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Abstract
Industrial processes are run with the aim of maximizing economi c pro“t while simul-
taneously meeting pro cess-critical constraints . To this end, model-based optimization
can be performed to ensure optimal plant opera tions. Usually, inevitable model inaccu-
racies are dealt by collecting the plant measurements at the local operating conditions
in order to adapt model parameters, followe d by numerical re-opti mization. This iter-
ative two-step procedure often results in a sub-optimal solution, since the models are
typically not designed for optimization.

Modi“er Adaptation (MA) is a Real-Time Optimization (RTO) technique that di-
rectly adds the af“ne-correction terms to the model. The af“ne corrections are paramet-
rized in modi“ers that are tailored to t he optimization n eeds. This enables modi-
“er adaptation to guarantee, upon convergence, matching the plant and the modi“ed
model•s optimality conditions. However, co mputing the modi“ers requires estimates
of the plant gradients that are obtained via expensive plant experiments. The exper-
imental cost of gradient estimation can be reduced by relying more on the model of
the considered plant. For example, Directional Modi“er Adaptation (DMA) relies on
of”ine-computed local parametric sensitivity analysis performed on the gradient of
the Lagrangian function of the model resulting in reduced number of input directions
that describe the gradient uncertainty in the model. Thereby, plant gradients are es-
timated only in a low-dimensional space of privileged input directions considerably
reducing the experimental costs. However, local sensitivity analysis is often ineffective
when the gradient of the model is considerably nonlinear in parameters.

This thesis proposes an online procedure based on global sensitivity analysis for
“nding the most promising privileged directions that adequately compensates for the
model de“ciencies in predicting the plant opti mality conditions. The discovered privi-
leged directions are such that, upon parametric perturbations, the gradient varies a lot
along the privileged directions and varies only a little along the remaining input direc-
tions. Consequently, the gradients of the model cost and constraints are corrected only
along the privileged directions by adapting modi“ers. The resulting methodology is
named as Active Directional Modi“er Adaptation (ADMA). Several simulation studies
conducted show that the propo sed approach reaches the near-optimality conditions at
a considerably reduced experimental cost.

In addition, this thesis atte mpts to establish a direct relation between the optimality
conditions and the parameters of a given model. Model parameters are analyzed to
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discover mirror parameters that mimic the behavior of modi“ers in in”uencing the
optimality condi tions. It is proposed to adapt mirror parameters instead of modi“ers
yielding the bene“t of both, modi“er adapta tion in enforcing optimality conditions
and of parameter adaptation in better noise handling and convergence.

Moreover, it is also investigated how to establish the synergies between privileged
input directions with model parameters in order to reduce experimental efforts. The
steady-state optimization of a simulated chemical process shows that the privileged
directions and the selected parameters work in perfect harmony to effectively reach
near-optimal performance.

Finally, the study on the power maximization of ”ying kites leads to the develop-
ment of trust-region based method to better control the input step size. It is shown
that this approach improves performance signi“cantly.

Keywords: Real-time optimization, Modi“er adapta tion, Parameter estimation, Ac-
tive subspaces, Dimension reduction, Sensitivity analysis.
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Résumé
Les procédés industriels sont mis en œuvre dans le but de maximiser le pro“t éco-
nomique tout en respectant les contraintes critiques du processus. À cette “n, une
optimisation basée sur un modèle peut être effectuée a“n d•assurer un fonctionne-
ment optimal du procédé. Habituellement, les inexactitudes inévitables du modèle
sont traitées par la collecte des mesures du procédé dans les conditions d•exploita-
tion locales a“n d•adapter les paramètres du modèle, suivie d•une ré-optimisation
numérique. Cette procédure itérative en deux étapes aboutit souvent à une solution
sous-optimale, car les modèles ne sont généralement pas conçus pour l•optimisation.

Modi“er Adaptation (MA) est une technique d•optimisation en temps réel (RTO)
qui ajoute directement les termes af“ne-c orrection au modèle. Les corrections af“nes
sont paramétrées dans des modi“ers adaptés aux besoins d•optimisation. Cela per-
met d•adapter le modi“er pour garantir, lors de la convergence, l•adéquation entre le
procédé et les conditions optimales du modèle modi“é. Cependant, le calcul des mo-
di“ers nécessite des estimations des gradients du procédé qui sont obtenus par des ex-
périmentations coûteuses. Le coût expérimental de l•estimation du gradient peut être
réduit en s•appuyant davantage sur le modèle du procédé considérée. Par exemple,
l•adaptation des modi“ers directionnels (DMA) repose sur une analyse de sensibilité
paramétrique locale hors ligne effectuée sur le gradient de la fonction Lagrangienne
du modèle, ce qui permet de réduire le nombre de directions d•entrée qui décrivent
l•incertitude du gradient dans le modèle. Ainsi, les gradients du procédé ne sont esti-
més que dans un espace de faible dimension de directions d•entrée privilégiées, ce qui
réduit considérablement les coûts expérimentaux. Cependant, l•analyse de sensibilité
locale est souvent inef“cace lorsque le gradient du modèle est considérablement non
linéaire dans les paramètres.

Cette thèse examine les schémas RTO basés sur les outils de l•analyse de sensibilité
globale. Ces outils permettent de trouver les directions privilégiées les plus promet-
teuses qui compensent adéquatement les dé“ciences du modèle dans la prédiction des
conditions optimales du procédé. Les directions privilégiées découvertes sont telles
que, lors de perturbations paramétriques, le gradient varie beaucoup le long des di-
rections privilégiées et ne varie que peu le long des directions d•entrée restantes. Par
conséquent, les gradients de coûts et de contraintes du modèle ne sont corrigés que
dans les directions privilégiées en adaptant les modi“ers. Plusieurs études de simula-
tion réalisées montrent que l•approche proposée atteint des conditions quasi-optimales
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à un coût expérimental considérablement réduit.
De plus, cette thèse tente d•établir une relation directe entre les conditions opti-

males et les paramètres d•un modèle donné. Les paramètres du modèle sont analysés
pour découvrir les paramètres qui imitent le comportement des modi“ers en in”uen-
çant les conditions optimales. Il est proposé d•adapter les paramètres miroirs au lieu
de modi“ers, ce qui permet de béné“cier à la fois de l•adaptation des modi“ers pour
imposer des conditions optimales et de l•adaptation des paramètres pour améliorer la
gestion du bruit et la convergence.

De plus, il est également étudié comment trouver des synergies entre les directions
d•entrée privilégiées avec les paramètres du modèle a“n de réduire les efforts expéri-
mentaux. L•optimisation en régime permanent d•un procédé chimique simulé montre
que les directions privilégiées et les paramètres sélectionnés travaillent en parfaite
harmonie pour atteindre ef“cacement des performances quasi-optimales.

En“n, l•étude sur la maximisation de la puissance des cerfs-volants conduit au dé-
veloppement d•une méthode basée sur les régions de con“ance pour mieux contrôler
la taille des pas d•entrée. Il est démontré que cette approche améliore signi“cativement
les performances.

Mots-clés : Optimisation en temps réel, Modi“er adaptation, Estimation des para-
mètres, sous-espaces actifs, Réduction des dimensions, Analyse de sensibilité.
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1 Introduction

1.1 Motivation

Economic pro“ts of process plants are direct functions of their operating conditions.
For large-scale plants, even 1% gain in the yield via operational improvements can lead
to signi“cant economic bene“ts [ 37]. Real-time optim ization (RTO) attempts achieving
continuous improvement in plant operations with the goal of reaching plant optimal-
ity, while simultaneously meeting constraints on process safety, equipment longevity,
and product quality. RTO has resulted in tremendous economic bene“ts to various
processes, ranging from production of petrochemicals to ef“cient fuel cell operations
to polymerizat ion processes to pharmaceutical manufacturing [ 20, 51, 78, 115].

RTO has gained further importance as today•s dynamic markets demand for ever
changing product speci“cations and, in addition, price ”uctuations in the raw materi-
als and the “nished products demand for technological solutions that suitably respond
in real-time. Moreover, continuous long-term usage of production equipment acceler-
ates the degradation of the operating plant that adds to the challenge of reaching
economically bene“cial plant operations. RTO aims at addressing these issues by of-
fering solutions that can respond quickly and ef“ciently, without loosing sight of the
process limitations.

To this end, RTO typically deploys mathematical models derived from “rst princi-
ples and/or historical operating data. The RTO performance is signi“cantly dependent
on the quality of the models used [ 44, 133]. These models are tradition ally designed
with the goal of understanding the relationships among various plant variables and
explain the behavior of the plant. This has t o be achieved despite the fact that the ac-
curacy of the model predictions are highl y dependent on the qu ality of the data used,
the depth of the mode ling process, quality of the design of experiments, parameter se-
lection process and the model validation procedure [ 11, 54, 55, 66, 72, 123]. Moreover,
these models are not tailored to meet RTO-speci“c requirements of accurate predic-
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tion of the plan t optimality c onditions [ 22]. Therefore, the traditional RTO methods
that adapt the model parameters may well fail to reach plant optimality [ 44, 82]. This
motivates towards understanding the relationship between model parameters and the
optimality conditions. Such analysis shoul d be targeted to establish how the parameter
adaptation di rectly affects the optim ality conditions a nd to what degree. Surprisingly,
the current RTO literature is quite limited in this regard [ 22, 80].

One way to compensate for the lack of model accuracy is by relying more on
information-rich plant data. The collected data is translated into a few correction
terms that are added to the concerned model. These correction terms are tailored
to offset the model discrepancy in predi cting the plant optimality conditions [ 16, 21,
33, 56, 58, 83, 101, 103]. The RTO techniques that utilize such mechanism involve
local estimation of the plant quantities tha t characterize the optimality conditions. To
this end, tailored experiments are performed to gather the relevant plant estimates.
These estimates are then utilized for local plant-model matching that moves the plant
towards its optimal state vi a (corrected) model-based optimization. Such methods
have shown promising results in practice [ 20, 31, 87, 95, 135].

The added correction terms are parameterized by modi“ers that are iteratively
adapted to achieve plant-model matching. Although, the adaptation of modi“ers
guarantees plant opti mality [ 12, 17, 83, 85], it often demands for excessive plant ex-
periments for estimating the requisite quantities [ 31, 33]. The experimental process
does not only consume resources, but also slows down the whole optimization pro-
cess. If the change in plant conditions is at higher fre quencies than the optimization
process, one may never reach plant optimality.

An alternative to reduce th e reliance on excessive plant experiments is to under-
stand the dependence of the optimality conditions on the model parameters [ 33]. Such
analysis is done to check if plant- model mismatch can be compensated by only partial
corrections and thereby, less experiments would be performed to gather only the most
relevant plant information.

Motivated by above, the work in this thesis is driven by two main goals„(a) To
understand the dependence of the optimalit y conditions on the model parameters,
thereby, design minimal number of plant experiments that can best compensate for
the model de“ciencies in predicting plan t optim ality. (b) To establish a direct rela-
tionship between optimality conditions and mo del parameters that results in relevant
pairing between different elements of the optimality condi tions and the model param-
eters. This way, a set of parameters could be discovered that act similar to modi“ers
in compensating for plant-model mismatch. To meet the two goals, tools of global sen-
sitivity anal ysis are borrowed from the literatur e and tailored to achieve the desired
results.
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1.2. State of the Art

1.2 State of the Art

RTO can be classi“ed as either implicit or explicit RTO [ 52]. The two classes of RTO
are described below.

1.2.1 Implicit RTO

This class of RTO methods proposes to select outputs whose optimal values are ap-
proximately invariant to uncertainty. The main idea is to keep these outputs close to
their invariant values and thus attenuate the effect of uncertainty by adapting the in-
puts directly on the basis of measurements. In other words, a feedback law is sought
that implicitly solves th e optimization problem. One of such schemes called NCO
Tracking [ 125, 126, 127] has the attractive feature that it can handle constrained prob-
lems, although this requires that the active set remains unchanged in the presence of
uncertainty. Another scheme called Neighboring-Extremal Control (NEC) [ 50, 61] com-
bines a variational analysis of the model at hand with output measurements to enforce
the plant Necessary Conditio ns of Optimality (NCO)s 1. With Extremum-Seeking Con-
trol (ESC), dither signals are added to the inputs such that an estimate of the plant cost
gradient is obtained online using output measurements [ 6, 62, 73]. In Self-Optimizing
Control (SOC) [3, 67, 68, 69, 121], a linear or a polynomial combination of the plant
outputs is selected that is invariant to disturbances. The chosen combination is then
kept at constant setpoint values in cl osed loop to minim ize opti mality loss.

The methods described above belong to the class of implicit RTO methods (see
Figure 1.1) as they do not adapt the models utilized to select the invariant output
variables, therefore, do not repeat the numerical optimization explicitly. Such methods
directly update the inputs via feedback control.

1.2.2 Explicit RTO

Explicit RTO methods perform a measurement-based adaptation of either the model
parameters and/or the correction terms that are added to the model. The updated
models are then utilized in the optimizat ion layer to compute the inputs [ 15, 16, 24, 83].
Some of the explicit-RTO schemes are discussed next.

Since accurate models are rarely available in industrial applications, RTO typically
proceeds by an iterative two-step approach [ 24, 65, 89] (see Figure 1.2a), namely a
model update step followed by an optimizatio n step. The model-update step typically
consists of a parameter estimation problem. The objective is to “nd values of selected
model parameters for which the model gives a good prediction of the measured plant
outputs at the local input values. In the opti mization s tep, the updated model is used

1The main focus in this thesis is to enforce the Karush-Kuhn-Tucker (KKT) conditions [ 10].
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Figure 1.1 … Implicit RTO schemes.

to determine a new input by solving a model-based optimization problem.

The classical two-step approach works well provided that (i) there is little struc-
tural plant-model mismatch [ 133], and (ii) the changing operating conditions provide
suf“cient excitation for estimating the uncertain model parameters. Unfortunately,
such conditions are rarely met in practice. Regarding (i), in the presence of structural
plant-model mismatch, it is typically not possible to satisfy the plants NCOs simply by
estimating the model parameters that predict the plant outputs well. Since the NCOs
are characterized by gradients, therefore, parameters need to be adjusted such that the
plant and the model outputs have matching gradients. Recently, an RTO methodology
called Simultaneous Model Identi“cation and Optimization (SMIO), that adapts the
model parameters in order to match the outputs and the gradients of the cost and the
constraint functions of the optimizat ion problem, has been proposed in [ 79, 80]. SMIO
also proposes to add correction terms as the parameter adaptation alone is insuf“cient
in matching all the targeted quantities.

Another technique that utilizes correction terms is referred to as Integrated System
Optimization and Parameter Estimation (ISOPE) [ 16, 101, 102, 103]. ISOPE requires
both output measurements and estimates of the gradients of the plant outputs with
respect to the inputs. These gradients allow computing the plant cost gradient that
is used to modify the cost function of t he model-based optimization problem. The
matching of the model cost gradient and the plant cost gradient facilitates the model-
based optimization problem to better approximate the plant optimization problem.
With ISOPE, process measurements are incorporated at two levels, namely, the model
parameters are adapted via output measurements, and the cost function is corrected
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Figure 1.2 … Explicit RTO schemes. (a) Two-step approach. (b) Modi“er adaptation.

by the addition of an af“ne term in inputs. The gradient correction constitutes the
af“ne term.

In contrast to ISOPE, Modi“er Adaptation (MA) (see Figure 1.2b) keeps the model
parameters “xed, and af“ne correction terms (parametrized in modi“ers) are added
to the model cost and constraint functions [ 83, 86]. Modi“ers are adapted iteratively
to locally match the plant NCOs. Each element of the modi“ers can manipulate only
a single component of either the model constraint or the cost/constraint gradients
without affecting the other components. This enables MA schemes to guarantee KKT
matching [ 12, 17, 83, 86]. The modi“ers are tailored to meet the NCOs and, thereby,
provide the ”exibility that the parameters of the model may lack [ 22].

For the implementation of MA, plant measurements are expected to be suf“ciently
rich to allow good estimates of the plant cost and constraint values and of their gradi-
ents. The most straightforward way to estimate the gradients is by “nite differences,
which requires perturbing the inputs around their nominal values and collecting the
output measurements after each plant experiment.

In the past years, several methods have been proposed to obtain the gradient infor-
mation. In dual MA [ 84], one considers an additional constraint in the RTO problem,
which restricts the location of the next RTO input such that reliable gradient informa-
tion can be extracted using the current input and the previously visited RTO inputs.
Dual ISOPE [16] and the approach proposed in [ 104] also make use of •duality con-
straints• so as to simultaneously optimize and estimate the gradients. Alternatively, it
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Figure 1.3 … Directional modi“er adaptation.

is proposed to combine data-based quadratic approximation and MA to obtain accu-
rate gradient estimates [58]. Instead of “nding gradients, one can attempt to directly
compute the “rst-order corre ction terms using an addition al optimization layer as pro-
posed by [93]. In addition, it has been proposed to use the transient measurements for
gradient estimation in [ 38, 47].

The gradient estimation by perturbing the plant is resource consuming and the ex-
perimental cost increases with increasing input dimensions. To reduce the experimen-
tal burden of gradient estimation, one can rely more on the process models. With this
philosophy, an MA-based approach has been proposed in [ 33] that lowers the expense
of gradient estimation by questioning the necessity of correcting the full gradients.
This approach, labeled Directional Modi“er Adaptation (DMA) [ 33] (see Figure 1.3),
proposes to correct the model gradients only in privileged input directions that span
a reduced subspace of the input space. This subspace is computed only once of”ine
by means of a local sensitivity analysis conducted on the gradient of the Lagrangian
function of the model. Hence, DMA results in only partial corrections of the gradients
that characterize the KKT conditions, thereby resulting in only partial KKT matching.
It is assumed that the given model is able to accurately predict the remaining plant
quantities that symbolize the KKT conditions.

In the RTO literature, several variants of modi“er adaption exist. One of them is
that of Constraint Adaptation (CA) [ 21]. In CA, only constraint functions are corrected
to the zeroth order and gradient corrections to the cost and the constraints are not
made. This scheme performs well when the model gradients are accurate enough to
push towards the correct set of active constraints that characterize the plant optimality.
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Figure 1.4 … Classi“cation of explicit RTO schemes. Bold: RTO methodologies pro-
posed in the thesis.

Other MA variant in [ 48] include the use of convex models to address the optimality
conditions concerning the Hessian information. An important issue of feasible-side
convergence of MA-based schemes is addressed in [19, 85, 88, 116, 120]. The handling
of measurement noise is discussed in [18, 84]. Notably, the application of derivative-
free methods [27, 96] for attenuating the impact of noise has shown good results in
the MA-based scheme called MAWQA [ 58]. Recently, MA has also been extended to
distributed RTO problems [ 90, 114].

Figure 1.4 classi“es some of the explict RTO schemes. An RTO scheme is catego-
rized based on whether it attempts to match the plant outputs or the pant quantities
that characterize the KKT conditions, namely, the plant cost and constraints gradi-
ents and the zeroth-order constraint values. Some RTO schemes like SMIO attempt
to match both, the outputs and the KKT conditions. In addition, each RTO scheme
is also distinguished based on whether it adapts the model parameters or the modi-
“ers or both. The number of plant experiments required by each scheme depends on
whether it attempts to match all or only selec ted plant quantities to enforce optimality.
An ideal scheme should be able to balance the experimental costs without compro-
mising too much on plant optimality. This th esis proposes two different explicit RTO
methodologies highlighted in bold in the Figure 1.4.
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Figure 1.5 … The “rst proposed approach - Active directional modi“er adaptation.

1.3 Contributions of the Thesis

This thesis propose methods which attempt to extract the most out of a given model in
predicting plant optimality. To this end, a tool for Global Sensitivi ty Analysis (GSA),
known as active subspaces [28], is utilized and altered. In active subspaces, parametric
perturbations are performed to discover a low-dimensional structure in parameter
space that is most responsible for the variations of the quantity of interest. This low-
dimensional structure represents the in”uential parameter space.

The chapter-wise thesis contributions are as follows:

Chapter 3

€ The building blocks of active subspace theory are tailored to discover a low-
dimensional structure in in put space (called privileged directions ) rather than in
parameter space.

€ An Active Directional Modi“er Adaptation (ADMA, see Figure 1.5) is proposed
that guarantees plant opti mality upon convergence under parametric plant-model
mismatch. In the presence of structural plant-model mismatch, ADMA guaran-
tees optimality limit ed to the privileged directions space.

€ Two different simulation studies of ru n-to-run optimizatio n of the semi-batch
rectors con“rm the presence of low-dimensional privileged directions that ad-
equately compensate for model de“cien cies in reaching plant optim ality. This
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Figure 1.6 … The second proposed approach - Generalized model adaptation.

way, the experimental cost is reduced drastically.

€ The active subspace tools are further tailored and the parametric sensitivities
are computed indirectly, which considerably reduces the computational cost of
global sensitivity analysis. Alternatively, when the parameter dimensions are
large, active subspaces are directly utilized to reduce the computational costs.

€ The chapter resulted in the publications [ 118, 119]. Another peer-reviewed jour-
nal submission is pending regarding the computational cost of global sensitivity
analysis.

Chapter 4

€ A Generalized Model Adaptation (GMoA) framework (see Figure 1.6) is pro-
posed that adapts a set of model parameters called mirror parameters. Mirror
parameters mimic the modi“er behavior a nd, therefore, their adaptation has ad-
vantages of both, modi“er and parameter adaptation. With the help of modi“ers,
the framework can be adapted to perform either full or only selected KKT match-
ing. Mirror parameters are found by direct use of active subspaces.

€ Gradients in the privileged input directions are matched by adapting correspond-
ing in”uential parameters instead of modi“ers, thereby maximizing the model
utilizatio n for accurate prediction of plant opti mality at a reasonable experimen-
tal cost.

