Web Intelligence, Canada, 2003.

6. METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Pub-
lication and Discovery of Web Services, Kunal Verma, Kaarthik Sivashanmugam,
Amit Sheth, Abhijit Patil, Swapna Oundhakar, John Miller, Journal of Information
Technology and Management, 2003.

7. A Scalable and Ontology-Based P2P Infrastructure for Semantic Web Services,
Mario Schlosser, Michael Sintek, Stefan Decker and Wolfgang Nejd, the Second IEEE
International Conference on Peer-to-Peer Computing, 2002.

8. WSPDS: Web Services Peer-to-peer Discovery Service, Farnoush Banaei-Kashani,
Ching-Chien Chen, and Cyrus Shahabi, International Symposium on Web Services
and Applications, USA, 2004.

9. A Peer-to-Peer Approach to Web Service Discovery, Cristina Schmidt and Manish
Parashar, World Wide Web Journal, Volume 7, Issue 2, June 2004.

10. A Peer-to-Peer Framework for Web Service Discovery with Ranking, Fatih Emekci,
Ozgur D. Sahin, Divyakant Agrawal, Amr El Abbadi, Proceedings of IEEE Interna-
tional Conference on Web Services, USA, 2004.

11. Semantic Matching of Web Services Capabilities, Paolucci M., Kawamura T.,
Payne T., and Sycara K., Proceedings of the 1st International Semantic Web Con-
ference, Italy, 2002.

12. Adding OWL-S to UDDI, implementation and throughput, Naveen Srinivasan,
Massimo Paolucci, Katia Sycara, Proceedings of the First International Workshop
on Semantic Web Services and Web Process Composition, USA, 2004.

13. Adding Semantics to Web Services Standards, Kaarthik Sivashanmugam, Kunal
Verma, Amit Sheth, John Miller, Proceedings of the International Conference on
Web Services, 2003.

14. A Semantic Approach to Web Service Discovery, Abhijit Patil, Swapna Oundhakar,
Ruoyan Zhang, Final Report on Semantic Web Course Spring 2002 (CSCI 8350),
LSDIS Lab, Computer Science, University of Georgia.

15. Latest UDDI Version (3.0.2), UDDI Spec Technical Committee Draft, Dated
20041019, http://uddi.org/pubs/uddi-v3.0.2-20041019.htm.

16. Quality of Service in Service-Oriented Architectures, Glen Dobson, 2004, http:
//digs.sourceforge.net /papers/qos.html.

17. A Survey of Trust and Reputation Systems for Online Service Provision, Audun
Jgsang, Roslan Ismail and Colin Boyd, Decision Support Systems, 2005 (to appear).

18. Possibilities for Managing Trust in P2P Networks, Zoran Despotovic and Karl
Aberer, Technical Report, Swiss Federal Institute of Technology at Lausanne(EPFL),
Switzerland, November 2, 2004.

12

EFPL Technical Report 1C/2005/014

19. WS-QoS - A Framework for QoS-aware Web Services, Andreas Gramm, Technical
Report B-04-11, Institute of Computer Science, Freie Universitdt Berlin, Germany,
July 2003.

20. UX - An Architecture Providing QoS-Aware and Federated Support for UDDI,
Zhou Chen, Chia Liang-Tien, Bilhanan Silverajan, Lee Bu-Sung, Proceeding of the
first International Conference on Web Services, 2003.

21. A DAML-Based Repository for QoS-Aware Semantic Web Service Selection,
A. Soydan Bilgin and Munindar P. Singh, Proceedings of IEEE International Con-
ference on Web Services, USA, 2004.

22. Reputation = f(User Ranking, Compliance, Verity), Sravanthi Kalepu, Shonali
Krishnaswamy and Seng Wai Loke, Proceedings of IEEE International Conference
on Web Services, USA, 2004.

23. A Model for Web Services Discovery with QoS, Ran S.;, ACM SIGecom Exchanges,
Volume 4, Issue 1 Spring, pp. 1-10, 2003.

24. Efficient Access to Web Services, Ouzzani M., Bouguettaya A., IEEE Internet
Computing, March/April, pp. 34-44, 2004.

25. A QoS Oriented Framework for Adaptive Management of Web Service based Work-
flows, Chintan Patel, Kaustubh Supekar, and Yugyung Lee, Database and Expert
Systems 2003 conference, Prague, Czech Republic, 2003.

26. Reputation and Endorsement for Web Services, E. Michael Maximilien and Munin-
dar P. Singh, SIGEcom Exchanges, 3(1):24-31, Winter 2002, ACM Special Interest
Group on E-Commerce.

27. QoS computation and policing in dynamic web service selection, Yutu Liu, Anne
Ngu, and Liangzhao Zheng, Proceedings of the WWW 2004, 2004.

28. Selecting the Best Web Service, Julian Day and Ralph Deters, the 14th Annual
IBM Centers for Advanced Studies Conference, 2004.

29. Statistical Fraud Detection: A Review, Richard J. Bolton and David J. Hand,
Statistical Science, 17(3), 235-255, January 2002.

30. Managing Trust in a Peer-2-Peer Information System, Karl Aberer and Zoran
Despotovic, 10th International Conference on Information and Knowledge Manage-
ment (ACM CIKM), 2001.

31. The EigenTrust Algorithm for Reputation Management in P2P Networks, Sepa-
ndar D. Kamvar, Mario T. Schlosser and Hector Garcia Molina, Proceedings of the
Twelfth International World Wide Web Conference, 2003.

32. PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic Com-
munities, Li Xiong, Ling Liu, IEEE Transaction on Knowledge and Data Engineering,
p.-p 843-857, 2004.

33. Filtering Out Unfair Ratings in Bayesian Reputation Systems, Andrew Whitby,
Audun Jsang and Jadwiga Indulska, Proceedings of the Workshop on Trust in Agent
Societies, USA, 2004.

34. Probabilistic User Behavior Models, Eren Manavoglu, Dmitry Pavlov and
C. Lee Giles, Third IEEE International Conference on Data Mining, Melbourne,
Florida, 2003.

35. Choosing Reputable Servents in a P2P Network, Fabrizio Cornelli, Ernesto Dami-
ani, Sabrina De Capitani di Vimercati, Stefano Paraboschi and Pierangela Samarati,
Proceedings of WWW 2002 Conference, USA, 2002.

13