9
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€ This chapter resulted in the publication [ 117]. Another peer-reviewed journal
publication on GMoA framework is pending for submission.

Chapter 5

€ Simulation study of power maximization in ”ying kites leads to the development
of trust-region-based ADMA that effectively controls the input step lengths to
ensure optimality.

€ The second simulation study of fuel-cell system compares various MA-based
schemes. It is shown that ADMA “nds a nice balance betweenplant optimality
and experimental cost. Moreover, in ADMA, active subspaces are utilized to
reduce the computational costs of obtaining privileged directions from one hour
to only 32 seconds.

€ This chapter resulted in the publication [ 70]. Another peer-reviewed journal
publication on fuel cell simulation is pending for submission.

1.4 Organization of the Thesis

The next chapter is on preliminaries that are the building blocks of the techniques dis-
cussed and developed in the later chapters. These include the RTO problem de“nition,
various conditions that de“ne the optimal solution, two-step approach, MA schemes
and their properties, active subspaces and suf“cient summary plots.

Chapter 3 designs the global sensitivity analysis for discovering privileged input
directions that are utilized to develop the ADMA methodology. ADMA is illustrated
on two different simulation studies. The chapter further proposes two different alter-
natives to reduce the computational expense of “nding privileged directions via global
sensitivity analysis.

Chapter 4 develops the framework of generalized model adaptation by introduc-
ing the concept of mirror parameters that, similar to modi“ers, enable independent
matching of the KKT conditions. The chapter further discusses the synergies between
the parameters and modi“ers and how both can be combined to enable independent
KKT matching. In addition, the chapter proposes to pair the privileged directions with
corresponding mirror parame ters to reach plant optimality a t reasonable experimental
costs. The proposed concepts are illustrated on a simulation study.

Chapter 5 discusses the application of ADMA on two advanced simulation studies
of power maximization of ”ying kites and ma ximizing ef“ciency of a fuel-cell system.
A trust-region framework is designed for step-length control in kites. Different MA-
based techniques are compared on the fuel cell study.
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Finally, chapter 6 concludes the thesis and provides perspectives on future research
directions.
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2 Preliminaries

In this thesis, two types of RTO problems are dealt with, steady-state optimization of
continuously operating processes and run- to-run optimization of semi-batch or batch
operations. The run-to-run optimization problem is conv erted to a static-optimization
problem upon input parametrization. The s tatic optimization is formulated as a non-
linear programming problem. The RTO pr oblem formulation a nd related optimality
conditions are described in Sections 2.1 and 2.2, respectively. The classical two-step
approach is discussed next in Section 2.3. In Subsection 2.3.2, the important concept of
model adequacy is described. This subsection further discusses the conditions for the
two-step approach to be model adequate. Section 2.4 discusses the bias-corrections-
based constraint adaptation and its properties that include guaranteed plant constraint
satisfaction upon convergence. Section 2.5 describes modi“er adaptation that addi-
tionally corrects the model gradients. Modi“er adaptation•s various features includ-
ing guranteed plant optimality upon conver gence, model adequacy conditions and
its Lagrangian-modi“er form are detailed in Subsections 2.5.2 and 2.5.3. Section 2.6
discusses the concept of in”uential and non-in”uential parameters that can be found
via various sensitivity analysis techniques. This thesis heavily relies on the global
sensitivity analysis technique of active subspaces that is detailed in Subsection 2.6.1.
Subsection 2.6.2 recaps the Monte-Carlo sampling-based algorithm for computing ac-
tive subspaces and, “nally, Subsection 2.6.3 describes the plotting tool s called suf“cient
summary plots that help visu ally identify the presence of a one- or two-dimensional
active subspace.
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Chapter 2. Preliminaries

2.1 Problem Formulation

The optimization probl em for the plant reads

min
u

� p(u) := � (u, yp(u)) (2.1a)

s.t. Gp,i (u) := gi(u, yp(u)) � 0, i = 1, . . . ,ng, (2.1b)

where u � Rnu is the vector of input variables, yp � Rny are the measured output
variables, � : Rnu × Rny � R is the cost to be minimized, g i � R , i = 1, . . . ,ng, are the
inequality constraints. The optimal input vector of Problem (2.1) is denoted as u�

p.

The main challenge in solving the above opti mization problem stems from the fact
that the (steady-state/static) input-output mapping yp(u) is unknown. However, an
approximate process model is assumed to be available, with the input-output mapping
y(u, � ), where � � Rn� are the model parameters. Using the model, Problem (2.1) can
be approximated as

min
u

� (u, � ) := � (u, y(u, � )) (2.2a)

s.t. Gi(u, � ) := gi(u, y(u, � )) � 0, i = 1, . . . ,ng. (2.2b)

The nominal optimal input u� is found by solving Problem (2.2) for a “xed value
� = � 0, where � 0 is the vector of nominal model parameters. In the presence of plant-
model mismatch, the model optimum u� may not be equal to the plant optimum
u�

p. The goal of RTO is to “nd u�
p by iteratively adapting (modifying) and solving

Problem (2.2).

This thesis focuses on both, iterative steady-state optimization of continuous pro-
cesses and run-to-run optimization of batch/semi-batc h processes. For the run-to-run
optimization, the dynamic opti mization problems are refo rmulated as static opti miza-
tion problems by “nite discretization of the inputs, constraints and the dynamic mod-
els similar to [ 35, 49]. The resulting static models are then adapted iteratively, improv-
ing the batch/semi-batch performance from one run to the next.

2.2 Necessary Conditions of Optimality

Necessary conditions of optim ality (NCO) char acterize the local minimum of an op-
timization problem such as (2.2). The NCOs depend on the set of active constraints,
which is de“ned as follows:

A (u, � ) =
�

i � { 1, . . . ,ng} | Gi (u, � ) = 0
�

. (2.3)
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The so-called Linear Independence Constraint Quali“cation (LICQ) requires that the
gradients of the active constraints be linearly independent. If at a local minimum
u� , the model cost and constraint functions � and G are differentiable and LICQ
holds, then there exists unique value of the Lagrange multiplier vector µ� such that
the following KKT conditions are satis“ed at (u� , µ� ) [10],

G � 0, µT G = 0, µ � 0, (2.4)

� L
� u

=
� �
� u

+ µT � G
� u

= 0,

where L (u, µ, � ) := � (u, � ) + µT G(u, � ) is the Lagrangian function of the model. A
solution u� satisfying these conditions is called a KKT point.

If LICQ holds at u� , then one can write,

� Ga

� u
(u� , � )Z = 0, Ga(u� , � ) � Rna

g,

where Ga(u� , � ) is the vector of active constraints at u� and na
g is the cardinality of

A (u� , � ); and Z � Rnu× (nuŠ na
g) is the null-space matrix. The reduced Hessian of the

Lagrangian on this null space, � 2
r L (u� , � ) � R(nuŠ na

g)× (nuŠ na
g) , is described in [59] as:

� 2
r L (u� , � ) := ZT

�
� 2L
� u2 (u� , µ� , � )

�
Z.

In addition to the “rst-order KKT conditions, a second-order necessary condition
for a local minimum is the requirement that � 2

r L (u� , � ) be positive semi-de“nite. On
the other hand, � 2

r L (u� , � ) being positive de“nite is suf“cient for a strict local mini-
mum [ 59].

2.3 Two-Step Approach

2.3.1 The Concept

The classical two-step approaches in RTO propose to adapt model parameters with
the aim of matching the plant and the model outputs [ 24, 89, 103]. The updated pa-
rameters are then plugged into the model -based optimization pro blem in (2.2), thus
resulting in the new input value. The plant outputs yp corresponding to the updated
inputs are measured, and new measurements are utilized to redo the parameter es-
timation step. This iterative procedure is repeated until convergence. The two main
steps of the approach are the parameter estimation step and the optimization step that
take the following form at the kth RTO iteration,
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Parameter estimation step :

� k+ 1 = arg min
�

� yp(uk) Š y(uk, � )� 2, (2.5)

where � · � is the Euclidean norm; yp(uk) are the plant measurements at the current
input value uk. The updated model parameters are then used in the optimization
problem (2.2) to generate the new input value uk+ 1 as follows:

Optimization step :

uk+ 1 = min
u

� (u, � k+ 1), (2.6a)

s.t. Gi (u, � k+ 1) � 0, i = 1, . . . ,ng. (2.6b)

2.3.2 Model-Adequacy Criterion

Selection of the process model for RTO is a challenging task, as the quality of the
solution obtained in (2.2) directly depends on the model employed [ 43, 44, 45]. In the
context of RTO, a model is adequate if upon certain measurement-based adjustments
(such as parameter adaptation), it is able to produce the plant optimum u�

p by solving
the Problem (2.2). Model adequacy is formally de“ned as follows:

De“nition 2.1 (Model-adequacy criterion [ 45]). A process model is said to be adequate for
use in an RTO scheme if it is capable of producing a “xed point that is a local minimum for the
RTO problem at the plant optimumu�

p.

Therefore, when the two-step approach is employed as an RTO scheme, the model
used must have the parameter value � � , such that u�

p is a “xed point of the Problem
(2.2) for � = � � . For the two-step approach, the following model-adequacy conditions
are proposed.

Criterion 2.1 (Model adequacy for the two-step approach [ 45]). Let u�
p be the unique

plant optimum and parameter values� � exist such that

Gi (u�
p, � � ) = 0, i � A (u�

p, � � ), (2.7a)

Gi (u�
p, � � ) < 0, i /� A (u�

p, � � ), (2.7b)

� rL (u�
p, � � ) = 0, (2.7c)

� 2
r L (u�

p, � � ) > 0, (2.7d)

� Jid

� �
(yp(u�

p), y(u�
p, � � )) = 0, (2.7e)

� 2Jid

� � 2 (yp(u�
p), y(u�

p, � � )) > 0, (2.7f)
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where � rL and � 2
r L are the reduced gradient and reduced Hessian of the model

Lagrangian, respectively; and Jid denotes the objective function of the parameter esti-
mation step in (2.5). Then, the model is said to be adequate for the two-step approach
given in Section 2.3.1.

Model adequacy for the two-step approach has been studied in details in the liter-
ature [43, 45, 82]. Note that the plant optimum u�

p is not known a priori and, therefore,
verifying model adequacy is not straightforward. Moreover, Marchetti in [ 82] showed,
through simulation study of the Williams-Otto reactor [ 130], that even if a given pro-
cess model satis“es the model-adequacy criteria, the two-step approach is incapable
of reaching u�

p.

2.4 Constraint Adaptation

Certain plants are such that their optimal performance is mostly driven by the set of
active constraints. In these cases, one may reach near optimal performance simply
by tracking constraints [ 20, 22, 117]. For this, an RTO approach known as constraint
adaptation (CA) can be used [21]. CA is an iterative scheme that solves the following
optimization problem to reach the plant optimum u�

p:

min
u

� m,k(u) := � (u, � 0) (2.8a)

s.t. Gm,k(u) := G(u, � 0) + � G
k � 0, (2.8b)

where � G
k � Rng is the vector of zeroth-order modi“er with � G

i,k as its i th component;
and G � Rng is the vector of model constraints G i , i = 1, . . . ,ng. At the kth RTO
iteration, the modi“ers are computed as follows:

� G
k = Gp(uk) Š G(uk, � 0), (2.9)

where Gp � Rng is the vector of plant constraints. Note that parameter adaptation is
not required in CA as the modi“ers introduce bias corrections at each iteration, which
suf“ces to track the plant constraints. H ence, model parameters are “xed at their
nominal values � 0.

CA can yield optimality without requiring estim ation of plant gradients, which
makes this scheme very attractive for practical applications [ 20]. However, many pro-
cess optimization problems do require gradient info rmation to reach plant optimality.
Therefore, in such cases, modi“er adaptati on (MA) that additi onally corre cts model
gradients becomes more attractive RTO scheme. Nonetheless, upon convergence, CA
guarantees “nding a feasible input value for the plant constraints.
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2.5 Modi“er Adaptation

Modi“er adaptation introduces “rst-order correction terms that are added to the cost
and constraint functions predicted by the nominal model. At the kth RTO iteration, the
next RTO inputs are computed by solving the following modi“edoptimization p roblem:

min
u

� m,k(u) := � (u, � 0) + ( � �
k )T u (2.10a)

s.t. Gm,k(u) := G(u, � 0) + � G
k + ( � G

k )T (u Š uk) � 0, (2.10b)

where G � Rng is the vector of constraints Gi , � G
k � Rng are the zeroth-order modi“ers

for the constraints; � �
k � Rnu and � G

k � Rnu× ng are the “rst-order modi“ers for the cost
and constraint functions, respectively. At RTO iteration k, the modi“ers are computed
as follows:

� G
k = Gp(uk) Š G(uk, � 0), (2.11a)

(� �
k )T = � u � p(uk) Š � u � (uk, � 0), (2.11b)

(� G
k )T = � uGp(uk) Š � uG(uk, � 0), (2.11c)

where � u(·) is the gradient of a scalar quantity or the Jacobian of a vector quantity
with respect to u. MA guarantees meeting the plant KKT conditions (Problem 2.1)
upon convergence [83]. Gradient adaptation via “rst-order modi“ers plays a key role
in meeting the plant KKT conditions. However, “nding reliable plant gradients is a
costly task as it requires additional plant evaluations. If, for instance, the forward
“nite-difference approach is used, then the number of plant evaluations at each RTO
iteration increases linearly with the dimension of the input space.

2.5.1 Filters for MA

MA locally corrects the zeroth-order and “rst-oder terms of the model. However, in
the absence of higher-order correction terms, the local corrections may yield exces-
sively large input steps. Such steps lead to oscillatory behavior when MA is applied
to a plant. To avoid excessive corrections, Marchetti et al. in [ 83] propose to either
“lter the modi“er terms or the input updates. The “rst-order “lters on the modi“ers
are used as follows

� G
k+ 1 = ( I ng Š K� )� G

k + K� � Gp(uk+ 1) Š G(uk+ 1, � 0)
�
, (2.12)

� �
k+ 1 = ( I nu Š K� )� �

k + K � �
� u� p(uk+ 1) Š � u � (uk+ 1, � 0)

� T
, (2.13)

� Gi
k+ 1 = ( I nu Š KGi )� Gi

k + KGi
�
� uGp,i (uk+ 1) Š � uGi (uk+ 1, � 0)

� T
, i = 1, . . . ,ng,

(2.14)
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where the “lter matrices K� , K � and KGi are typically diagonal matrices with eigen-
values in the interval (0, 1]; I denotes the identity matrix. Alternatively, one can apply
input “lters as

uk+ 1 = uk + K(u�
k+ 1 Š uk), (2.15)

where K is the input “lter matrix that is a diagonal matrix with eigenvalues in the
interval (0, 1]; u�

k+ 1 is the optimal input value obtained at kth RTO iteration by solving
(2.10).

2.5.2 Properties of MA

The most appealing feature of MA is its ability to “nd the plant KKT point upon
convergence. This property is summarized by the following theorem.

Theorem 2.1 (In MA, convergence � plant optimality [ 83]). Consider the modi“ed model
in (2.10)with “lters on either the modi“ers or the inputs as described in(2.12)and(2.15). Let
u� := lim

k� �
uk be a “xed point reached upon iteratively solving Problem(2.10) and also the

KKT point of the Problem. Then,u� is also a KKT point of the plant problem(2.1).

Note that MA converges to an input u� that satis“es only the “rst-order NCOs.
However, to guarantee that u� is a local minimum for the plant Problem (2.1), the
second-order NCOs must also be veri“ed. This would require estimation of the plant
Hessian that remains an open problem, especially in the presence of measurement
noise. To this end, nice theoretical conditions are established in [42] that proposes to
use second-order modi“ers to guarantee meeting the second-order NCOs.

Although the current know-how limits verifying that the plant local minimum u�
p

is reached in MA, it is always desirable to satisfy model-adequacy conditions. The
model-adequacy conditions for MA are described in the following theorem.

Theorem 2.2 (Model-adequacy conditions for MA [ 83]). Let u�
p be a regular point for the

constraints and the unique plant minimum. Let� 2
r L (u�

p) denote the reduced Hessian of the
Lagrangian of Problem(2.10)at u�

p. Then, the following statements hold

(a) If � 2
r L (u�

p) is positive de“nite, then the process model is adequate for use in the MA
scheme.

(b) If � 2
r L (u�

p) is not positive semi-de“nite, then the process model is inadequate for use in
the MA scheme.

(c) If � 2
r L (u�

p) is positive semi-de“nite and singular, then the second-order conditions are
not conclusive with respect to model adequacy.
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Remark 2.1. It should be noted that satisfaction of the model-adequacy conditions inMA
does not guarantee satisfaction of the second-orderNCOs for the plant upon convergence, as
this would require knowledge of the plant Hessian at the converged inputu� . If the reduced
Hessian of the plant Lagrangian is positive semi-de“nite atu� , only then the second-order
NCOs are established for the plant Problem(2.1). However, satisfaction of model-adequacy
conditions by the modi“ed model inMA guarantees that, if the plant minimumu�

p is reached
at anRTO iteration byMA , thenMA will converge tou�

p, that is, not diverge to sub-optimal
input values. On the other hand, if model adequacy is not established, thenMA may well
diverge fromu�

p to sub-optimal points and result in oscillatory behavior.

2.5.3 The Lagrangian-Modi“ers Form

The Lagrange-modi“ers form is “rst proposed in [ 86]. This form has the advantage
that it is parsimonious in the number of modi“er elements as the gradient modi“er
computed for the Lagrangian function is utilized a s opposed to the separate gradient
modi“ers on the cost and constraint functions. This form has been successfully ex-
ploited in [ 105], where using gradient modi“ers on the Lagrangian helps in speeding
up the convergence of MA:

min
u

� m,k(u) := � (u, � 0) + ( � L
k )T u (2.16a)

s.t. Gm,k(u) := G(u, � 0) + � G
k � 0, (2.16b)

where � G
k � Rng are the zeroth-order modi“ers for the constraints; � L

k � Rnu is the
“rst-order modi“er; and G � Rng is the vector of model constraints. At the kth RTO
iteration, the modi“ers are computed as follows

(� L
k )T = � uL p(uk, µk) Š � uL (uk, µk, � 0), (2.17a)

� G
k = Gp(uk) Š G(uk, � 0), (2.17b)

with L p(u, µ) = � p(u) + µT Gp(u), (2.17c)

and L (u, µ, � ) = � (u, � ) + µT G(u, � ). (2.17d)

where µ � Rng is the vector of Lagrange multipliers and (uk, µk) is the kth realization
of the pair (u, µ).

2.6 In”uential and Non-In”uential Parameters

The models deployed in RTO are often not well calibrated for the purpose of predict-
ing the plant NCOs. If one decides to make parametric adjustments so as to improve
model predictions, then understanding the relationship between the model parame-
ters and the model ability to accurately predict the NCOs is of paramount importance.
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To this end, tools for sensitivity analysis play a central role. The goal of sensitivity
analysis is to classify the elements of a given set of parameters into two categories.
The “rst category represents the subset of parameters that in”uences the NCOs and
the second category contains the subset that does not. The concept ofin”uential pa-
rameters is formally de“ned as follows.

Consider the mapping y = f (� ), y � R , � � Rn� . In addition, consider the spaces
I and N I that are orthogonal complements to each other such that they form a direct
sum on Rn� , i.e., N I 	 I = Rn� . Then, the in”uential and non-in”uential spaces can
be de“ned as:

De“nition 2.2 (In”uential parameters [ 123]). On the subspaceN I 
 Rn� , a parameter
direction� is said to be non-in”uential for a given scalar function f� R if | f (� 1) Š f (� 2)| <
� for all � 1, � 2 � N I , where� is a positive scalar. The orthogonal complement ofN I 
 Rn�

is the subspaceI of in”uential parameters.

There exists several tools to “nd the space of in”uential parameters. For instance,
Fisher information is the classic technique of “nding in”uential parameters. However,
the techniques of local sensitivity analysis, such as Fisher information, are limited in
their use as they are not representative of the global behavior. The global sensitivity
analysis addresses this issue by incorporating sensitivity information from the entire
parameter space. Several techniques exist in the literature for global sensitivity anal-
ysis [8, 74, 91, 113, 124]. A notable technique of global sensitivity analysis is that of
Sobol indices that quantify the global in”uence of the parameter on the variance of the
response [97, 124]. Although this approach has the advantage that it does not require
any linearization, the computation of the sensitivity indices can be prohibitively expen-
sive for large parameter dimensions. The alternative is to use linearization techniques
to approximate local sensitivities and employ these linearized relations in establish-
ing in”uential parameters [ 1, 29]. The approximation of global sensitivities are then
obtained by aggregating the local sensitivities evaluated at random parameter values
sampled from an admissible parameter set. In the following subsection, one of such
approaches, known as active subspaces [28, 29, 110], is recalled.

2.6.1 Active Subspaces

Active subspaces are an emerging set of tools for dimension reduction in the param-
eter space of a function of several parameters. A low-dimensional active subspace,
when present, identi“es important directions in the space of parameters. Perturbing
the function along the active subspace changes the function more, on average, than
perturbing the function orthogonally to the active subspace. This low-dimensional
structure provides insights that characterize the dependence of quantities of interest
(such as model prediction of NCOs) on parameters � .
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Hence, instead of attempting to identify a collection of parameters, the active sub-
space method seeks to identify a collection of directions in parameter space. Each
direction is a set of weights that de“ne a linear combination of the original elements
of the vector � . If the function does not change as the parameter values move along a
particular direction, then, that direction can be safely ignored.

To “nd the active subspace of a scalar function f : Rn� � R , the following matrix
C � Rn� × n� is evaluated

C =
� �

� � f (� )
� T �

� � f (� )
�
� d� , (2.18)

where � is the probability density function of � over the admissible bounded set �
with � = 0 for � /� � . Here, the parameter vector � is the scaled version of the original
parameters; i.e. without loss of generality, the admissible parameter set can be taken
as � = [ Š1, 1]n� � Rn� . Note that C is symmetric and positive semi-de“nite, so it
diagonalizes as

C = Q � QT , � = diag(� 1, . . . ,� n� ), (2.19)

with � 1 � · · · � � n� � 0; Q � Rn� × n� is an orthonormal matrix whose columns
q1, . . . ,qn�

are the normalized eigenvectors of C. The following lemma highlights the
relation between the scalar function f and the eigenvalues of the corresponding matrix
C.

Lemma 2.3 (Constantine [28]). The mean-squared directional derivative of f with respect to
ql satis“es

� 	
�
� � f (� )

�
ql


 2

� d� = � l , l = 1, . . . ,n� , (2.20)

where� l is the eigenvalue corresponding to the eigenvectorql of C.

Lemma 2.3 implies that, if an eigenvalue � l of C is zero, then the corresponding
directional derivative

�
� � f (� ) ql

�
is zero everywhere in the domain � . Hence, the

function f is constant along the direction ql .

Moreover, if some eigenvalues are relatively large and some are small such that
there exists a clear gap in the spectrum of eigenvalues of C, then complementary
subspaces ofRn� can be easily de“ned, where the values of f in one subspacevaries a
lot, while it varies only a littlealong directions contained in the other complementary
subspace. More precisely, the matrices� and Q can be written in block form as

� =

�
� 1 0
0 � 2

�

, and Q = [ Q1 Q2], (2.21)
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where � 1 � Rm× m and Q1 � Rn� × m with m � n� . Provided it exists, the block form
is such that m � n� and � m 
 � m+ 1. Based on this partitioning, we obtain the new
(parameter) directions � 1 � Rm and � 2 � Rn� Š m

� 1 := ( Q1)T � , and � 2 := ( Q2)T � . (2.22)

Motivated from the above, one can write � = Q1 � 1 + Q2 � 2. In addition, using the
chain rule, we have

� � 1 f (� ) = � � f (� ) Q1 and � � 2 f (� ) = � � f (� ) Q2.

The next lemma combines the � 1 � Rm and � 2 � Rn� Š m with Lemma 2.3.

Lemma 2.4 (Constantine [28]). The mean-squared gradients of f with respect to� 1 and � 2

satisfy

� �
� � 1 f (� )

��
� � 1 f (� )

� T
� d� = � 1 + · · · + � m,

� �
� � 2 f (� )

��
� � 2 f (� )

� T
� d� = � m+ 1 + · · · + � n� ,

(2.23)

Assuming that � m+ 1 = · · · = � n� = 0, the following is obtained:

� � 2 f (� ) = 0 � � � � . (2.24)

Motivated from the above and provided they exist, the rotated parameters � 2 are
termed the non-in”uential parameters. The gradient with respect to � 2 is zero every-
where in the domain. Not surprisingly, the subspace spanned by the columns of Q1

corresponds to the in”uential subspaceI , whereas the subspace spanned by the columns
of Q2 corresponds to the non-in”uential subspaceN I ; i.e.,

I = col (Q1), (2.25a)

N I = col (Q2), (2.25b)

where col (·) is the column space.1 Since obtaining C may be analytically prohibitive
in certain cases, [28] proposes computing C and the in”uential spaces via a sampling-
based scheme described in Algorithm 2.1.

2.6.2 Computing the In”uential Space via Active Subspaces

The process model can be so complex that the analytical expression for the matrix C
is intractable. In [ 28], a sampling-based Monte-Carlo approach is proposed to approx-

1Note that [ 28] refers to (2.25a) as theactivesubspace, and to (2.25b) as theinactivesubspace.
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Algorithm 2.1

Step 1: Draw N independent samples � j from � using the probability density � .

Step 2: For each sample� j , compute the gradient � � f (� j ).

Step 3: Compute

�C =
1
N

N

�
j= 1

�
� � f (� j )

� T �
� � f (� j )

�
.

Step 4: Compute the eigendecomposition of matrix �C to obtain �Q

�C = �Q ��
�

�Q
� T

, �Q = [ �q1 · · · �qn�
], and �� = diag( �� 1, . . . , �� n� ).

Step 5: Select the in”uential and non-in”uential space by partitioning the matrix �Q

�Q1 = [ �q1 · · · �qm], �Q2 = [ �qm+ 1 · · · �qn�
],

m : �� m 
 �� m+ 1 ,

I = col
�

�Q1

�
, N I = col

�
�Q2

�
.

imate C. It is recommended to scale the inputs u and parameters � so that they lie
between Š1 and 1. Based on the approximations �C and �Q, the in”uential and non-
in”uential spaces are computed by means of Algorithm 2.1. The algorithm computes
the approximation �C by randomly sampling the parameter space and computing the
function gradient at each of the samples. The gradient samples are then aggregated to
form the matrix �C whose eigenvalue decomposition reveals the active subspace.

2.6.3 Suf“cient Summary Plots

Suf“cient summary plots (SSP), “rst proposed in [ 30], are powerful v isualizatio n tools
that help identify a low-dimensional structure in a function of several parametric quan-
tities. The suf“cient summa ry plot generalizes t he idea of plotting the quantity of
interest (such as output of a scalar function f ) against a linear combination of the
parametric variables, � T � , where � � Rn� . If � is a canonical basis vector (a vector of
zeros with a one in a single entry), then the suf“cient summary plot becomes a simple
scatter plot, such as those described in Section 1.2.3 in [112]. The choice of the linear
combination vector � is important, as the right value can reveal a univariate trend, if
present. The univariate trend indicates that the quantity of interest can be treated like
a function of a single variable given by � T � .
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Figure 2.1 … Suf“cient summary plots.

Example 2.1. Consider the following mapping

f = exp (0.8� 1 + 0.2� 2), � = [ � 1, � 2]T . (2.26)

To illustrate the concept of SSPs, two values for� are chosen as� 1 = [ 0.8, 0.2]T and � 2 =
[Š0.2, 0.8]T with � T

1 � 2 = 0. Now assume that� belongs to the hypercube[Š1, 1]2 and is
uniformly distributed. The parameter vector� is randomly sampled and the function mapping
is evaluated at each of the random sample. Each parametric sample� j is then projected on� 1

and � 2. The function samples fj are plotted against the projections in the SSPs plotted in the
Figure 2.1. A univariate trend appears in the left plot in Figure 2.1a, whereas no trend emerges
when plotted for� 2 in Figure 2.1b. This implies that the function f can be considered as a
function of a single variable.

The parameter directions that can reveal a trend in low dimensions can be found
via active subspaces. If the active subspace is computed for the function in Example
2.1, then the space spanned by� 1 is returned as the in”uential space I and the non-
in”uential space N I is spanned by � 2. In general, if the active subspace of a function
mapping is one- or two-dimensional, then SSPs can be drawn to con“rm its presence.
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3 Measure only the KKTs that Matter

In the presence of plant-model mismatch, constraint and gradient estimation is pivotal
in meeting the plant KKT conditions. However, estimating the plant gradient informa-
tion requires experiments, where the plant is sequentially perturbed in every input
direction. This procedure consumes a lot of time as a continuously operating plant
needs to settle to its new steady-state (or a batch operation needs to “nish) after each
perturbation.

The experimental cost of gradient estimation can be reduced by relying more on
the model and understanding how the model gradient behaves when the model pa-
rameters are perturbed. This requires parametric sensitivity analysis of the model
NCOs, in particular, of the model Lagrangian gradient. Such analysis often yields a
partitioning of the input space into two subspaces. One of the subspaces has a high
sensitivity to parametric perturbations, while the other has relatively low sensitivity.
Therefore, for the purpose of the estimation of the plant gradient, the low-sensitivity
input space can be discarded and the plant gradient is estimated only in the highly
sensitive input space.

Input-space partitioning can be achieved by local parametric sensitivity analysis,
as proposed in [31, 33]. The resulting set of sensitive input directions are called priv-
ilegeddirections. When the parameters are locally perturbed, the model-Lagrangian
gradient varies a lot along privileged directions and, therefore, relying on the model
gradient along these directions causes sub-optimality. Hence, the model gradient is
corrected only along privileged directions, that is, the plant gradient is estimated only
in the low-dimensional input space spanned by the privileged directions. As a result,
the experimental cost of gradient-estimation is signi“cantly reduced. A directional
modi“er-adaptation (DMA) scheme is proposed in [ 33] that exploits local parametric
sensitivity-based privileged directions. The gradients of the model cost and constraint
functions are partially corrected via appropriate modi“er terms.

However, when the model dependence on the parameters becomes increasingly
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nonlinear, computing privileged directions via local sensitivity analysis may not lead
to meeting the plant KKT conditions. There fore, under large parametric uncertainty,
local analysis becomes insuf“cient in capturing the correct set of privileged directions.
This chapter extends the concept of DMA to cover the case where the parametric
uncertainty is not local, but belongs to a fairly large uncertainty set. In this case, it is
argued that correcting the gradients only in the privileged directions identi“ed of”ine
via local sensitivity analysis may result in signi“cant su b-optimality. In stead, it is
proposed here to perform a global sensitivity analysis using ideas derived from active
subspaces.

Thus, in addition to measuring the KKT elements corresponding to the local values
of the plant constraints that come at no extr a experimental cost, this chapter proposes
to measure the plant gradient information in the low-dimensional privileged direc-
tions that are discovered via global sensitivity analysis. This way, the total number of
measured KKT elements are reduced.

This chapter is structured as follows. Sections 3.1 and 3.2 present the background
explaining the concept of privil eged directions followed b y a recap of the DMA algo-
rithm. Section 3.3 presents the mathematical tools required to compute the privileged
directions via global sensitivity analysis. Section 3.4 proposes an RTO methodology„
active directional modi“er-adaptation (ADMA) algorithm that discovers privileged
directions computed via global sensitivity analysis. Section 3.5 compares different
privileged-direction-based modi“er-adaptation schemes in simulation studies of two
different batch-to-batch optimization problems. Sectio n 3.6 discussesthe computa-
tional complexity of performing global sensitivity analysis and proposes two alterna-
tive methods for discoverin g privileged directions that are computationally cheaper.
Section 3.6 also compares one of the alternative methods to the previously proposed
method of computing privileged directions on the same simulation studies described
in Section 3.5. Finally, Section 3.7 summarizes the chapter.

3.1 Concept of Privileged Directions

The main idea behind privileged directions is to “nd the set of a few input directions
along which the model Lagrangian gradient is highly sensitive to parametric varia-
tions. Therefore, instead of correcting the full gradient, only the directional derivative
is corrected along a few input-directions. The dimension nr of the privileged direc-
tions space is usually small compared to the input dimension nu. Hence, estimating
the plant directional derivative require fewer “nite-difference-steps leading to a reduc-
tion in the experimental cost of plant gradient estimation. To this end, directional
derivative is de“ned as follows

De“nition 3.1 (Directional Derivative) . Consider a continuously differentiable function
f (u). The directional derivative of f in any directionr � Rnr contained in an input sub-
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space is de“ned as

� W f (u) :=
� f (u + W r)

� r









r= 0

, (3.1)

with � W f � R1× nr , andW � Rnu× nr is a matrix with rank nr. Note that

� W f (u) = � u f (u)W . (3.2)

Example 3.1. To illustrate the concept of privileged directions, consider the following uncon-
strained optimization problem

L (u, � ) = ( 2 � 1 + � 2) u1u2 + � 3 with u = [ u1, u2]T and� = [ � 1, � 2, � 3]T . (3.3)

The Lagrangian gradient atu1 = [ 1, 1]T reads

� uL (u1) = [ 2 � 1 + � 2, 2� 1 + � 2].

The directional derivatives in the input directions[Š1, 1]T and[1, 1]T are

� uL (u1) [Š1, 1]T = 0 and � uL (u1) [1, 1]T = 2(2 � 1 + � 2).

Evidently, at u1, the gradient is highly sensitive to parametric perturbations along the input
direction[1, 1]T , whereas it is insensitive along the input direction[Š1, 1]T . Thus, correcting
the model gradient uniquely along the privileged direction[1, 1]T is suf“cient.

3.2 Directional Modi“er Adaptation

In Directional Modi“er Adaptation (DMA) 1, the sensitivity of the model Lagrangian
gradient is evaluated with respect to local parametric variations. This local parametric
sensitivity is evaluated only once at the model optimum and thus, the procedure is
performed of”ine. In DMA, the local sensitivity matrix A� � Rnu× n� is computed as
follows:

A� := � u� L (u� , µ� , � 0) =
� 2L

� � � u









u� , µ� , � 0

, (3.4)

where µ� are the Lagrange multipliers corresponding to the nominal solution u� . Sin-
gular value decomposition of A� gives

A� = WSVT , (3.5)

1DMA is not a contribution of this thesis. It was originally proposed by Costello et al. in [ 33].
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Algorithm 3.1 Directional Modi“er Adaptation (DMA) [ 33].

Step 0 (Initialization) : Compute the nominal solution u� and the corresponding La-
grange multipliers µ� by solving Problem (2.2) for � = � 0. Evaluate the sensitiv-
ity matrix A� in (3.4), perform singular value decomposition and determine the
privileged directions W r.
Set the initial values of the modi“ers to zero, � G

0 = 0, � �
0 = 0 and � Gi

0 = 0,
and the values of the “lter matrices K� , K � and KGi (typically diagonal matrices)
with eigenvalues in the interval (0, 1]. Also, set arbitrarily u0 = 0.

for k = 0 � � .

Step 1 (Optimization) : Solve the modi“ed model-based Problem (2.10) for � = � 0 to
compute the optimal inputs uk+ 1.

Step 2 (Plant evaluation) : Apply uk+ 1 to the plant and collect the measurements
yp(uk+ 1). Use these measurements to compute� p(uk+ 1) and Gp(uk+ 1).

Step 3 (Estimation of directional derivatives) : Estimate the directional derivative of
the plant cost � W r � p(uk+ 1) and of the constraints � W r Gp,i (uk+ 1), i = 1, . . . ,ng,
as per (3.4)-(3.1). Atuk+ 1, the full gradients are computed as

�� u � p(uk+ 1) := � u� (uk+ 1, � 0)
�
I nu Š W rW +

r

�
+ � W r � p(uk+ 1)W +

r ,

with � � { � , Gi } , and W +
r the Moore-Penrose pseudo-inverse of W r.

Step 4 (Modi“er update) : Update the modi“ers using “rst-order “lters

� G
k+ 1 = ( I ng Š K� )� G

k + K� � Gp(uk+ 1) Š G(uk+ 1, � 0)
�
,

� �
k+ 1 = ( I nu Š K� )� �

k + K� � �� u � p(uk+ 1) Š � u � (uk+ 1, � 0)
� T

,

� Gi
k+ 1 = ( I nu Š KGi )� Gi

k + KGi
� �� uGp,i (uk+ 1) Š � uGi(uk+ 1, � 0)

� T
, i = 1, . . . ,ng.

end

where W � Rnu× nu is an orthonormal matrix whose columns w i, i = 1, . . . ,nu, are the
left singular vectors of A� ; S � Rnu× n� is a rectangular diagonal matrix whose diagonal
elements si, i = 1, . . . ,ns with ns = min { nu, n� } , are the singular values of A� ; and
V � Rn� × n� . Through the singular values of A� , one can rank the input directions
w i according to their sensitivity with respect to local parametric perturbations. The
reduced matrix W r � Rnu× nr , with nr < nu, can be constructed as

W r = [w1 · · · w nr ] : snr+ 1 � snr , (3.6)

i.e., a large gap between the consecutive singular values is exploited to construct W r.
At each RTO iteration, the directional derivatives are estimated only in the privilegeddi-
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rections spanned by the columns of W r. Note that the number of privileged directions
for DMA satis“es the following condition

nr � min { nu, n� } . (3.7)

The DMA scheme is summarized in Algorithm 3.1. Past studies have shown a
signi“cant reduction in the experimental cost of gradient estimation when DMA is
applied. For instance, DMA has been applied to perform RTO on an airbone-wind
energy system [32, 33]. Therein, DMA signi“cantly reduces the input space from 40
to 2 dimensions for the purpose of gradien t estimation. Yet, the optimality loss is
only 5 percent despite adapting the gradients in only two directions (in the other 38
directions, nominal model gradients are used).

Nevertheless, by no means can it be expected that a local sensitivity analysis would
systematically yield a good approximation to glo bal sensitivities. Moreover, DMA
computes the privileged directions only once at the model optimum. But, during
the RTO iterations, the value of input u and the Lagrange multipliers µ change, and
thereby, the model Lagrangian sensitivity changes. Hence, the privileged directions
found at the model optimum is no more the correct set of directions. In such a case,
adapting the gradients in the privileged directions found of”ine by DMA may result
in signi“cant optimality loss. In order to address this issue, we propose an online
procedure for determining the privileged directions via a global sensitivity analysis
carried out at each RTO iteration.

3.3 Discovering Privileged Directions via Global Sensitivity
Analysis

To discover privileged directions under large parametric uncertainty, sensitivity con-
cepts similar to the ones that form the backbone of active subspaces are utilized [118,
119]. In active subspaces the parameters are perturbed to discover a low-dimensional
structure in the parameter spacethat is responsible for the most variability in the model
output. Here too the parameters are perturbed. However, instead of exploring pa-
rameter space, a low-dimensional structure in the input spaceis discovered. This low-
dimensional input subspace is such that along it, the projection of the Lagrangian
gradient of the model varies a lot. Therefore, the model gradient can not be trusted in
this low-dimensional subspace and hence, plant measurements are required to make
appropriate corrections.

Consider a twice differentiable function f : U × � � R, where U � Rnu , � � Rn�

and � is a bounded and connected set. Let the probability density function of �
be � (� ). Also, consider that � (� ) is strictly positive and bounded for � � � and
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Chapter 3. Measure only the KKTs that Matter

� (� ) = 0 for � /� � , so that the focus is only on the parameter values of interest.
Assume that � and � are such that the components of � are independent with mean
zero and scaled according to their range. Such a normalization ensures that each
parameter component is given equal importance. In addition, assume that the matrix

� u� f (u, � ) := � 2 f (u,� )
� � � u � Rnu× n� is bounded, that is,

||� u � f (u, � )|| � L, L > 0 � u � U , � � � ,

where || · || is the Frobenius norm.

Next, consider the matrix Ak � Rnu× nu as

Ak =
�

�

�
� u � f (uk, � )

��
� u � f (uk, � )

� T
� d� . (3.8)

It follows that each element of Ak is the average of the product of partial double
derivatives (it is assumed that the partial double derivatives exist)

aij ,k =
�

�

n�

�
l= 1

	
� 2 f (u, � )

�� l � ui









uk


	
� 2 f (u, � )
�� l � uj









uk



� d� , i, j = 1, . . . ,nu, (3.9)

where aij ,k is the (i, j) element of Ak; � l is the l th element of � ; and ui is the i th element
of u. The matrix Ak is positive semi-de“nite since

� T Ak � =
�

�

�
� T � u� f (uk, � )

��
� T � u� f (uk, � )

� T
� d� � 0 � � � Rnu .

Moreover, as Ak is symmetric, we can write

Ak = W k � k W T
k , � k = diag(	 1,k, . . . ,	 nu ,k), 	 1,k � · · · � 	 nu,k � 0, (3.10)

where W k � Rnu× nu is an orthonormal matrix whose columns w i,k, i = 1, . . . ,nu, are
the normalized eigenvectors of Ak.

Lemma 3.1 (Singhal et al. [119]). For all uk � U , it holds that

�

�








wT

i,k � u � f (uk, � )







 2

� d� = 	 i,k, i = 1, . . . ,nu, (3.11)

where	 i,k is the eigenvalue corresponding to the eigenvectorw i,k of Ak.

Proof. The de“nition of 	 i,k implies

	 i,k = wT
i,k Ak w i,k,
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which can be written as

	 i,k = wT
i,k

	 �

�

�
� u � f (uk, � )

��
� u � f (uk, � )

� T
� d�



w i,k

=
�

�

�
wT

i,k � u� f (uk, � )
��

wT
i,k � u� f (uk, � )

� T
� d�

=
�

�








wT

i,k � u� f (uk, � )







2

� d� .

It follows from this lemma that, if the eigenvalue 	 i,k = 0, then

wT
i,k � u� f (uk, � ) = 0, � � � � . (3.12)

Integrating (3.12) with respect to � , and using the fundamental theorem of calculus,
gives

	 i,k = 0, =� � u f (uk, � ) w i,k = c, c � R, � � � � . (3.13)

In other words, the lemma implies that the directional derivative of f (with respect to
u at uk) in the direction w i,k is constant regardless of the value of the parameter � (as
long as � � � ).

The matrix W k can be split into two submatrices, the matrix W 1,k � Rnu× nr and the
matrix W 2,k � Rnu× (nuŠ nr) , whereby W 1,k contains the eigenvectorsw i,k corresponding
to the nr non-zero eigenvalues and the matrix W 2,k collects the remaining eigenvectors
corresponding to the zero eigenvalues.

W k =
�
W 1,k W 2,k

�
,

W 1,k = [w1,k · · · w nr,k] : 	 1,k � · · · � 	 nr ,k > 0, nr � nu,

W 2,k = [wnr + 1,k · · · w nu,k] : 	 nr + 1,k = · · · = 	 nu,k = 0.

(3.14)

The directional derivative � W 1,k f computed at uk can not be trusted as it is highly
sensitive to the parametric perturbations. On the other hand, parametric perturbations
have minimal impact on the directional derivative � W 2,k f computed at uk. Therefore,
input directions given by the columns of the matrix W 1,k are chosen as the set of
privileged directions.

Comparison of Active Subspaces and Privileged Directions

At this point, privileged directions computed via global sensitivity analysis may be
confused with the active subspaces. Indeed, the derivation of active subspaces in
Lemma 2.3 is similar to Lemma 3.1. Both the privileged di rections and the active
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Table 3.1 … Comparison of Active Subspaces and Privileged Directions.

Active subspaces
Privileged directions via

global sensitivity analysis
The goal is to “nd

only few directions in Rn�

that best describes
variability in f

upon perturbing �

The goal is to “nd
only few directions in Rnu

that best describes
variability in � u f
upon perturbing �

� is considered
a random variable

� is considered
a random variable

Sensitivity � u f is
not considered

Sensitivity � u f local
in u is considered

Low-dimensional structure
in � is discovered

Low-dimensional structure
in u is discovered

subspaces involve “nding sensitivity with respect to the random variable � .

However, active subspace concentrate exclusively on “nding a low-dimensional
structure in the parameter spacethat best quantify the variability of the output of a
given function f to large parametric perturbations. Moreover, in the computation of
active subspace the sensitivity � u f with respect to the input variable is not considered.

On the other hand, privileged directions found via global sensitivity analysis ad-
ditionally deals with the local sensitivity in the input u. Here, input variable u is not
considered a random variable and is independent of � . A low-dimensional structure
is discovered in the input spacethat locally quanti“es the variability of the function
output to large parametric perturbations. The main features of the two concepts are
summarized in Table 3.1.

3.4 Active Directional Modi“er Adaptation

Ideally, privil eged directions should be chosen such that they capture the maximum
variability of the Lagrangian gradient with respect to parametric perturbations [ 118,
119]. As parametric perturbations get large, the local sensitivity analysis conducted in
DMA may not be able to yield such directio ns. Therefore, it is proposed to “nd the
set of privileged directions based on the following global sensitivity matrix Ak

Ak =
�

�

�
� u � L (uk, µk, � )

��
� u � L (uk, µk, � )

� T
� d� . (3.15)
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Then, the resulting privileged direction matrix W 1,k in (3.14) is used to update the
modi“ers as follows

� G
k = Gp(uk) Š G(uk, � 0), (3.16a)

(� �
k )T = �� u � p(uk) Š � u � (uk, � 0), (3.16b)

(� G
k )T = �� uGp(uk) Š � uG(uk, � 0), (3.16c)

where the gradients �� u � p(uk) and �� uGp(uk) are updated as

�� u � p(uk) = � u � (uk, � 0)( I nu Š W 1,kW
+
1,k) + � W 1,k� p(uk)W

+
1,k, � � { � , Gi } ,

(3.17)

where � W 1,k � p(uk) is the directional derivative of � p at uk in the directions given by
the columns of the matrix W 1,k, and W +

1,k is the Moore-Penrose pseudo-inverse ofW 1,k.
For the sake of simplicity, the “lter matrices used in Algorithm 3.1 are dropped from
the modi“ers in (3.16). Updating the modi“ers using “rst-order “lters does not affect
the validity of the result s presented hereafter.

3.4.1 KKT Matching under Parametric Plant-Model Mismatch

Further developments are based on the following technical assumptions.

Assumption 3.1 (Parametric plant-model mismatch) . Let � p � � be the vector of true
plant parameters such that

� (u, � p) = � p(u), (3.18a)

G(u, � p) = Gp(u), (3.18b)

where� is a bounded and connected set in which� lies with the probability density function
� .

Assumption 3.2 (Exact plant directional derivatives) . At each RTO iteration k, exact plant
directional derivatives are available for the cost and constraint functions in the directions given
by the columns of the matrixW 1,k.

Assumption 3.3 (Exact sensitivity information) . The matrixAk in (3.15)is exactly known
at each RTO iteration k.

Theorem 3.2. (Plant optimality upon convergence) Consider the optimization Problem
(2.10)with the modi“ers(3.16)and the gradient updates(3.17)with W 1,k satisfying(3.14). Let
Assumptions 3.1-3.3 hold. Also, assume that� 0 � � . If the iterative solution to this problem
converges to the “xed point(u� , � G

� , � �
� , � G

� ), with u� being a KKT point of Problem(2.10),
thenu� is also a KKT point for the plant Problem(2.1).
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Proof. The modi“ers take the following values upon convergence to u�

� G
� = Gp(u� ) Š G(u� , � 0), (3.19a)

(� �
� )T = �� u � p(u� ) Š � u � (u� , � 0), (3.19b)

(� G
� )T = �� uGp(u� ) Š � uG(u� , � 0). (3.19c)

The KKT conditions at u� for Problem (2.10) read

Gm,� (u� ) � 0, (3.20a)

µT
� Gm,� (u� ) = 0, µ� � 0, (3.20b)

� u � m,� (u� ) + µ� � uGm,� (u� ) = 0. (3.20c)

From (2.10), (3.19) and (3.20), one can write

Gp(u� ) � 0, (3.21a)

µT
� Gp(u� ) = 0, µ� � 0, (3.21b)

�� u � p(u� ) + µT
�

�� uGp(u� ) = 0. (3.21c)

Next, consider (3.17) at u�

�� u � p(u� ) = � u � (u� , � 0)( I nu Š W 1,� W +
1,� ) + � W 1,� � p(u� )W +

1,� .

It follows from (3.2) that

�� u � p(u� ) = � u � (u� , � 0)( I nu Š W 1,� W +
1,� ) + � u � p(u� )W 1,� W +

1,� ,

�� u � p(u� ) = � u � (u� , � 0)(W � W T
� Š W 1,� W +

1,� ) + � u � p(u� )W 1,� W +
1,� ,

�� u � p(u� ) = � u � (u� , � 0)(W 1,� W T
1,� + W 2,� W T

2,� Š W 1,� W +
1,� )

+ � u� p(u� )W 1,� W +
1,� .

Since the matrix W 1,� has orthonormal columns, W +
1,� = W T

1,� , and

�� u � p(u� ) = � u � (u� , � 0)W 2,� W T
2,� + � u � p(u� )W 1,� W T

1,� . (3.22)

Similarly, for the constraints, one can write

�� uGp(u� ) = � uG(u� , � 0)W 2,� W T
2,� + � uGp(u� )W 1,� W T

1,� . (3.23)

Using (3.22), (3.23) and (3.21c) gives:

� uL (u� , µ� , � 0)W 2,� W T
2,� + � uL p(u� , µ� )W 1,� W T

1,� = 0, (3.24)

where L p(u� , µ� ) = � p(u� ) + µT
� Gp(u� ).

36



3.4. Active Directional Modi“er Adaptation

We know from Lemma 3.1 that the directional derivatives of the Lagrangian are
constant in the directions given by the columns of the matrix W 2,� , since the corre-
sponding eigenvalues are zero. We also know that these directional derivatives are
independent of the parameter values � � � . Hence,

� uL (u� , µ� , � 0)W 2,� = � uL (u� , µ� , � p)W 2,� = c � R1× (nuŠ nr) . (3.25)

It follows from (3.24), (3.25) and Assumption 3.1 that

� uL p(u� , µ� )(W 2,� W T
2,� + W 1,� W T

1,� ) = 0, (3.26a)

� uL p(u� , µ� )(W � W T
� ) = 0, (3.26b)

� uL p(u� , µ� ) = 0. (3.26c)

Then, from Equations (3.21a), (3.21b) and (3.26c), we conclude thatu� is a KKT point
of the plant Problem (2.1).

Remark 3.1. An implicit assumption in Theorem 3.2 is that the matrixAk has at least one
eigenvalue equal to zero. However, it may happen in practice that none of the eigenvalues
is exactly zero. Instead, some eigenvalues are small compared to others and can be discarded
without much information loss. Note that, if the matrixAk has no eigenvalues that can be
discarded, the partitioning(3.14)givesW 1,k = W k, andADMA reduces to standardMA .

3.4.2 Practical Aspects of ADMA

This section discusses some of the features of the ADMA algorithm that are pivotal to
its performance in practical applications.

Computation of �Ak and �W k

The available process models are often too complex for allowing the derivation of
analytical expressions for the matrices Ak and W k. For these cases, we propose to
estimate these matrices from data using a sampling-based Monte-Carlo approach. It
is recommended to scale the inputs and parameters so that they lie between Š1 and
1. The estimates �Ak and �W k are computed via the steps given in Algorithm 3.2. The
sample size N should be chosen such that increasing N has a negligible effect on the
eigenvalues of the matrix �Ak.

Formal Difference Between DMA and ADMA

An alternative approach based on singular value decomposition (SVD) can be used to

compute the eigenpairs of �Ak. Note that we can write �Ak = �Bk �B
T
k , where the matrix
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Algorithm 3.2 Computation of matrices �Ak and �W k

Step 1: Draw N independent samples � j from � using the probability density � .

Step 2: Compute the (nu × n� )-dimensional sensitivity matrix of the Lagrangian gra-
dient (for example, via forward “nite differences)

� u � L ( j)
k :=

� 2L
� � � u

(uk, µk, � j ), j = 1, . . . ,N.

Step 3: Compute �Ak as follows

�Ak =
1
N

N

�
j= 1

�
� u� L ( j)

k

��
� u � L ( j)

k

� T
. (3.27)

Step 4: Compute the eigenvalue decomposition of �Ak to obtain �W k

�Ak = �W k �� k �W
T
k .

�Bk � Rnu× n� N is

�Bk =
1

�
N

�
� u� L (1)

k · · · � u� L (N)
k

�
. (3.28)

Applying SVD to �Bk and using the well-known relation of SVD to eigenvalue decom-
position gives:

�Bk = �W k �Sk �V
T
k , with �Sk �S

T
k = �� k. (3.29)

This allows comparing the SVDs performed in DMA and in ADMA. In the former,
SVD is performed on the sensitivity matrix A� that is evaluated for the nominal pa-
rameters � 0. In the latter, SVD is performed on the matrix �Bk that stacks the local
sensitivity matrices evaluated at N randomly chosen realizations of the parametric
uncertainty into a single matrix, thereby representing global sensitivity.

The sensitivity matrix A� is local in both the inputs u and the parameters � . In
contrast, the sensitivity matrix �Ak (or �Bk) is local in the inputs u but global in the
parameters � . If the model Lagrangian is linear in the parameters, then the sensitivity
matrices A� and �Ak are equal when computed for the same inputs, that is, when
computed at (u� , µ� ) = ( uk, µk).

Example 3.2. To verify whether �Ak successfully captures the global sensitivities with respect
to � , in particular when the model Lagrangian is a nonlinear function of the parameters, and
to compare the performance of�Ak to that of A� , let us consider the following exemplary La-
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grangian function

L (u, � ) = exp(� 1u1 + � 2u2) + � 2
3 (u3 + u4) + � 2 (0.5u3 Š u4), (3.30a)

Š1 � ui � 1, i = 1, . . . , 4. (3.30b)

The only constraints are the input bounds that are obviously independent of the parameters� .
Therefore, the dependency of the Lagrangian on the Lagrange multipliersµ is omitted in this
example.

It is assumed that all the elements of the vector� = [� 1, � 2, � 3]T are uniformly distributed
in the interval [Š2, 0]. The sensitivity matrixA� is constructed from the knowledge of� 0 =
[ Š 0.5, Š0.5, Š0.1]T and u� = u1 = [1, 1, 1, Š1]T . The matrix �A1 is constructed using
Algorithm 3.2 on the basis of N= 1000Monte-Carlo samples. Note that, as n� = 3 and nu =
4, therefore, the singular value decomposition performed onA� � R4× 3 give three singular
values and four left singular vectors, whereas the eigenvalue decomposition of�A1 � R4× 4

obviously results in4 eigenvalues and4 eigenvectors.

Ideally, the magnitude of the singular value (eigenvalue) should quantify the sensitivity of
the directional derivative computed in the direction given by the singular vector (eigenvector).
That is, if the parameters are perturbed, then the directional derivative along the singular vector
(eigenvector) with largest singular value (eigenvalue) should have the largest variance.2

To test if the singular values actually order the singular vectors according to their variance,
the gradient� uL (u1, � j ) is evaluated for all1000Monte-Carlo samples. Each sampled gradi-
ent is then projected onto each of the left singular vectors ofA� . The resulting projections are
plotted in the middle and bottom plots of Figure 3.1a. These plots represent the sensitivities
of the directional derivatives to parametric perturbations, with the vertical width of each plot
being a measure of variance. The squared singular values are plotted in the top plot of Figure
3.1a. As seen in Figure 3.1a, the directional derivative along the singular vectorw1 does not
have the highest variance. In fact, the directional derivative alongw2 has the highest variance.
Thus, the two singular vectors are not correctly ordered as the magnitude of the singular values
do not correspond to the variance magnitudes along the vectors.

The sampled gradients are also projected onto the eigenvectors of�A1 (the left singular
vectors of �B1) and the resulting projections are shown in the middle and the bottom plots
of Figure 3.1b. The eigenvalues of�A1 are plotted in the top plot of Figure 3.1b. Here, the
eigenvalue magnitude quanti“es the parametric sensitivity of� uL in the direction given by
the corresponding eigenvector. One sees that the eigenvectors of�A1 are ranked correctly by the
corresponding eigenvalues.

2Note that, as the parameters are considered to be random variables, the model-Lagrangian gradient
� uL is a random variable. Hence, the directional derivatives are random variables as well.
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Figure 3.1 … (a)Top plot: Squared singular values of matrix A� . Middle and bottom
plots: Directional derivatives computed at � j , j = 1, . . . ,N, along the left singular
vectors of A� . The plotted data is mean centered. (b) Top plot: Eigenvalues of the
matrix �A1. Middle and bottom plots: Directional derivatives computed at � j , j =
1, . . . ,N, along the eigenvectors of �A1. The plotted data is mean centered.

Choice of Privileged Directions

The aforementioned analysis indicates that the privileged directions can also be chosen
based on the variance of the directional derivatives. The variance along the direction
d � Rnu is computed as

Var
�
� uL k d

�
=

1
N

N

�
j= 1




 � uL ( j)

k d Š m



2

with m =
1
N

N

�
j= 1

� uL ( j)
k d. (3.31)

For the numerical example at hand , the variance is computed from N = 1000 Monte-
Carlo samples and plotted in Figure 3.2. One sees that the variance does not decrease
monotonically for t he left singular vectors of A� , whereas it decreases monotonically
for the eigenvectors of �A1. A monotonic variance decrease indicates that the eigen-
values are ranking the eigenvectors in the right order. To determine the privileged
directions, a threshold value on the variance is “xed at 10 Š2, and the directions that
result in a variance larger than the threshold value are chosen as privileged directions.
A variance smaller than 10Š2 indicates that the parametric changes do not cause a
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Figure 3.2 … Variance plot for the sensitivity matrices A� and �A1 computed for the
example (3.30).

signi“cant change in the gradients along that direction and, therefore, the gradient
errors along that direction are relatively small. The global sensitivity matrix �A1 yields
nr = 2 privileged directions, namely �w1,1 and �w2,1, whereas the local sensitivity ma-
trix A� yields nr = 3 privileged directions, namely w1, w2 and w3. Hence, the global
sensitivity matrix �A1 “nds a smaller set of privileged directions , thereby reducing the
number of required plant experiments for gradient estimation. At the same time, �A1

ensures that the gradient errors due to parametric perturbations are small along the
neglected directions.

Often, one selects the maximal number of privileged directions, nmax, so as to
upperbound the experimental budget per RTO iteration. Then, on the basis of the
eigenvalues �	 i,k, the variance Var

�
� uL k d

�
and nmax, one can choose the number of

privileged directions nr using one of the following two criteria:

Criterion 1

nr = min { i, nmax} : �	 i+ 1,k � �	 i,k , (3.32)

Criterion 2

nr = min { i, nmax} : Var
�
� uL k �w i,k

�
� vmin and Var

�
� uL k �w i+ 1,k

�
< vmin ,

(3.33)

where nmax and the threshold variance v min are user-de“ned parameters. The matrix
of privileged directions �W 1,k then becomes

�W 1,k = [ �w1,k · · · �w nr,k]. (3.34)
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Chapter 3. Measure only the KKTs that Matter

Evaluation of Plant Directional Derivatives

In practice, one often relies on “nite differences to evaluate the plant gradients. To
reduce the number of plant experiments for gradient estimation, well-excited plant
measurements obtained at past RTO iterations can be used. To this end, the optimiza-
tion objective and the gradient estimation objective are combined by enforcing duality
constraints at the RTO layer [15, 84]. Furthermore, estimating gradients from noisy
measurements can be reliably achieved by quadratic-approximation of the plant map-
ping [ 58]. For a comparative study of different gradient estimation techniques in RTO,
we recommend the paper by [ 81]. The different approaches mentioned here can also
be exploited to estimate the plant directional derivatives de“ned in (3.1).

Structural Plant-Model Mismatch

Assumption 3.1 regarding parametric plant-model mismatch may not be met in prac-
tice. In the case of structural plant-model mismatch, ADMA still drives the plant
toward optimalit y in the subspace given by the priv ileged directions. The following
theorem does not require Assumption 3.1.

Theorem 3.3. (Plant optimality limited to privileged directions) Consider the optimiza-
tion Problem(2.10) with the modi“ers(3.16) and the gradient updates(3.17). Also, assume
that � 0 � � . Let Assumptions 3.2 and 3.3 hold. If the iterative solution to this problem con-
verges to the “xed point

�
u� , � G

� , � �
� , � G

�

�
, with u� being the KKT point of Problem(2.10),

thenu� is also a KKT point for the plant in the directions given by the columns of the matrix
W 1,� .

Proof. See [33].

The Algorithm

The proposed ADMA algorithm is summarized in Algorithm 3.3.

3.5 Simulation Studies

The proposed approach is illustrated next via the simulation of two semi-batch reac-
tors.

3.5.1 Williams-Otto Semi-Batch Reactor

ADMA is applied to the problem of run-t o run (batch-to-batch) optimization of the
Williams-O tto semi-batch reactor described in [ 111, 132]. The following reactions take
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Algorithm 3.3 Active Directional Modi“er Adaptation (ADMA)

Step 0 (Initialization) : Set the initial values of the modi“ers to zero, � G
0 = 0, � �

0 = 0

and � Gi
0 = 0, and the values of the “lter matrices K� , K � and KGi (typically

diagonal matrices) with eigenvalues in the interval (0, 1]. Also, set arbitrarily
u0 = 0 and select values for nmax and vmin . and set the values of nmax and
vmin . Scale the parameters� such that the scaled parametric uncertainty range is
[Š 1, 1].

for k = 0 � �

Step 1 (Optimization) : Solve the modi“e d optimization Pro blem (2.10) for � = � 0 to
generate the optimal inputs uk+ 1 and the corresponding Lagrange multipliers
µk+ 1.

Step 2 (Plant evaluation) : Apply uk+ 1 to the plant and collect the measurements
yp(uk+ 1). Use these measurements to evaluate� p(uk+ 1) and Gp(uk+ 1).

Step 3 (Computation of privileged directions) : Compute �W k+ 1 using Algorithm 3.2

and the privileged direction matrix �W 1,k+ 1 using either Criterion 1 in (3.32) or
Criterion 2 in (3.33).

Step 4 (Estimation of directional derivatives) : Estimate the directional derivatives of
the plant cost � �W 1,k+ 1

� p(uk+ 1) and of the constraints � �W 1,k+ 1
Gp,i (uk+ 1), i =

1, . . . ,ng. At uk+ 1, the full gradients are computed as

�� u � p(uk+ 1) := � u � (uk+ 1, � 0)( I nu Š �W 1,k+ 1 �W
+
1,k+ 1) + � �W 1,k+ 1

� p(uk+ 1) �W
+
1,k+ 1,

with � � { � , Gi } , and �W
+
1,k+ 1 the Moore-Penrose pseudo-inverse of �W 1,k+ 1.

Step 5 (Modi“er update) : Update the modi“ers using “rst-order “lters

� G
k+ 1 = ( I ng Š K� )� G

k + K� � Gp(uk+ 1) Š G(uk+ 1, � 0)
�
,

� �
k+ 1 = ( I nu Š K� )� �

k + K� � �� u � p(uk+ 1) Š � u � (uk+ 1, � 0)
� T

,

� Gi
k+ 1 = ( I nu Š KGi )� Gi

k + KGi
� �� uGp,i (uk+ 1) Š � uGi (uk+ 1, � 0)

� T
, i = 1, . . . ,ng.

end

place in the reactor

A + B
k1Š� C,

C + B
k2Š� P + E,

P + C
k3Š� G.
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Chapter 3. Measure only the KKTs that Matter

Reactant A is initially pr esent in the reactor, whereas reactantB is continuously fed
during the batch. As a result of the exothermic reactions, the desired products P and
E and the side product G are formed. The heat generated by the exothermic reactions
is removed via a cooling jacket, whose temperature is controlled by manipulating the
cooling water temperature. The model equations and parameter values are given in
the Appendix A.1.

The objective is to maximize the revenue generated by selling the products pro-
duced at the end of the batch, while respecting path constraints on the inlet ”owrate
of reactant B (FB), the reactor temperature (Tr ), the reactor volume (V) and the cool-
ing water temperature ( Tw). The manipulated variables are the time-varying pro“les
FB(t) and Tw(t). The dynamic opti mization problem can be written mathematically as
follows

max
FB(t),Tw(t)

PP mP(tf ) + PE mE(tf) (3.35a)

s.t. model equations (A.1) (3.35b)

0 � FB(t) � 5.784 kg/s (3.35c)

V(t) � 5 m3 (3.35d)

20� C � Tw(t) � 100� C (3.35e)

60� C � Tr (t) � 90� C. (3.35f)

The batch time tf is “xed at 1000 seconds. Problem (3.35) is transformed into a Nonlin-
ear Program (NLP) via direct single shooting. This is done by discretizing the input
in time over ncs control stages. For each time interval, the dynamic input variables are
parametrized using low-order polynomials. Each time-varying input is parametrtized
using ncs = 40 piecewise-constant values. This results in the input dimension nu = 80.

In this simulation study, the plant is substituted by a simulated reality. The sim-
ulated reality is then treated as a black box and it is assumed that the concentration
measurements of the formed products are available only at the “nal batch time tf . This
permits the simulat ed reality to act as a real system/plant.

The experimental cost of evaluating the plant gradients via “nite differences is
found as follows

Experimental cost per RTO iteration = Total no. of privileged directions × Batch time.

This implies that the cost to evaluate the full plant gradients is nu × tf . However, with
the DMA and ADMA algorithms, only the derivatives in the privileged directions
need to be evaluated, with the experimental cost nr × tf.

Plant-model mismatch is introduced by considering parametric uncertainty in the
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Figure 3.3 … Williams-Otto reactor. Shaded area: infeasible region.Top plots: Input
variables: dashed lines: model optimal solution; solid lines: plant optimal solution.
Middle plots: Constrained output variables: model optimal solution. Bottom plots:
Constrained output variables: dashed lines: plant at the model optimal solution; solid
lines: plant at the plant optimal solution.

values of the activation energies b1 and b2 and the pre-exponential factors a1 and a2.
The parameter values and their uncertainty ranges are given in Table 3.2. The optimal
input pro“les obtained by solving Problem (3.35) for both the nominal model and
the plant are shown in the top plots of Figure 3.3. As seen in the “gure, the model

Table 3.2 … Williams-Otto reactor: Plant-model mismatch.

Parameter
Plant
value

Nominal model
value

Uncertainty
range

Probability
distribution

b1 (K) 6000 6666.7 [5334, 8000] uniform
b2 (K) 8333.3 8750 [7500, 9166] uniform

a1 (sŠ1) 1.6599· 106 1.8259· 106 [1.4109· 106, 1.9089· 106] uniform
a2 (sŠ1) 7.2117· 108 6.8511· 108 [6.1299· 108, 8.2935· 108] uniform
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Figure 3.4 … Williams-Otto reactor. Plant input and output pro“les upon convergence
with different RTO methods. Top plots: MA. Middle plots: DMA. Bottom plots:
ADMA.

and plant solutions are quite different. The optimal revenue for the plant is 3.14 · 106.
However, upon applying the model solution to the plant, a sub-optimal revenue of
1.66· 106 is obtained.

The optimal input pro“les for the plant are assumed to be unknown. Hence, the
goal of the different RTO methods is to improve upon the sub-optimal revenue result-
ing from applying the model optimal solution. The best RTO method is the one that
requires the minimal experimental effort to reach plant optimality.

At “rst, MA with full gradient estimates is implemented. The top plots in Fig-
ure 3.4 show the input and output pro“les obtained with MA upon convergence. Al-
though MA starts from the input sequences given by the model solution, it is able
to identify the correct set of constraints that are active at the plant optimum, thereby
reaching the maximal possible revenue. However, MA requires full gradient estima-
tion and, thus, incurs a large experimental cost at each RTO iteration, which makes
the application of this type of MA prohibitive in practice.
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Figure 3.5 … Williams-Otto reactor: Comparison of the sensitivity matrices A� and
�A1. (a) Triangle , � : Squared singular values of A� . Circle , � : Eigenvalues of �A1.

(b) Triangle , � : d = w i, the left singular vectors of A� . Circle , � : d = �w1,i , the
eigenvectors of �A1.

To implement the DMA and ADMA algorithms, the sensitivity matrices A� and �Ak

are constructed. The number of Monte-Carlo samples for constructing �Ak is N = 200.
The number of privileged directions is determined successively based on Criteria 1
and 2 in (3.32) and (3.33). To this end, the values ofnmax and vmin are “xed at 4 and 1,
respectively.

Criterion 1. The squared singular values of A� and the eigenvalues of �A1 at the
model solution at k = 1 are plotted in Figure 3.5a. Notice that there is a large gap
between the second and third singular values of A� . Hence, based on Condition
(3.6) or (3.32), the number of privileged directions for DMA can be “xed at nr = 2.
However, for the same gap, the number of privileged directions with �A1 is more than
nmax = 4. Hence, for a fair comparison between DMA and ADMA, we “x the number
of privileged directions for both algorithms at 4.

Criterion 2. The number of privileged directions can also be determined on the
basis of variance values as described by (3.33). The variances associated with both the
left singular vectors of A� and the eigenvalues of �A1 are plotted in Figure 3.5b. It is
seen that the variances associated with the left singular vectors of A� do not exhibit a
monotonic decrease except for the “rst few left singular vectors. In contrast, the vari-
ances associated with the eigenvectors of �A1 show a monotonic decrease. The median
and the minimal value of the variance for �A1 are 0.51 and 1.1· 10Š15, respectively. In
comparison, the median and the minimal values of the variance for A� are 2.3· 108

and 6.7 · 105, respectively. Hence, the eigenvectors of �A1 give a much better orthog-
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Figure 3.6 … Willliams-Otto reactor: Revenue evolution of the plant with different RTO
methods.

onal decomposition of the input space, which is able to capture most of the global
sensitivity in a relatively low number of directions. The threshold vmin = 1 is not very
useful here as it retains all 80 directions for DMA and 40 directions for ADMA. Hence,
Criterion 2 also gives nr = 4 for both DMA and ADMA. In the ADMA algorithm, we
then keep the number of privileged directions “xed at 4 for every RTO iteration for the
sake of comparison with DMA. The sets of 4 privileged directions computed by DMA
and ADMA at the “rst RTO iteration are different as the model Lagrangian is a highly
nonlinear function of the model parameters b1 and b2. Note that the 4 privileged di-
rections in ADMA change from one iteration to the next due to the re-computation of
�Ak at each iteration.

Upon application of DMA Algorithm 3.1, the plant input and output pro“les
reached upon convergence are shown in the middle plots of Figure 3.4. Although
DMA successfully “nds the optimal water temperature pro“le, it is unable to “nd
the optimal pro“le for the feedrate of B. Obviously, adapting the gradients in the 4
privileged directions foun d by DMA is not suf“cient to reach plant optimality as the
gradient uncertainty along these directions is not suf“ciently representative. The bot-
tom plots of Figure 3.4 show the input and output pro“les obtained with the ADMA
Algorithm 3.3. As seen, ADMA successfully reaches the plant optimal pro“les (see
also Figure 3.6). This indicates that most of the gradient errors lie along the 4 privi-
leged directions of ADMA.

The comparison of the different MA-based RTO methods is summarized in Ta-
ble 3.3. As MA requires full gradient estimation, one must have 80 batches to evaluate
the plant gradients at each RTO iteration. That amounts to 22.23 hours of waiting
time per RTO iteration. This experimental time is reduced by applying DMA, which
requires directional derivatives to be computed in only 4 directions, thus, needing
only 4 batches, which reduces the experimental cost to 1.12 hours. However, the max-
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Table 3.3 … Williams-Otto reactor: Comparison of different RTO methods.

RTO
method

Per RTO iteration
Revenue

(·106)
No. of privileged

directions, nr

Avg. computational time
of sensitivity matrix

Experimental
cost

MA 80 Š 22.23 h 3.14

DMA 4
0 s (A� computed
only once of”ine)

1.12 h 2.13

ADMA 4
90.92 s (�Ak computed

via Algorithm 3.2)
1.12 h 3.14

imal revenue reached by DMA is only 2.13 · 106. ADMA, on the other hand, gives
an optimal revenue of 3.14 · 106, while incurring the same experimental cost as DMA.
This increase in revenue is made possible by the matrix �Ak that requires on average a
computational time of 90.92 s per RTO iteration when computed via Algorithm 3.2. 3

3.5.2 Diketene-Pyrrole Reaction System

Next, the performances of different RTO methods are compared on the run-to-run
optimization of a semi-batch reactor given in [109] or [ 22]. The reaction system is the
acetoacetylation of pyrrole with diketene and consists of following reactions:

A + B
k1Š� C,

2B
k2Š� D,

B
k3Š� E,

C + B
k4Š� F.

The model equations, the initial conditions and the concentration of B in the feed
used in this simulation study are given in A.2. The objective is to maximize the yield
of product C, while penalizing large changes in the feedrate FB of reactant B. The

3Simulations were conducted on a MacBook Pro with 2.5 GHz intel Core i7 processor. The software
used is CasADi [4] version 3.2.3 in MATLAB version R2016a.
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optimization pro blem can be written mathematically as

max
FB(t)

cC(tf )V(tf ) Š 

� tf

0
F2

B(t) dt (3.36a)

s.t. model equations (A.2) (3.36b)

cB(tf ) � cmax
B (3.36c)

cD(tf ) � cmax
D (3.36d)

0 � FB(t) � Fmax
B . (3.36e)

The values of the “nal batch time tf, the maximal inlet ”owrate Fmax
B , the maximal

concentrations of speciesB and D at “nal time and the value of the weight 
 are given
in Table A.2. The problem is formulated as an NLP by using a piecewise-constant
discretization of the input FB(t) comprised of 50 control stages. Hence, the input
dimension is nu = 50.

Structural plant-model mismatch is introduced by ignoring the third and fourth
reactions in the model, that is, by taking k 3 = 0 and k4 = 0 for the model. Also, it is
assumed that the model parameters k1 and k2 are uncertain and uniformly distributed
within the ranges corresponding to ± 20% of the nominal values. The mismatch con-
sidered and the uncertainty ranges are given in Table 3.4. The optimal solutions for
the model and the plant are shown in the top plot of Figure 3.7. The two input pro“les
are quite different from each other. The evolution of the model cB(t) and cD(t) at the
model optimal solution is shown in the middle plots of Figure 3.7. The bottom plots of
Figure 3.7 show the evolution of the plant cB(t) and cD(t) obtained upon application
of both the model and the plant optimal solutions. It is observed that the terminal
constraint on the concentration of reactant B is not at its upper limit for the plant
when the model optimal solution is applied. The model optimal solution applied to
the plant result in a su b-optimal y ield of 0.3865 moles, whereas the plant optimal y ield
is 0.5050 moles.

Table 3.4 … Kinetic parameters for Diketene-pyrrole reaction.

Parameter
Plant
value

Nominal model
value

Uncertainty
range

Probability
distribution

k1 (Lmol Š1min Š1) 0.053 0.053 [0.0424, 0.0636] uniform
k2 (Lmol Š1min Š1) 0.128 0.128 [0.1024, 0.1536] uniform

k3 (min Š1) 0.028 0 - -
k4 (Lmol Š1min Š1) 0.001 0 - -
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Figure 3.7 … Diketene-pyrrole reaction. Top plots: Input pro“le: dashed line: model
optimal solution; solid line: plant optimal solution. Middle plots: Output variables
that are constrained at “nal time: model optimal solution. Bottom plots: Output variables
that are constrained at “nal time: dashed lines: plant response at the model optimal
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Since only two parameters k1 and k2 are uncertain, the local sensitivity matrix A�

generates 2 privileged directions as per Condition (3.7). The variances along the left
singular vectors of A� are plotted in Figure 3.8b. It is seen that the variances along
remaining 48 directions do not decrease monotonically and, thus, m ore privileged
directions cannot be selected. To construct �Ak via Algorithm 3.2, the number of Monte-
Carlo samples is “xed at N = 100. Here, in contrast to the previous case study, we
do not “x the number of privileged directions in ADMA; instead, we apply Criterion
1 in (3.32) at each RTO iteration by “xing nmax = 4. The eigenvalues and variances
computed at k = 1 are plotted in Figure 3.8. Criterion 1 gives 2 privileged directions
at the “rst RTO iteration for ADMA. In this example, the two privileged directions
found by DMA and ADMA are the same, which results from the fact that the model
Lagrangian is only a weakly nonlinear function of the parameters k 1 and k2. Note
that these 2 privileged directions are less privilegedat the next iterations since the
privileged directions change with the input FB(t) from iteration to iteration. However,
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Figure 3.8 … Diketene-pyrrole reaction: Comparison of the sensitivity matrices A� and
�A1. (a) Triangle , � : Squared singular values of A� . Circle , � : Eigenvalues of �A1.

(b) Triangle , � : d = w i, the left singular vectors of A� . Circle , � : d = �w1,i , the
eigenvectors of �A1.

since ADMA recomputes the privileged directions at each RTO iteration, it is able
to always work with the most appropriate set of privileged directions. The number
of privileged directions found at each RTO iteration using Criterion 1 is plotted in
Figure 3.10b.

The input and output pro“les reached upon convergence with MA, DMA and
ADMA are shown in Figure 3.9. The evolution of the yield with the different RTO
methods is shown in Figure 3.10a. Clearly, DMA exhibits a slig ht sub-optimality,
whereas the MA and ADMA algorithms conve rge to plant opti mality (at least as far as
the yield value is concerned) despite the presence of signi“cant plant-model mismatch.

The performance of the different RTO methods is compared in Table 3.5. MA
with full gradient estimation reaches th e optimal y ield of 0.5050 moles at the large

Table 3.5 … Diketene-pyrrole reaction: Comparison of different RTO methods.

RTO
method

Per RTO iteration
Yield
(mol)

No. of privileged
directions, nr

Avg. computational time
of sensitivity matrix

Experimental
cost

MA 50 Š 208.34 h 0.5050

DMA 2
0 s (A� computed
only once of”ine)

8.34 h 0.5009

ADMA 2 to 3
5.43 s (�Ak computed
via Algorithm 3.2)

8.34 to 12.5 h 0.5049
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Figure 3.9 … Diketene-pyrrole reaction: Plant input and output pro“les upon conver-
gence with different RTO methods. Top plots: MA. Middle plots: DMA. Bottom
plots: ADMA with �Ak computed via Algorithm 3.2.
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Figure 3.10 … Diketene-pyrrole reaction: Batch-to-batch evoluti on of the opti mization
strategy. (a) Yield evolution for different RTO methods. (b) Number of privileged
directions at successive iterations.
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experimental cost of 208.34 hours per RTO iteration. DMA signi“cantly reduces the
experimental cost to 8.34 hours per RTO iteration, but reaches a “nal yield of only
0.5009 moles. In comparison, ADMA nearly reaches optimal y ield at an experimental
cost of 8.34 to 12.5 hours. The average computational cost of �Ak is 5.43 seconds. ADMA
gives the best performance as it comes very close to the plant optimum at a relatively
low experimental cost. The computer and software used to perform the simulations
are the same as in the previous case study.

3.6 Computational Aspects of Privileged Directions

Computation of the sensitivity matrix �Ak is an expensive task as it involves calculating
the sensitivity of the model-Lagrangian, “rst with respect to inputs and then, with
respect to the parameters, at each parameter sample. If the sensitivity computations
are done via forward “nite differences, then the computational cost of obtaining the
privileged directions with �Ak is

Number of model Lagrangian evaluations = ( nu + 1) × (n� + 1) × N.

The above cost increases with increasing input and parameter dimensions. To reduce
the computational costs, an alternative sensitivity matrix Āk is proposed that requires
only Lagrangian gradient evaluations at each parameter sample.

Āk =
�

�

�
� uL k Š m̄

� T �
� uL k Š m̄

�
� d� , (3.37a)

with � uL k := � uL (uk, µk, � ) and m̄ =
�

�

�
� uL k

�
� d� (3.37b)

Under the assumption that the gradient vector � uL (u, � ) := � L (u,� )
� u � R1× nu is bounded,

that is,

||� uL (u, � )|| � L, L > 0 � µ � R
ng

� 0, u � U , � � � ,

where || · || is the Euclidean norm, then, the properties of Āk are explored in the
following lemma:

Lemma 3.4. For all µk � R
ng

� 0 and for alluk � U , it holds that

�

�

	
�
� uL k Š m̄

�
w̄ i,k


 2

� d� = 	̄ i,k, i = 1, . . . ,nu, (3.38)

where	̄ i,k is the eigenvalue corresponding to the eigenvectorw̄ i,k of Āk.
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Proof. The de“nition of 	̄ i,k implies that

	̄ i,k = w̄T
i,k Āk w̄ i,k

which can be written as

	̄ i,k = w̄T
i,k

	 �

�

�
� uL k Š m̄

� T �
� uL k Š m̄

�
� d�



w̄ i,k

=
�

�

	
�
� uL k Š m̄

�
w̄ i,k


 T 	
�
� uL k Š m̄

�
w̄ i,k



� d�

=
�

�

	
�
� uL k Š m̄

�
w̄ i,k


 2

� d� .

If an eigenvalue 	̄ i,k = 0 then from the above lemma we have

�
� uL k Š m̄

�
w̄ i,k = 0,

�
� uL k)w̄ i,k = m̄ w̄ i,k = c̄ � R . (3.39)

This implies that if an eigenvalue is zero then the parametric variations have no impact
on the value of the model Lagrangian-gradient•s projection along the corresponding
eigenvector. Therefore, the model gradient is not need to be corrected along this
eigenvector!

Lemma 3.4 has another interesting property that the eigenvalue 	̄ i,k is indeed the
variance of the random quantity � uL k w̄ i,k. Note that m̄ is the mean value of the
Lagrangian gradient over the admissible parameter set � . Therefore, its projection on
the eigenvector w̄ i,k is the mean directional-derivative. Hence, the integral in (3.38)
computes the variance of the directional derivative � uL k w̄ i,k.

The matrix W̄ k can be split into two submatrices, the matrix W̄ 1,k � Rnu× nr and the
matrix W̄ 2,k � Rnu× (nuŠ nr) as follows:

W̄ k =
�
W̄ 1,k W̄ 2,k

�
, (3.40a)

W̄ 1,k = [w̄1,k · · · w̄ nr,k] : 	̄ 1,k � · · · � 	̄ nr ,k > 0, nr � nu, (3.40b)

W̄ 2,k = [w̄nr + 1,k · · · w̄ nu,k] : 	̄ nr + 1,k = · · · = 	̄ nu,k = 0. (3.40c)

3.6.1 Alternative Method for Com puting Privileged Directions

With the help of Lemma 3.4, the privileged directions are found directly from the
model Lagrangian gradient without explicitly computing its parametric sensitivity.
Indeed, the eigenvalue decomposition of the matrix Āk reveals the set of privileged di-
rections as the eigenvectors of Āk that constitutes W̄ 1,k. As these eigenvectors have the
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Algorithm 3.4 Computing approximation of Āk as �̄Ak

Step 1: Draw N independent samples � j from � using the probability density � .

Step 2: Compute the nu-dimensional vector of the Lagrangian gradient at each sam-
ple:

� uL ( j)
k :=

� L
� u

(uk, µk, � j ), j = 1, . . . ,N.

Step 3: Compute the mean of the sampled gradients

�̄m =
1
N

N

�
j= 1

�
� uL ( j)

k

�
.

Step 4: Compute �̄Ak as follows

�̄Ak =
1
N

N

�
j= 1

�
� uL ( j)

k Š �̄m
� T �

� uL ( j)
k Š �̄m

�
. (3.41)

Step 5: Compute the eigenvalue decomposition of matrix �̄Ak to obtain �̄W k

�̄Ak = �̄W k
�̄� k

�̄W
T
k .

Step 6: Choose the privileged directions as the “rst nr columns of the matrix �̄W k

�̄W 1,k = [ �̄w1,k · · · �̄w nr ,k],

nr = min { i, nmax} : �̄	 i+ 1,k � �̄	 i,k ,

where nmax is the user de“ned upper bound on the number of privileged direc-
tions

largest eigenvalues (which is same as variance for Āk), the gradient projections along
them have the highest variability with respect to the parametric variations, whereas
the gradient projections along the eigenvectors in W̄ 2,k are insensitive to the parametric
variations. The variance of the gradient projections along W̄ 2,k is zero as eigenvalues
are zero.

As the complexity of the process models may prohibit to analytically obtain the
matrix Āk, a procedure to approximate Āk is detailed in the Algorithm 3.4. Note that
it is computationally much less expensive to approximate �̄Ak as only the derivative
with respect to the input u is required to be computed at each sample.
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Figure 3.11 … Williams-Otto reactor: Comparison of the sensitivity matrices �A1 and �̄A1.
(a) Circle , � : Eigenvalues of �A1. Plus, + : Eigenvalues of �̄A1. (b) Circle , � : d = �w1,i ,
the eigenvectors of �A1. Plus, + : d = �̄w1,i , the eigenvectors of �̄A1.

Case Studies Revisited

Performance of the two sensitivity matrices �Ak and �̄Ak is compared in the simulation
studies of the Williams-O tto reactor and Diketene-Pyrrole reaction system.

Williams-Otto semi-batch reactor: Proposed ADMA algorithm is applied to the
semi-batch reactor with the privileged directions computed via �̄A. For comparison,
the number of privileged directions is again “xed to 4. At 1 st RTO iteration, the eigen-
values and the variances computed for the two sensitivity matrices are plotted in the
Figure 3.11. The variance plots show that the eigenvectors of the two sensitivity matri-
ces have approximately the same variance distribution. The eigenvalue plots show that
the eigenvectors for both the matrices are appropriately ranked. Note that the variance
values in the right plot and the eigenvalues in the left plot are the same for �̄Ak. The
application of ADMA algorithm with privileged directions obtained via �̄Ak also lead
to the plant-optimum. The ADMA performance using different sensitivity matrices is
compared in the Table 3.6. Both sensitivity matrices lead to the similar performance

Table 3.6 … Williams-Otto reactor: Summary of different RTO methods.

RTO method

Per RTO iteration
Revenue

(·106)
No. of privileged

directions, nr

Avg. computation time
of sensitivity matrix

Experimental
cost

ADMA with �Ak

computed via Algo. 3.2
4 90.92 s 1.12 h 3.14

ADMA with �̄Ak

computed via Algo. 3.4
4 7.57 s 1.12 h 3.14
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Figure 3.12 … Diketene-pyrrole reaction: Comparison of the sensitivity matrices �A1

and �̄A1. (a) Circle , � : Eigenvalues of �A1. Plus, + : Eigenvalues of �̄A1. (b) Circle , � :
d = �w1,i , the eigenvectors of �A1. Plus, + : d = �̄w1,i , the eigenvectors of �̄A1.

except for the computation time required to obtain the matrices. Computation of the
sensitivity matrix �̄Ak takes only 7.57 seconds per RTO iteration as compared to 90.92
seconds consumed in the computation of �Ak. The number of RTO iterations required
to reach plant optimality with �Ak and with �̄Ak is 23 and 25, respectively.

Diketene-Pyrrole reaction system: At RTO iteration k = 1, the eigenvalues and
variance of the gradient projection on the eigenvectors for the two sensitivity matrices
are plotted in the Figure 3.12. The eigenvalue gap between the second and the third
eigenvalues in the left plot of the “gure reveals 2 privileged directions for both the
matrices. Here too, the variance plot show that the variances are similarly distributed
over the eigenvectors of �A1 and �̄A1. Results of applying ADMA in this study using
different sensitivity matrices is compared in the Table 3.7. The ADMA algorithm
performs similarly with either of the sensitivity matrices. The principle difference
is in the computation time, �̄Ak consumes 0.55 seconds on average per RTO iteration
whereas sensitivity matrix �Ak consumes 5.43 seconds. Both sensitivity matrices take 7
RTO iterations to reach plant optimality.

Table 3.7 … Diketene-Pyrrole reaction system: Summary of different RTO methods.

RTO method

Per RTO iteration
Yield
(mol)

No. of privileged
directions, nr

Avg. computation time
of sensitivity matrix

Experimental
cost

ADMA with �Ak

computed via Algo. 3.2
2 to 3 5.43 s 8.34 to 12.5 h 0.5049

ADMA with �̄Ak

computed via Algo. 3.4
2 to 3 0.55 s 8.34 to 12.5 h 0.5049
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3.6.2 A Second Alternative that Exploits Active Subspace

The computational expense of computing privileged directions is directly proportional
to the dimension of the parameter space n� . The parameter space can be reduced
by taking into account only those parameters that actually in”uence the model La-
grangian function (and thereby, its gradient in u). The set of parameters that have no
in”uence on the Lagrangian function can then be discarded for computing the privi-
leged directions. If the number of in”uential parameters is considerably less than n�

than the computational cost of obtaining privileged directions is reduced proportion-
ally.

To divide the parameter space into in”ue ntial and non-in”uential parameters, the
concept of active subspaces is utilized. At a given (uk, µk), the global sensitivity of the
model Lagrangian can be approximated that results in a low-dimensional structure in
the parameter space called active subspace. However, computing active subspace itself
can be computationally intensive as it involves evaluating gradients of the Lagrangian
function in the parameter space (i.e., � � L ) at each random sample of the parameter.
Fortunately, [ 28] proposed a linearization technique that can reduce the computational
cost of discovering active subspaces. To capture the gradient information, the primary
interest is only in local behavior. Therefore, a local linear model can be “tted on a
subset of random parameter samples. Instead of computing gradients directly, the
“tted linear model provides the approximate gradient. Algorithm 3.5 computes the
active subspaces by “tting local linear models. The choice of the sample sizes M and
N̄ in Algorithm 3.5 are detailed in [ 28]. The active subspace matrix �Q1,k computed at
(uk, µk) leads to the in”uential parameter space � r 
 Rm by performing the following
linear transformation

� r = ( �Q1,k)
T � , � r � � r , � r = ( �Q1,k)

T � . (3.42)

As m � n� , computing privileged directions using Algorithm 3.2 with sampling
only in the reduced space � r . The sensitivity matrix in Step 2 of Algorithm 3.2 is
calculated only with respect to � r . The overall Lagrangian evaluations required for
obtaining the privileged directions using active subspaces would then be

�
(1 + nu) ×

(1 + m) × M̄
�

+ N̄, where M̄ < N. Note that as only m parameters are utilized for
sensitivity computations, therefore, the total number of random samples required in
Algorithm 3.2 reduces to M̄ .

Comparison of Different Computational Methods

There is a signi“cant advantage of “nding the privileged directions via the matrix �̄Ak

in Algorithm 3.4 as compared to “nding the privileged directions via �Ak in Algorithm
3.2. It is computationally much less expensive to approximate �̄Ak as only the derivative
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Algorithm 3.5 Active subspace estimation with local linear models [ 28].

Step 1: Choose M > N̄ and an integer n such that n < N̄.

Step 2: Draw N̄ independent samples { � j } from � according to the probability den-

sity � and compute L ( j)
k := L (uk, µk, � j ) for each sample.

Step 3: Draw M independent samples { �̄ l } from � according to � .

Step 4: For each �̄ l , “nd the n points from the set { � j } nearest to �̄ l ; denote this set by
¯� l . Let L l be the subset of {L ( j)

k } that corresponds to the points in ¯� l .

Step 5: Use least squares to “t the coef“cients al and bl of a local linear regression
model,

L ( j)
k � al + bT

l � j , � j � ¯� l , L ( j)
k � L l .

Step 6: Compute the corresponding sensitivity matrix �Ck and its eigenvalue decom-
position

�Ck =
1
M

M

�
l= 1

bl bT
l = �Qk

�� k
�

�Qk

� T
, �Qk = [ �q1,k · · · �qn� ,k], and �� k = diag( �� 1,k, . . . , �� n� ,k).

Step 7: Select the active subspace as the columns of the matrix �Q1,k obtained by parti-

tioning �Qk as

�Q1,k = [ �q1,k · · · �qm,k], �Q2,k = [ �qm+ 1,k · · · �qn� ,k], m : �� m,k 
 �� m+ 1,k .

with respect to the input u is required to be computed at each sample.

Similarly, “nding priv ileged directions by computing sen sitivities only with respect
to the active subspace also reduces the computational cost signi“cantly as it reduces
the number of parameters for sensitivity computation. The reduction of computa-
tional burden via active subspaces is demonstrated on the optimization of the fuel-cell
system case study which is detailed in Chapter 5 (see Table 5.6).

If the sensitivity computations are done via forward “nite differences, then the
computational costs of obtaining the privileged directions via the three proposed meth-
ods are summarized in the Table 3.8.
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Table 3.8 … Comparison of different computational methods if the sensitivities are
computed via forward “nite differences.

Method Total evaluations of the model Lagrangian
Algorithm 3.2 with

full parameter space
(nu + 1) × (n� + 1) × N

Algorithm 3.4 (nu + 1) × N
Algorithm 3.2 with
active subspaces via

Algorithm 3.5

�
(nu + 1) × (m + 1) × M̄

�
+ N̄, M̄ < N, m � n�

3.7 Summary

Plant gradient estimation is vital to the performance of explicit-RTO schemes such
as MA. Plant gradient estimation with large input dimensions become challenging as
excessive plant experiments are required when the plant i s sequentially (and locally)
perturbed in each input direction. This need for information-rich plant data at each
RTO iteration renders the MA scheme prohibitive in practical applications.

To overcome this issue, it is proposed to rely more on the model predictions of
the KKT conditions. To gain con“dence in the model, parametric perturbations are
made that single-out the most sensitive components in the model gradient. To this
end, a local sensitivity analysis of the model-Lagrangian gradient can be performed
that reveals a handful of input directions. These directions are called privil eged direc-
tions. The model gradient along the privileged directions cannot be trusted and, thus,
requires plant-based corrections. Consequently, the plant gradient is estimated only
in the privileged-direction space, thereby reducing the experimental cost signi“cantly.

However, the local sensitivity analysis gets erratic when the model gradient is
a nonlinear function of the parameters. In this case, the local sensitivity analysis
does not reveal the appropriate set of privileged directions. Moreover, the gradient
is obviously a function of inputs and, thus, as the input value changes from one
RTO iteration to the other, the gradient sensi tivity also changes. Therefore, sensitivity
analysis done at the initial input value does not hold at the successive iterations.

This chapter addresses the aforementioned issues. Here, it is proposed to “nd
the set of privileged directions via a global sensitivity analysis that is inspired by
the active subspace theory. This global sensitivity analysis is used to rank the input
directions in terms of the sensitivity of the model gradient with respect to the large
parametric variatio ns, thus revealing the correct set of privileged directions. These
privileged directions are such that the gradient projection on them has a relatively
large variance with respect to the parametric perturbations. Moreover, the proposed
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sensitivity analysis is performed at each RTO iteration, thereby improving the accuracy
of the analysis.

The proposed improvements in discovering the privileged directions result in a
novel RTO methodology called ADMA. The effectiveness of the ADMA scheme is
demonstrated on the run-to-ru n optimization of two differen t semi-batch reactors. It
is shown that ADMA offers a nice balance between experimental cost and achieved
performance when compared to both, MA with full gradient estimation, and DMA
based on local sensitivities.

In addition, this chapter address the important issue of computational complexity
in obtaining the global sensitivity information. To reduce the computational burden
of computing the global sensitivity, two alternatives to the initially introduced method
in Algorithm 3.2 are proposed.

In the “rst alternative, the computational expense of “nding privileged directions
via global sensitivity analysis is reduced by computing only the model Lagrangian gra-
dient � uL at the random samples of model parameters. Unlike in Algorithm 3.2, the
parametric sensitivity � u � L of the sampled gradients is not computed. Instead, the
parametric sensitivity � u � L is approximated by subtracting the mean value from each
gradient sample. The resulting privileged directions are such that they contribute the
most to the variance of the model gradient. An interesting property of the method is
that the variance of the directional derivative computed along the eigenvector is equal
to its eigenvalue. The proposed alternative approach of computing global sensitivity
has been tested on the simulation studies showing a considerable improvement in the
computational time.

The second alternative considers the case when the parameter space is large. The
computational effort of the sensitivity matrix � u � L is directly proportional to the
number of parameters. Therefore, reducing the parameter space directly impacts the
computational time. To reduce the parameter space, the concept of active subspace
is directly applied. Active subspace “nds a low-dimensional structure in parameter
space that causes the most variability in the output of interest. Therefore, the active
subspace of the model Lagrangian is computed by “tting (computationally inexpen-
sive) local linear models to the sampled data. The resulting algorithm drastically
reduces computational effort required for discovering privileged directions.
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4 Generalized Model Adaptation

In the previous chapter, the handles utilized to offset the identi“ed model de“cien-
cies are the modi“ers. Modi“ers are able to successfully match the model-plant KKT
conditions since they are designed for the very same purpose. However, modi“er cor-
rections remain local in inputs and have no impact on the predictions of the original
model. Moreover, measurement noise makes it dif“cult to obtain accurate plant gradi-
ent estimates [58, 80]. Since the “rst-order modi“ers are linear in the plant gradients,
the measurement noise impacts the numerical opti mization via modi“ers.

On the other hand, adapting the model parameters � , instead of modi“ers, has
its own bene“ts. For instance, adjusting model parameters impact the model in the
whole input space and not just locally. Moreover, parameters may favorably impact
the curvature information, thereby potent ially increasing the con vergence rate to the
optimum [ 2]. Also, through a simulation study, it is shown in [ 80] that the noise
in process data can be better handled by adapting model parameters. In addition,
adapting model parameters is strongly advocated when the model is expected to be
structurally correct in the sense that there exists parameter values such that the model
and the plant have matching outputs and gradients.

However, since process models are not tailored to predict the KKT conditions,
there may not exist a one-to-one mapping between model parameters and constraint
and gradient quantities. That is, one parameter may simultaneously in”uence multi-
ple constraints and/or gradient components. Moreover, another parameter may have
little to no impact on any of these quantities. Consequently, a model may be inad-
equate for independently meeting the KKT conditions. However, to the best of the
author•s knowledge, there has been only a little attempt [ 22] to establish whether
a given process model provides such a one-to-one mapping; and if not, then what
speci“c elements of the KKT conditions are the models able to affect by parametric
adjustment.

The main contribution of this chapter is investigating and quantifying the interac-

63



Chapter 4. Generalized Model Adaptation

tion between model parameters and KKT conditions, thereby revealing to which extent
independent satisfaction of the KKT conditions is possible. To this end, an equivalence
between the modi“ers and the model parameters is established that results in the dis-
covery of mirror parameters. Mirror parameters are the model parameters that mimic
the role played by modi“ers towards successful KKT matching between the model and
the plant. Hence, the mirror parameters can be directly adapted instead of the modi-
“ers. For the cases with too few mirror parameters for independent KKT matching, it
is proposed to additionally rely on modi“ers.

A further contribution of this chapter is in establishing synergies between privi-
leged directions and model parameters. As privileged directions result from analyz-
ing the impact of parametric perturbations, there may exist a subset of parameters
that contribute most towards “nding privileged directions. Consequently, the model
gradients along privileged directions can be matched via the adjustment of dedicated
parameters.

The chapter is organized as follows: Section 4.1 introduces the property of struc-
tural independence that enables one-to-one, KKT to modi“er mapping in MA. This
section then provides a procedure to analyze if the model parameters can provide the
same ”exibility. Finally, it proposes an RT O scheme for KKT matching. Section 4.2
proposes to compensate with modi“ers when the models lack enough parameters for
independent KKT matching. Section 4.3 proposes methods to match the KKT con-
ditions only partially when the models lack suf“cient parameters for complete KKT
matching and the experimental cost of complete matching is considered too high. In
such a case, it is proposed to match only the privileged KKT quantities via a com-
bination of parameter and modi“er adaptation. Section 4.4 illustrates the proposed
concepts via a simulation steady of the Williams-Otto plant operated at steady state.
Finally, Section 4.5 provides the summary.

4.1 Matching all KKTs via Parametric Adjustments

The Lagrangian gradient and the constraints of the model and the plant are required
to be adapted to ensure reaching plant optim ality. Theref ore, the vector constituting
these two quantities is de“ned as:

De“nition 4.1 (KKT vector and KKT elements) . The Lagrangian gradient and the con-
straint quantities that are required to be matched for the plant and the model are collected into
a single vector calledKKT vector. TheKKT vector for the model reads:

M k(� ) =
�
� uL k(� ), GT

k (� )
� T

� Rnu+ ng. (4.1)

The elementsM i,k, i = 1, . . . ,nu + ng, of theKKT vectorM k are called modelKKT elements.
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Similarly, M p,k is de“ned as the plantKKT vector and its elementsM p,i,k as the plantKKT
elements.

In the context of RTO, a highl y desirable property of a mo del is its abilit y to satisfy
the KKT conditions of the plant. That is, � can be adapted such that the plant and
the model KKT conditions are the same. This can be achieved by enforcing the KKT
matching via parameter adaptation as follows:

� k+ 1 � argmin
�








M k(� ) Š M p,k








 2

, (4.2)

where || · || is the 2-norm. A model can successfully match all the elements in M p,k if
it has the property of (global or local) structural correctness as de“ned below.

De“nition 4.2 (Structurally correct model) . In the context ofRTO, a model is said to be
globally structurally correct if there exists a� � � � such that the following conditions are
satis“ed

	
� L
� u




� �
=

� L p

� u
� u � U 
 Rnu , µ � Rng. (4.3a)

G(u, � � ) = Gp(u) � u � U . (4.3b)

On the other hand, a model is said to belocally structurally correct at (uk, µk) if there exists
� k+ 1 � Rn� such that the following conditions are satis“ed:

�
� uL k

�
� k+ 1

= � uL p,k, (4.4a)

(Gk)� k+ 1 = Gp,k, (4.4b)

or, (M k)� k+ 1
= M p,k. (4.4c)

Global structural correctness guarantees that the model-based problem (2.2) and
the plant problem (2.1) have essentially the same KKT point. How ever, the experimen-
tal cost of verifying global structural correctness is enormous, since this would require
to evaluate the plant and its gradients in the entire input space.

On the other hand, local structural correctness is a highly desired property in it-
erative RTO schemes, where the parameters are adjusted so as to locally match the
plant behavior. However, some parameters may be non-in”uential and, thus, unable
to satisfy (4.4). Moreover, a parameter may be in”uential for more than one element
of the KKT vector M k and, therefore, that KKT element can not be manipulated in-
dependently. Hence, one would like to examine whether adjusting model parameters
can in”uence the nu + ng KKT elements. To this end, the concept of structural inde-
pendence of a model is introduced.

Remark 4.1 (Relation to model adequacy). In the context ofRTO, model-adequacy require-
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ments have been described in [45] and discussed in detail in [82]. The so-called model-adequacy
criterion is ful“lled by a process model if there exist values of the parameter� such that the
model and the plant share the same local minimumu�

p. This implies that, in addition to the
KKT conditions, the second-order necessary conditions of optimality must also be satis“ed at
u�

p. However, a drawback of this criterion is thatu�
p is unknown and, therefore, it cannot be

veri“ed a priori.

In contrast, the property of global structural correctness guarantees that model parameter
values exist such that the model-adequacy criterion is met up to theKKT conditions, that is,
excluding the second-order optimality conditions. However, model adequacy does not imply
global structural correctness.

When onlyKKT conditions are considered, local structural correctness is the generalization
of the model adequacy criterion since model adequacy is de“ned only foru�

p. Also, model
adequacy does not imply local structural correctness to be met for a given input except atu�

p.

4.1.1 Structural Independence and Mirror Parameters

To examine whether adjusting model parameters can independentlyin”uence the nu +
ng KKT elements, the concept of structural independence is introduced.

De“nition 4.3 (Structurally independent model) . In the context ofRTO and assuming
n� � nu + ng, a model is said to be structurally independent at(uk, µk) if there exists a
bijective mappingTk : Rn� � Rn� such that the following conditions are satis“ed:

�
� L , � G, � c �

= Tk � , � L � Rnu , � G � Rng. (4.5a)
	

� 2L
� � L � u




uk, µk

= diag
�

f (1)
k (� L

1 ), . . . , f (nu)
k (� L

nu
)
�
, (4.5b)

	
� 2L

� � G � u




uk, µk

= 0, (4.5c)

	
� G
� � G




uk

= diag
�

f̄ (1)
k (� G

1 ), . . . , f̄
(ng)
k (� G

ng
)
�
, (4.5d)

	
� G
� � L




uk

= 0, (4.5e)

where f(i)
k : R � R , f̄ ( i)

k : R � R are scalar functions,� G
i and � L

i are the ith elements of the
vectors� G and � L , respectively.

In the above de“nition it is assumed that there exists values of � such that the
diagonal matrices in (4.5b) and (4.5d) are full rank. The following theorem shows that
structural independence is an inherent property of MA that enables it to locally match
with the plant KKT elements.
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Theorem 4.1 (In MA, structural independence � local structural correctness). The mod-
i“ed model(2.16)in MA is structurally independent at(uk, µk) and, thus, locally structurally
correct at(uk, µk).

Proof. Here the parameter � is replaced by the modi“er vector
�
� L

k , � G
k

�
and the bijec-

tive mapping Tk is taken as the identity matrix. Then, upon computing the sensitivity
with respect to the modi“ers of the modi“ed model in (2.16), the following equations
are obtained

	
� 2L m,k

� � L
k � u




uk, µk

= I nu , (4.6a)

	
� 2L m,k

� � G
k � u




uk, µk

= 0, (4.6b)

� Gm,k

� � L
k

= 0. (4.6c)

� Gm,k

� � G
k

= I ng, (4.6d)

where I nu is the nu-dimensional identity matrix and similarly, I ng is the ng-dimensional
identity matrix. This implies that the modi“ers in MA render the modi“ed model
structurally independent.

Integrating the sensitivity equations in (4.6) gives

� uL m,i,k = � L
i,k + ci,k, ci,k � R , i = 1, . . . ,nu, (4.7a)

Gm,i,k = � G
i,k + c̄i,k, c̄i,k � R , i = 1, . . . ,ng, (4.7b)

where � uL m,i,k and Gm,i,k are the ith components of the vectors � uL m,k and Gm,k, � L
i,k

and � G
i,k are the ith components of the vectors � L

k and � G
k , and ci,k and c̄i,k are constants.

Obviously, there exist modi“er values such that the plant and the modi“ed model
have locally matching Lagrangian gradient and constraints, that is,

� uL m,k = � uL p,k and Gm,k = Gp(uk).

KKT matching can be achieved if the model offers suf“cient degrees of freedom
for adaptation. In MA, the added modi“er terms provide t he required ”e xibility. The
nu + ng modi“ers in MA allows to independently manipulate the nu + ng KKT ele-
ments. Modi“ers are in fact tailored to enforce the KKT matching, since they make
the modi“ed model in (2.16) locally structurally correct. Moreover, in MA, the local-
structural correctness is veri“ed a priori, t hat is, modi“ers ensure that the Lagrangian
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gradient and the constraints of the model and the plant can be matched locally, no
matter how different the plant and the model mappings are.

Since, the modi“ed model in (2.16) is af“ne in modi“ers, local sensitivities of the
KKT conditions also represent the global sensitivities. The sensitivity equations (4.6)
imply that each of the nu + ng modi“er elements affects only the corresponding KKT
element and has no impact on the rest of the nu + ng Š 1 KKT elements. This decoupling
(facilitated by the modi“ers) enables independent KKT matching. Hence, the modi“ed
model in (2.16) is an ideal candidate for RTO.

However, if such an independent structure is already present in a given model,
then the modi“ers are not needed. That is, one can attempt to adjust the parameter
vectors � L and � G that offer the same independent KKT matching ability as modi“ers.
In this sense, the parameter vectors � L and � G resemble the modi“er vectors � L

k and
� G

k .

De“nition 4.4 (Mirror parameters) . The parameter vectors� L and � G (provided they exist)
are referred to as mirror parameters as they mirror the role of the modi“ers� L

k and � G
k in

enabling structural independence, thereby facilitating independentKKT matching.

The main challenge lies in “nding the mirror parameters. In the next subsection,
an attempt is made to discover the parameter vectors � L and � G in a given model.

4.1.2 Discovering Mirror Parameters via Active Subspaces

Analyzing the structural independence of a given model requires computation of the
mirror parameters. To this end, each KKT element M i,k of the model is analyzed

and its in”uential and non-in”uential parameter spaces I (i)
k and N I (i)

k are found via
active subspaces as detailed in the Section 2.6.1.

Subsequently, any direction d(i)
k � Rn� in parameter space is able to independently

match the corresponding KKT element M i,k, provided it belongs to the in”uential
space of that KKT element and to the non-in”uential space of the rest of the KKT
elements. Put differently,

d(i)
k � D (i)

k � Rn� , i = 1, . . . ,(nu + ng), (4.8a)

with D (i)
k := I (i)

k

j=( nu+ ng)�

j= 1

N I ( j)
k , j �= i. (4.8b)

The direction d(i)
k � D (i)

k provides a linear combination of the parameters � that can
enforce independent KKT matching. Ideally, each KKT element should have such a
dedicated parameter direction.
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Theorem 4.2. For a given model, ifD (i)
k is a non-empty set for i= 1, . . . ,(nu + ng), then

the model is structurally independent.

Proof. Consider (2.18) and substitute f = M i,k. The resulting matrix is denoted as C(i)
k

(the superscript i implies that the matrix corresponds to the ith KKT element), which
diagonalizes as:

C(i)
k = Q(i)

k � ( i)
k

�
Q(i)

k

� T
, � ( i)

k = diag
�

� (i)
1,k, . . . ,� ( i)

n� ,k

�
,

with � (i)
1,k � · · · � � ( i)

n� ,k � 0; Q(i)
k � Rn� × n� is an orthonormal matrix, whose columns

q(i)
1,k, . . . ,q(i)

n� ,k are the normalized eigenvectors of C(i)
k . 1 Now Q(i)

k can be split as:

Q(i)
k =

�
Q(i)

1,k Q(i)
2,k

�
, Q(i)

1,k � Rn� × m.

De“ne � (i)
1,k � Rm and � (i)

2,k � Rn� Š m as:

� (i)
1,k :=

�
Q(i)

1,k

� T
� , and � (i)

2,k :=
�

Q(i)
2,k

� T
� .

Any � � Rn� can be expressed in terms of� (i)
1,k and � (i)

2,k as:

� = Q(i)
k

�
Q(i)

k

� T
� = Q(i)

1,k

�
Q(i)

1,k

� T
� + Q(i)

2,k

�
Q(i)

2,k

� T
� = Q(i)

1,k � ( i)
1,k + Q(i)

2,k � ( i)
2,k.

Hence, M i,k(� ) can be written as:

M i,k(� ) = M i,k

�
Q(i)

1,k � ( i)
1,k + Q(i)

2,k � ( i)
2,k

�
.

Assuming � (i)
m+ 1,k = · · · = � (i)

n� ,k = 0, then, from Lemma 2.4 and Condition (2.24),

�
� ( i )

2,k
M i,k(� ) = 0 � � � � . (4.9)

Hence,

M i,k(� ) � M i,k

�
Q(i)

1,k � ( i)
1,k

�
= f (i)

k

�
� ( i)

1,k

�
,

where f (i)
k is a scalar function.

Recall that d(i)
k � I ( i)

k := col
�

Q(i)
1,k

�
. Hence, “xing the rotated parameters resulting

1Note that the subscript k indicates that the matrix C(i)
k , and thus also the quantities derived from

it, are de“ned for the speci“c values of (uk, µk) realized at the kth RTO iteration. Hence, as with k the

values of uk and µk change, the matrix C(i)
k and the quantities derived from it also change.
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from directions other than d(i)
k in Q(i)

1,k to their nominal value gives:

M i,k(� ) � f̄ ( i)
k

�
� ( i)

k

�
, � ( i)

k :=
�

d(i)
k

� T
� . (4.10)

Moreover, since d(i)
k � N I (l )

k := col
�

Q(l)
2,k

�
� l � { 1, . . . ,nu + ng} , l �= i. Therefore,

�
� ( i )

k
M l,k(� ) = 0 � � � � , l � { 1, . . . ,nu + ng} , l �= i. (4.11)

Note that (4.9), (4.10) and (4.11) hold for all i � { 1, . . . ,nu + ng} . Hence, the model is
structurally independent.

The scalar component � (i)
k is such that it affects only the corresponding i th KKT

element and not the remaining KKT elements. These components, for i = 1, . . . ,(nu +
ng), can be used to construct the parameter vectors� G and � L as follows:

� L =
�
� (1)

k · · · � (nu)
k

�
=

�
d(1)

k · · · d(nu)
k

� T
� , d(i)

k � D (i)
k , i = 1, . . . ,nu. (4.12a)

� G =
�
� (nu+ 1)

k · · · �
(nu+ ng)
k

�

=
�
d(nu+ 1)

k · · · d
(nu+ ng)
k

� T
� , d(i)

k � D (i)
k , i = nu + 1, . . . ,(nu + ng). (4.12b)

Remark 4.2. The non-in”uential parameter space is not necessarilyformed by the eigenvectors

with zero eigenvalues. Hence, parametric perturbations along the directiond(i)
k � D (i)

k may
still affect theKKT elements other thanM i,k. However, since the eigenvalues corresponding
to the non-in”uential parameter spaces are required to be relatively small,this in”uence is
negligible. Moreover, some directions may not strictly satisfy Condition(4.8). These directions
may still be used to form mirror parameters if the Euclidean norm of their projections on
each of the column spaces in(4.8b) is relatively larger than their projection on the respective
complementary column spaces.

4.1.3 Proposed RTO Scheme for Complete KKT Matching

The parameters � G and � L can be adjusted iteratively to correct the model in order
to reach the plant KKT conditions. The resu lting RTO scheme consists of three steps:
“rst, the model-based optimization problem is solved; second, the input vector is
“ltered; and third, at the obtained solution, the parameters � G and � L are adjusted so
as to enforce KKT matching. At the kth RTO iteration, the optim ization step takes the
following form:

Optimization step :
�
u�

k+ 1, µ�
k+ 1

�
= argmin

u
� (u, � k) (4.13a)

s.t. Gi(u, � k) � 0, i = 1, . . . ,ng. (4.13b)
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The resulting RTO input is “ltered before being applied to the plant:

Input update : uk+ 1 := ( I Š K) uk + Ku�
k+ 1, (4.14a)

µk+ 1 := µ�
k+ 1, (4.14b)

where K � Rnu× nu is a diagonal gain matrix with diagonal elements in the interval
(0, 1].

To adjust the parameters, “rst the in”uential and non-in”uential parameter spaces

are found for each KKT element using Algorithm 2.1. Then, the directions d(i)
k , i =

1, . . . ,nu + ng are chosen such that they satisfy (4.8). The unused(n� Š (nu + ng))
rotated parameters that constitute the parameter vector � c

k, result from the parameter

subspace that is the orthogonal complement to the subspace of directions d(i)
k . These

parameters are “xed at � k. The following transformation describes the aforementioned
step:

�
�̄ L

k , �̄ G
k , � c

k

�
= Tk � k, (4.15a)

Tk =
�

d(1)
k , d(2)

k · · · d
(nu+ ng)
k , Dk

� T
, (4.15b)

where Dk � Rn� × (n� Š nuŠ ng) is the orthogonal complement to the column space of the

directions d(i)
k , i = 1, . . . ,nu + ng, and � c

k contains the unused parameters. At the kth

RTO iteration, the parameters � L and � G satisfying (4.12) act as the decision variables
of the following parameter estimation step:

Parameter estimation step :
�
� L

k+ 1, � G
k+ 1

�
= argmin

� L , � G




 |M k+ 1 Š M p,k+ 1




 |2,

(4.16a)





 � L Š �̄ L

k






 � � L ,






 � G Š �̄ G

k






 � � G, (4.16b)

where � L 
 Rnu and � G 
 Rng restrict the parameter values around the current values
and avoid oscillations from one RTO iteration to the next. The updated parameters
read:

� k+ 1 = (Tk)
Š1 �

� L
k+ 1, � G

k+ 1, � c
k

�
. (4.17)

4.2 Synergies between Parameters and Modi“ers

Although structural independence is highly desirable, many models are not struc-
turally independent as illustrated by the following examples.
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Example 4.1. Consider the unconstrained model-based optimization problem

L (u, � ) = � 1u1u2 + � 2 with u = [ u1, u2]T and � = [ � 1, � 2]T . (4.18)

The sensitivity equation for this model is

� 2L
� � � u

=

�
u2 0
u1 0

�

(4.19)

The “rst column corresponding to� 1 contains more than one non-zero element. Consequently,
“xing the value of� 1 “xes both components of the Lagrangian gradient. Hence, the two gradient
components cannot be manipulated independently. Moreover,� 2 has no in”uence on any of the
two gradient components.

Example 4.2. Now consider the following unconstrained model-based optimization problem

L (u, � ) =
	

� 1

� 2



u1 + u2 with u = [ u1, u2]T and � = [ � 1, � 2]T , 2 � � i � 3, i = 1, 2.

(4.20)

The corresponding sensitivity equation reads

� 2L
� � � u

=

�
1
� 2

Š � 1
� 2

2

0 0

�

. (4.21)

The “rst row of the matrix has more than one non-zero element. Hence, there is more than
one parameter that in”uences the “rst gradient component of theLagrangian. In such a case,
one of the (less in”uential ) parameters can be “xed and the other is adjusted to match the
correspondingKKT element. However, the second gradient component is not in”uenced by
any of the parameters. Hence, the correspondingKKT element cannot be matched by adjusting
the existing model parameters.2

As demonstrated above, models may lack structural independence, thus making a

direction set D (i)
k empty. If there are one or more such KKT elements that cannot be in-

dependently matched by adjusting the parameters, then a modi“er component should
be considered as a means of compensation. This way, the resulting partially modi“ed
model turns out to be structurally independent. This phenomenon is illustrated by
the following example.

Example 4.3 (Examples 4.1 and 4.2 revisited). In Example 4.1, the twoKKT elements

have the same in”uential parameter space[1, 0]T . Hence, the direction setsD (1)
k and D (2)

k
corresponding to the twoKKT elements are empty. In such a case, we can still pair anyone of

2The models used in the two examples are not structurally independent. However, depending on the
corresponding plant behavior, they may still be globally or locally structurally correct.
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the twoKKT elements with the in”uential parameter space and the remainingKKT element
can then be paired with a modi“er, thus enabling independent matching. The modi“ed model
would then take the following form:

L (u, � ) = � 1u1u2 + � 2 + � L
1,k u1. (4.22)

Although still structurally dependent, the above modi“ed model is able to match the twoKKT
elements independently. Here, the gradient component corresponding to u2 can be matched by
adjusting [1, 0]T � , that is, � 1. Although, the gradient component corresponding to u1 is also
in”uenced by� 1, it can still be independently matched by adjusting the modi“er� L

1,k.

In Example 4.2, the active subspaces can be found by assuming that both components of�
are uniformly distributed between 2 and 3. The in”uential parameter space corresponding to
the gradient component along u1 is [Š0.69, 0.72]T , whereas the gradient component along u2

has no in”uential parameter space. Clearly, the gradient component along u1 can be matched
by adjusting its corresponding in”uential parameter space that satis“es(4.8). For the other
gradient component, a modi“er term can be added for independent matching, thereby making
the modi“ed model structurally independent:

L (u, � ) =
	

� 1

� 2



u1 + u2 + � L

2,k u2 (4.23)

Remark 4.3 (Is a gap in the spectrum of C(i)
k necessary?). The eigenvalue gap for dis-

covering the active subspace of theKKT elements are important if one is interested in “nding
a low-dimensional structure in parameter space that is most in”uential for the corresponding
KKT element. However, in the context of matching all theKKT elements, presence of a low-
dimensional structure is not necessarily of interest. The lack of such a gap in eigenvalues
implies that either all parameters are in”uential or non-in”uential. If all the parameters are
in”uential for a givenKKT element then that element has a lot of potential directions available
for its matching and if all the parameters are non-in”uential then that KKT element can be
matched by the corresponding modi“er. In both cases, the full matching of theKKT vector is
minimally impacted by the presence or absence of the eigenvalue gap.

4.3 Matching only Privileged KKT Elements

For safety and quality issues, satisfying process constraints is key to the performance
of any RTO scheme. Therefore, it becomes essential to match at least the constraints.
This requires measuring all the KKT elements of the vector M p,k that correspond to
the plant constraints Gp. Hence, the constraints remain as the privileged KKT ele-
ments. Constraints are fairly inexpensive to obtain as the direct output measurements
of the plant running at uk are suf“cient to estimate the their values.

However, estimating the Lagrangian gradient of the plant is an expensive task. For

73



Chapter 4. Generalized Model Adaptation

instance, the use of “nite differences requires that the plant be locally perturbed at uk

in all input directions, each time waiting for the plant to settle at steady state. Hence,
the experimental cost of obtaining the plant gradient per RTO iteration is ( nu × process
settling time).

One possible way of reducing the experimental cost is by relying to a greater extent
on a process model. Consequently, in this section, the assumption that all KKT ele-
ments must be matched in order to reach opti mality is challe nged, and the possibility
of a model being locally structurally correct without being fully structurally indepen-
dent is explored. In addition to constraint matching, the goal is to “nd the most
sensitive KKT elements corresponding to the Lagrangian gradient and then matching
only them instead of the full Lagrangian gradient.

4.3.1 Constraint Matching

Certain process systems are such that plant optimality is driven by the active con-
straints [20, 22, 117] and matching only the constraint values is suf“cient to reach
near-optimal performance. In such a case, matching the KKT elements correspond-
ing to the Lagrangian gradient are not considered and, consequently, the structural
independence reduces to the following conditions:

	
� G
� � G




uk

= diag
�

f̄ (1)
k (� G

1 ), . . . , f̄
(ng)
k (� G

ng
)
�
, (4.24a)

	
� �
� � G




uk

= 0. (4.24b)

For a given model, parameters ful“lling the above conditions exist if the following set
is non-empty:

D (Gi )
k := I (Gi )

k

�
N I (� )

k

j= ng�

j= 1

N I
(Gj )
k , j �= i, (4.25)

where N I (� )
k is the non-in”uential parameter space of the cost function � ; I (Gi )

k

and N I (Gi )
k are the in”uential and non-in”uential parameter spaces of the constraint

function G i , respectively.

A direction d(Gi )
k � D (Gi )

k can be used to compute the parameter � G
i,k that matches

the constraint Gi . If there are constraints that have no in”uential parameters, then
such constraints can be matched by adapting zeroth-order modi“ers. Such an RTO
scheme has been tested on a batch-to-batch opti mization problem in [ 117].
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4.3.2 Pairing Privileged Directions with In”uential Parameters

Since the Lagrangian gradient is considered along nr privileged directions, only nr pa-
rameters need to be available for adjustment. The most in”uential parameters are com-
puted with the active subspaces. The pairing can be understood by revisiting Example
3.1. The directional derivative along the privileged direction [1, 1]T can be matched by
adjusting the parameters along the in”uential parameter direction [2, 1, 0]T . As gradi-
ent matching along [Š1, 1]T is not considered, a single “nite-difference experiment is
required at u1.

It might happen that (i) certain process constraints do not have an in”uential pa-
rameter space, or (ii) a signi“cant overlap exists between the in”uential parameter
spaces of the constraints and directional derivatives. Since the plant directional deriva-
tives are typically expensive to obtain, it makes sense to want to meet the directional
derivatives with their in”uential parameters and the constraints with zeroth-order
modi“ers.

Example 4.4 (Example 3.1 revisited). A constrained version of(3.3) is considered next:

L (u, µ, � ) = ( 2 � 1 + � 2) u1u2 + � 3 + µ1 (� 1 + 3� 2) u1, (4.26a)

G(u, � ) = ( � 1 + 3� 2) u1 � 0. (4.26b)

1 � ui � 2, i = 1, 2. (4.26c)

The privileged direction[1, 1]T has the in”uential parameter direction[2, 1, 0]T , while the
constraint has the in”uential parameter direction[1, 3, 0]T . The two parameter directions are
not orthogonal and, in fact, exhibit a signi“cant overlap. Hence, the directional derivative
along the privileged direction is matched via parameter adaptation along the corresponding
in”uential parameter direction, while the constraint ismatched by adapting the corresponding
zeroth-order modi“er� G

i,k.

The RTO scheme proposed in Section 4.1.3 is hence altered for the previous exam-
ple. In other words, the opti mization step of the proposed RTO scheme additionally
has the modi“er term � G

k for the constraint. The overall scheme takes the following
form:

Optimization step :
�
u�

k+ 1, µ�
k+ 1

�
= argmin

u
(2 � 1,k + � 2,k) u1u2 + � 3,k,

� k = [ � 1,k � 2,k � 3,k]T ,

s.t. (� 1,k + 3 � 2,k) u1 + � G
1,k � 0.

Input update : uk+ 1 := ( I Š K) uk + Ku�
k+ 1,

µk+ 1 := µ�
k+ 1,
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followed by a parameter estimation step,

Parameter estimation step :(� priv
k+ 1 ) = argmin

� priv

||� �W 1,k+ 1
L k+ 1 Š � �W 1,k+ 1

L p,k+ 1||2,

with � �W 1,k+ 1
L k+ 1 :=

� L
�
(uk+ 1 + �W 1,k+ 1 r), µk+ 1, � k

�

� r









r= 0

,

where � �W 1,k+ 1
L k+ 1 � R1× nr is the directional directive along the directions given

by the columns of the matrix �W 1,k+ 1, and r � Rnr . The plant directional derivative
� �W 1,k+ 1

L p,k+ 1 is de“ned in a similar fashion. The matrix �W 1,k+ 1 is computed via Algo-

rithm 3.2. Similar to the parameters � L and � G, the parameter � priv � Rnr is obtained
by computing the in”uential and non-in”uential spaces for each of the component of
the directional-directive � �W 1,k+ 1

L k+ 1.

For k = 0, assume that u1 = [ 1, 1]T and µ1 = 0 are the values obtained after
“ltering, then the privileged direction matrix is �W 1,1 = [ 1, 1]T and the corresponding
parameter � priv is � priv = [ 2, 1, 0]T � . The two orthogonal parameter directions are
“xed at � 0.

4.4 Simulation Study

4.4.1 Williams-Otto Process

The proposed approach is applied to the process shown in Figure 4.1, which is a
modi“cation of the Williams- Otto plant proposed by [ 130]. The Williams-Otto process
serves as a benchmark simulation to test RTO methods [57, 86, 94].

In the process shown in Figure 4.1, FA and FB are the fresh feeds of SpeciesA and B,
while Fi, i = R, S, D, P, T,Y, are the total ”owrates of the various streams. The species
FA and FB are mixed with the recycle stream FT that enters a continuously stirred tank
reactor (CSTR), where the following three reactions take place:

A + B
k1Š� C, (4.27a)

C + B
k2Š� P + E, (4.27b)

P + C
k3Š� G. (4.27c)

ki = Ai exp
	

ŠEi

Tr + 273.15



; i = 1, 2, 3. (4.27d)

Here, C is an intermediate, P is the main product, E is a side product, and G is an oily
waste product. The side product E can be sold for its fuel value, while G must be dis-
posed off at a cost. The decanter completely separates SpeciesG from the reactor outlet
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Figure 4.1 … Willliams-Otto process

stream FR into the waste product stream FG. The decanter outlet stream FS is sent to
a distillation unit that separates the product P. Due to the formation of an azeotrope,
some of the product P (in fact, the fraction � of the mass ”owrate of component E in
the feed) is retained in the column bottoms. Most of this bottom product is recycled
to the reactor, while the rest is used as fuel. The reactor is simpli“ed by assuming
isothermal operation. The other units are also simpli“ed to keep the example small
and illustrate the proposed concepts with lesser complexity. A s a result, the process
is modeled without an energ y balance. The material balance equations are described
in Appendix B.1. The optim ization objective is t o maximize the return on investment
(ROI) given in terms of the net sales minus “xed charges, raw material, utility, and
waste disposal costs. It is also desired to keep the production of the product P below
a certain threshold. The opti mization problem can be for mulated mathematically as
follows:

max
FA,FB,Tr,


ROI := 7358.4(PP FP+ PD FD) Š 8400(PA FA + PB FB + PG FG) Š PR FR, (4.28a)

s.t. (B.1)Š (B.4). (4.28b)

FP (kg/s) � 0.7, (4.28c)

1 � FA (kg/s) � 5, (4.28d)

1 � FB (kg/s) � 4.5, (4.28e)

70 � Tr (� C) � 100, (4.28f)

0 � 
 � 0.95. (4.28g)
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The price values Pi, i = A, B, D, G, P, R, are given in Table B.1. The optimal inputs are
u�

p = [ 1.79, 4.04, 85.82, 0.89]T with the ROI value of 725.12.

Alternatively, the CSTR can be modeled by two reactions, thereby ignoring the
intermediate C:

A + 2B
k̄1Š� P + E, (4.29a)

A + B + P
k̄2Š� G. (4.29b)

k̄i = Āi exp
	

ŠĒi

Tr + 273.15



; i = 1, 2. (4.29c)

The corresponding model equations are given in (B.5). The corresponding model
equations are given in (B.5). The optimal input value with this model are u� =
[1.08, 2.02, 100, 0.67]T . Note that this value is very different then the corresponding
value u�

p for the perviously described model.

The proposed RTO scheme is tested in simulation, with the three-reaction Model
(B.1) serving as plant substitute. This simulated plant is treated as a black-box whose
output measurements are available, thus resembling a real process system. We as-
sume that the plant optimum u�

p is unknown. Consequently, Model (B.5) is adapted
iteratively to determine the unknown plant optimum. The adjustable model parame-
ters are the pre-exponential factors Ā1 and Ā2, the activation energies Ē1 and Ē2, and
the bottoms fraction � . The nominal values of the parameters and their uncertainty
range are given in Table B.2. The simulations are carried out assuming that additive
Gaussian noise acts on the cost and constraint measurements. The standard devia-
tions of the noise on the cost and constraints are 0.5 and 0.005, respectively. The RTO
scheme is initialized at u0 = [ 1, 4.2, 82.57, 0.3]T . The “rst step consists of optimizing
the model at the nominal parameter values � 0 to compute u�

1 (= u� ). Then, the inputs
are updated according to (4.14) to give u1 = [ 1.015, 3.98, 86.05, 0.45]T . The structural
properties of the model at u1 are analyzed next to suggest the proper KKT elements
to parameters pairing for parameter estimation.

4.4.2 Model Structural Independence

There are nu + ng = 5 KKT elements, and the total number of parameters is also
n� = 5. Hence, ideally, each KKT element should be paired with a single direction in
parameter space so that each KKT element can be matched independently of the other
elements as per (4.5).

At u1, the in”uential parameter space for the ith KKT element M i,1 is found by

computing the corresponding matrix C(i)
1 via Algorithm 2.1 given in Appendix B. The

eigenvalues of C(i)
1 are plotted in Figure 4.2 for i = 1, . . . ,(nu + ng). A large gap be-
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Figure 4.2 … Eigenvalue plots for different KKT elements

tween the second and the third eigenvalue i mplies that a two-dimensional in”uential
parameter space exists for that KKT element. In fact it turns out that each of the 5
KKT elements have a two-dimensional in”uential parameter space.

To verify whether there exists at least one parameter direction that is unique to

each KKT element, the components of the “rst two eigenvectors of C(i)
1 are plotted.

Figure 4.3a shows that, for each KKT element, the absolute value of the eigenvector
components corresponding to the two activation energy parameters Ē1 and Ē2 dom-
inate, whereas the components of the eigenvector corresponding to the other three
parameters are negligible. Figure 4.3b shows that a similar dominance of Ē1 and Ē2

is found in the second eigenvector. This implies that each KKT element can only be
matched by adjusting either Ē1 or Ē2 or a linear combination of the two parameters.
Since both parameters in”uence all the KKT elements, we can only pair one KKT ele-
ment with one parameter direction. The remaining KKT elements cannot be matched
independently by adjusting other parameters along the remaining orthogonal direc-
tions. To choose the best KKT element for pairing, it is proposed to determine the
privileged input directions, as discussed next.

4.4.3 Privileged Directions and Corresponding In”uential Spaces

To discover privileged directions, the global sensitivity analysis approach via Algo-
rithm 3.2 is applied. Figure 4.4a shows the eigenvalues of the matrix �Ak computed
at u1. Since there is a large gap between the “rst and the second eigenvalues, the
“rst eigenvector gives the direction that is highly sensitive to parametric variations as
compared to the other directions in the input space. Hence, only this eigenvector is
considered as a privileged direction. Figure 4.4b shows the components of the “rst
singular vector. The “rst component has a magnitude close to 1 and indicates that
M 1,1, namely, the component of the Lagrangian gradient corresponding to the feed
rate FA, is most sensitive to parametric perturbations.

79



Chapter 4. Generalized Model Adaptation

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

1 2 3 4 5

M
ag

ni
tu

de

Index

M 1,1
M 2,1
M 3,1
M 4,1
M 5,1

Ā1
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Figure 4.3 … In”uential parameter spaces for the various KKT elements at u1. (a)
Absolute value of the components of the “rst eigenvector. (b) Absolute value of the
components of the second eigenvector.
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Figure 4.4 … Finding privileged directions at u1 via Algorithm 3.2. (a) Eigenvalues plot.
(b) Absolute value of the components of the “rst eigenvector.

4.4.4 Matching only the Privileged KKT Elements

We only consider two KKT elements, M 5,1 corresponding to the constraint function
and the directional derivative along the privileged direction. Since the KKT element
M 5,1 cannot be matched independently by adapting the model parameters, it is paired
with the zeroth-order modi“er. The RTO scheme proposed for Example 4.4 is used for
meeting the NCOs in this simulation study.

The privileged direction is recomputed at each RTO iteration. Figure 4.5a indicates
that the KKT element M 1,k dominates at each iteration k. From Figure 4.5b, the “rst
eigenvector of the active subspace corresponding to the privileged direction is mainly
a linear combination of the parameters Ē1 and Ē2. This linear combination is used to
form � priv that is used to match the directional derivatives of the model and the plant
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Figure 4.5 … Pairing privileged direction with its active subspace over RTO iterations.
(a) Absolute value of the components of the privileged directions. (b) Absolute value
of the components of the “rst eigenvector of the in”uential space corresponding to the
privileged direction.
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Figure 4.6 … Parameter and input evolution over RTO iterations.

along the privileged input direction. The proposed method leads to the optimal per-
formance seen in Figure 4.7. The evolution of the model parameters and the inputs are
plotted in Figure 4.6. Since the privileged directions and the corresponding in”uential
parameter spaces are dependent on the inputsu, the proposed scheme is tested using
10 randomly chosen initial inputs u0 and each time with different noise realizations
on the plant cost and constraint values. The result of the different simulation runs are
plotted in Figure 4.8, which shows that all ru ns successfully reduce the sub-optimality
gap to a small value.
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4.5 Summary

The ability of modi“er adaptation to reach plant KKT point is attributed to its struc-
tural independence property. Structural in dependence enables one-to-one correspon-
dence between the modi“ers and the KKT elements that provides the modi“ed model
(2.16) enough ”exibility to match all the KKT conditions.

However, if the parameters of a given model provides this ”exibility then such
parameters can be adapted instead of modi“ers. Therefore, such parameters are called
as mirror parameters. It is proposed to “nd the mirror parameters in a given model by
“nding in”uential and non-in”uential parameter spaces of each of the KKT elements.
If a KKT element has a parameter direction that lies in the in”uential parameter space
of that KKT element and in the non-in”uential space of the rest of the KKT elements,
then the KKT element and the parameter direction can be paired. If such parameter
directions exist for each of the KKT elements then the model is said to be structurally
independent. Therefore, parameters can be adapted instead of modi“ers for KKT
matching. On the other hand if some KKT elements lack such parameter directions
than they can be matched by adapting modi“ers.
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In the scenarios where the models are not structurally independent and the exper-
imental cost of gradient estimation is considered too high, the gradients are estimated
only along privileged di rections. Similar to KKT element-parameter direction pairing,
the privileged directions are paired with corresponding parameter directions. In the
case of only partial KKT matching, it is proposed to match the KKT elements corre-
sponding to the constraints by adapting zero-order modi“ers when the constraints
and the privileged directions compete for a parameter direction. As the experimental
cost of gradient matching is higher, the parameter direction is adapted to match the
gradient along the privileged directions (instead of adapting that parameter direction
to match the constraints).

Finally, a simulation study of Williams-O tto is used to illustrate the presented con-
cepts. A structural plant-model mismatch is introduced by considering only a two
reaction system for the model as opposed to a three reaction system for the plant.
There are four inputs and one constraint i n the optimization problem resulting in a
total of “ve KKT elements. The model consists of “ve parameters and has “ve KKT
elements to match. Ideally, one should be able to pair each KKT element with one pa-
rameter direction in a “ve-dimensional parameter space. The structural independence
analysis reveals that each KKT element is in”uenced by only two parameter directions
that are dominated by mainly two parameters corresponding to the activation ener-
gies. Therefore, only one KKT element can be independently paired with only one
parameter direction and the constraint is paired with a zero-order modi“er.

It is further discovered that the mapping of the model Lagrangian to inputs is most
sensitive with respect to the input componen t corresponding to the feedrate of reactant
A. The only privileged direction found had the highest weight corresponding to the
feederate of A. Hence, the model Lagrangian gradient is corrected mainly along the
input on feedrate of A by adjusting the most in”uential linear combination of the two
activation energies. Despite the structural plant-model mismatch, the proposed RTO
scheme converges to near-optimal solutions for every randomly chosen parameter
initializatio n and in the presence of additive nois e on the plant cost and constraint
measurements.
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5 Advanced Case Studies

The concept of measuring only the privileged KKTs is put to test on two different
simulation studies. The “rst study concerns power generation via ”ying kites. Large
”ying kites are able to generate power as they convert the mechanical energy imparted
by ”owing winds to electricity. In the presence of disturbances, such as changing wind
conditions and model uncertainties, it becomes important that the path followed by a
”ying kite is adapted for optimal power generation. Past studies [ 31, 32, 34] it have
shown that MA-based RTO techniques offer a promising solution to the optimal path-
following problem of kites. To advance the MA-based optimal control of kites, ADMA
is tested on a simulated kite system.

The kite dynamics is highly nonlinear and therefore, under the presence of a plant-
model mismatch, very sensitive to input changes [ 31]. Hence, controlling the input
step lengths via static gain “lters K, applied either to modi“er terms or to the in-
puts directly, is virtually impractical. Trust-region approach [ 26] offers a solution to
such problems by dynamically adapting its size that aims at limiting the plant-model
mismatch due to uncorrected second- and higher-order terms [ 17]. Here, the ADMA
approach is further developed to ensure kite stability by incorporating a trust region.

The second case study consists of a fuel-cell system that can be seen as a cogener-
ation or a combined heat and power generation unit. The system consists of a solid
oxide fuel-cell (SOFC) stack that intakes a fuel (typically hydrogen) and an oxidant to
generate electricity. The main by-product is water, thus making the SOFC technology
a promising renewable source of energy. Since SOFCs typically run continuously for
long hours and are subject to changes in the power demand, it is desirable to keep the
performance optimal throughout, while ensuring that the operation remains within
safety and operability constraints [ 60, 136]. Due to changes in the power demand dur-
ing operation, but also due to external perturbations affecting the SOFC system, the
set of optimal operating conditions continuously vary with time. In addition, the fuel
cell is operated under a number of inequality constraints including bounds on input
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and output variables. Constraints on the cell voltage and fuel utilization are set due to
risks of oxidation of the cell•s anode, wh ich may degrade or even cause the failure of
the cell [23, 131]. Operating at high current densities can cause material damage to the
cell through excessive heating [76]. Therefore, fuel-cell systems require technologies
that can guarantee constraint satisfaction. Hence, there is a need for real-time opti-
mization, i.e., repeated adjustment of the operating variables (for example, ”owrates
of fuel and air) to maximize the performance (e.g., power output, ef“ciency) of the
fuel-cell system, while satisfying the process constraints.

Past studies have shown that RTO is a suitable technique for a fuel-cell system
[20, 82]. Speci“cally, the RTO technique constraint adaptation (CA) has shown great
promise for proper functioning and enhanced life of the fuel-cell system [ 20, 100]. Al-
though, CA guarantees constraint satisfaction upon convergence, it may well converge
to a sub-optimal solution. In such cases, gradient corrections become essential to en-
sure optimality [ 21]. Thus, ADMA offers an appealing alternative as it can compensate
for sub-optimality at reasona ble experimental costs. Thesecond section of the chapter
focuses on application of different variants of MA to the fuel-cell system and thereby,
discusses various aspects of the applied methods.

5.1 A Simulated Kite System

A dynamic ally ”ying kite is a fa st, unstable system in”uen ced by unpredictable wind
disturbances. The aim of a kite system is to generate power by exploiting the airborne
wind energy. To this end, intelligent path planning is important because, although
the kite is free to follow any path, it is the ”ight path that directly determines the
aerodynamic force the kite experiences and, hence, the power generated. Experimental
studies [134] have con“rmed that the path taken by the kite signi“cantly in”uences
the power it can generate. Therefore, this study focuses on “nding optimal path
for the kite to follow in order to maximze the power generated in the presence of
uncertainties.

5.1.1 Kite Dynamics

This simulation study uses the Erhard model [ 41] that is previously studied in [ 33] for
MA applications. In the Erhard model, the kite is modeled as a point in a spherical
coordinate system. Using a “xed tether length, the states are the spherical angles �
and � and the turning angle � , the latter being the kite orientation (see [ 33] for more
details). The manipulated variable for controlling the kite is the steering de”ection � .
The kite dynamics (as detailed in [ 31, 33]) are described by the following differential
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equations:

�� =
wapp

r
(cos� Š

tan �
E

),

�� = Š
wapp

r sin �
sin � ,

�� = wapp(gs� Š
sin �

r tan �
),

wapp = wEcos� ,

(5.1)

where wapp is the apparent wind speed, r is the “xed kite radius, and w is the wind
speed. The other parameters and their values are given in Table 5.1, which also high-
lights the parametric mismatch between the plant and the model. The plant parameter
values match closely the prototypes under development [ 53, 108]. The glide ratio (lift/
drag ratio) E is given by

E = E0 Š c� 2, (5.2)

where c is the turning penalty factor. The wind speed is a function of the altitude z
of the kite. To introduce structural plant-model mismatch in addition to parametric
mismatch, the following wind speed laws are used

w =

�
�

�

wre f + ( z Š zre f)� w for the model,

wre f( z
zre f

)a for the plant,
(5.3)

with z = r sin � cos� , and where a is the surface friction coef“cient and wre f the
reference wind speed at the reference altitude zre f. The wind-altitude relationship
is linear for the model and follows a power law for the plant [ 5].

The objective is to maximize the average line tension T over one loop,

T =
� t f

0
(
1
2

� Aw2)( E + 1)
�

E2 + 1 cos2 � dt, (5.4)

where t f is the time period of one loop. The standard constraints for kites are the
periodicity of the path, a minimal altitude, bounds on the states � and � , and the
saturation of the input � :

altitude constraint z = r sin � cos� � zmin,

bounds

�
���

���

0 � � (t) < �
2 ,

Š �
2 � � (t) � �

2 ,

Š � max � � (t) � � max,

(5.5)

where t is the time. Note that there is no bound on the third state � .
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Table 5.1 … Plant and model parameters. The uncertain model parameters � are
highlighted in blue.

Parameter Description Plant value
Nominal

model value
Uncertainty interval

(uniform distribution)
r (m) tether length 250 250 -

A (m2) surface of the kite 25 25 -
� (kg/m 3) air density 1.2 1.2 -

E0 initial lift to drag ratio 6 4.5 ± 11%
gs (rad/m 2) turning constant factor 5 · 10Š3 7 · 10Š3 ± 14%

c (1/m 2) turning penalty factor 0.06 0.02 ± 10%
zre f (m) reference altitude 10 10 -

wre f (m/s) reference wind speed 8 8 -
a surface friction coef“cient 0.15 - -

� w (1/s) wind speed change rate - 10Š3 ± 5%
� max (m) max of steering de”ection 7.5 7.5 -
zmin (m) minimal altitude 12.5 12.5 -

5.1.2 Reference Trajectory Parametrization

The optimization layer is used to generate an optimal reference trajectory for the kite
such that the line tension is maximized. As the kites used for power generation are
unstable, a controller must continuously adjust the steering de”ection � to ensure
that the kite does not crash. In this simulation study, it is assumed that a perfect
path-following controller exists, which ensures that the kite follows a given periodic
reference path.

For optimization, the reference trajectory is parametrized as a smooth curve. Thus,
the decision variables for th e optimization a re the curve parameters. Such a formula-
tion allows to use MA as a run-to-run optimizat ion scheme. Here, the param-
etrization of the reference is a closed Bézier curve de“ned as a polynomial for 
 � [0, 1].

F(
 ) :=
n

�
i= 0

�
n
i

�

(1 Š 
 ) iŠ1
 iPi , (5.6)

where Pi � R2 are the curve parameters. The polynomial is used to represent the (� , � )
references with F(
 ) = [ � (
 ), � (
 )]T. The dynamics (5.1) is scaled with respect to time
to make 
 = 1 represent the full time period t f using �
 = 1/ t f . The objective (5.4) is
maximized with respect to this scaled dynamics using TR-ADMA with the decision
variables Pi, i = 0 . . .n, and t f , with n = 7. Hence, the optimal curve parameters
P�

i lead to a dynamically feasible periodic optimal trajectory. The resulting smooth
parameterized curve can then be tracked as done in [39]. Based on the approximation
of the Erhard model in crosswind ”ight, one can show that the apparent wind speed
wapp can be approximated by the kite speed wk [34]. � and � are represented in terms
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Table 5.2 … Investigated cases (NA: not applicable)

Case 1 2 3

nmax 2 2 2
N(samples) 500 500 500
trust region no yes yes

noise 0 0 3
Filter eigenvalues

K� �
,K � 0.1 - 0.95

Filter eigenvalues
KGi , K � 0.1 - 0.25

optim ality loss NA 2% 7.1± 2.2%

of the (� , � )-curve by approximating them as

� � Š � = ŠtanŠ1(
�� cos�

��
), and � � Š

��
gswk

(5.7)

5.1.3 Initial Results and the N eed for Step-Length Control

To apply ADMA, the number of privileged directions is “xed. Choosing the number of
privileged directions is a trade-off between the number of plant experiments for gradi-
ent/directional derivative estimation and the perceived optimality loss. However, one
can always start with a reasonably low number of privileged directions. If required,
then upon convergence, more plant experiments can be performed to estimate the
gradient in the remaining directions. If the gradient error is high in the remaining
directions, then appropriate model corrections can be made to further optimize the
underlying system.

Here, the number of privileged directions is “xed at nmax = 2. For comput-
ing the privileged direction matrix �W k, a parametric uncertainty interval of ± (5 to
14) % around the respective nominal model values (given in Table 5.1) is considered.
Monte-Carlo samples are collected within the uncertainty interval by assuming a uni-
form probability distribution. To estimate the directional derivatives, forward “nite-
difference experiments are performed on the plant along the privileged directions.

Initially, ADMA Algor ithm 3.3 is applied to the kite system without c onsidering
any noise in the plant outputs and with the classic modi“er “lters applied in ADMA.
This scenario is referred to as Case 1 and the parameters utilized in Algorithm 3.3
for Case 1 are given in Table 5.2. The obtained results are plotted in Figure 5.1. The
“gure shows that ADMA drives the plant towards its optimum but then the system
becomes unstable and startsoscillating. This is due to the fact that the model Hessian
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Figure 5.1 … Case 1. ADMA Algorithm 3.3 applied to the simulated kite. Green - Model
optimal path, Red - Plant optimal path, Black - Plant behavior over RTO iterations,
Magenta - Altitude constraint.

is non-convex at and around the plant optimum and the plant•s Hessian is obviously
convex at the plant optimum. Since, by construction, only the “rst-order corrections
are enforced and the second-order (Hessian) corrections are not made, ADMA jumps
ahead of the plant optimum and needs to start again far away from it.

This issue can be overcome by adjusting the model Hessian. However, correcting
the model Hessian by plant measurements is even more experimentally intense. More-
over, even if suf“cient plant data is gathered for Hessian estimation, the numerical
errors and the presence of noise can pose signi“cant challenges in accurate Hessian
estimation. An alternative is to use trust region and directly control the input step
lengths. This way, the Hessian corrections can be avoided without compromising on
optimality. Moreover, [ 17] showed how MA is equivalent to trust-region-based opti-
mization framework. In [ 17] and [12], it is further shown that controlling the input
step lengths in MA via trust region is a natural choice for guaranteeing convergence.
Thus, ADMA framework is developed further to incorporate trust-region to control
the change in the input u from one RTO iteration to the next.

5.1.4 Trust Region for Input Step Length Control

The input uk+ 1 obtained in ADMA Algorithm 3.3 may be far away from the previous
input uk. As the corrections applied to the cost and constraint functions are only lo-
cally valid around the operating point determined at the kth iteration, the application
of uk+ 1 to the plant may result in poor performance. To limit the over-reliance on
the model, a trust region around the current inputs is de“ned, wherein the modi“ed
model is a fairly accurate representation of the p lant. The modi“ed-optimization prob-
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lem of ADMA is then solved inside the trust region so as to iteratively improve the
plant performance. The size of the trust region is critical and is determined based on
the predicted (model-based) and actual (plant-based) performance. The use of a trust
region in MA was shown to result in global convergence [ 17]. Given the bene“ts of the
trust-region concept, it is proposed to include a trust region within ADMA, thereby
resulting in the TR-ADMA algorithm described as Algorithm 5.1.

Trust-Region Adjustment in TR-ADMA

The key element in any trust-region-based algorithm is the choice of its size � k � Rnu

at each iteration. This choice is based on the agreement between the performance pre-
dicted by the model and the actual plant performance. To this end, the following ratio
between the plant Lagrangian and the Lagrangian of the modi“ed model is introduced

� k =
L p(uk, µk) Š L p(u�

k+ 1, µ�
k+ 1)

L m,k(uk, µk) Š L m,k(u�
k+ 1, µ�

k+ 1)
, (5.9)

where L p(u, µ) := � p(u) + µT Gp(u) is the plant Lagrangian and L m,k(u, µ) := � m,k(u) +
µT Gm,k(u) is the modi“ed-model Lagrangian, with Gp denoting the vector of plant
constraints Gp,i and Gm,k denoting the vector of model constraints G m,i,k. Based on
the value of the ration � k, it is decided whether to enlarge the trust region by a factor
� 1 > 0, keep it constant or decrease the trust region by a factor of � 2 > 0.

At kth iteration, the solution to Problem (5.8) in Algorithm 5.1 is (u�
k+ 1, µ�

k+ 1).
The ratio � k is evaluated at (u�

k+ 1, µ�
k+ 1). Decision regarding accepting the solution

(u�
k+ 1, µ�

k+ 1) is also taken based on the value of the ratio � k. To this end, the scalar
parameters � , � 1 and � 2 are de“ned with 0 � � � � 1 < � 2 < 1. Then, the trust region
is adapted as follows

€ � k < 0 implies that the modi“ed model predicts a decrease in Lagrangian value,
while the plant Lagra ngian value actually incr eases, or vice-versa. The model
gives a wrong prediction as it is not suf“ciently accurate in the prevailing trust
region. Hence, the input vector u�

k+ 1 is rejected, and the trust region is reduced
in order to “nd a region in which the corrected model can be trusted.

€ For 0 � � k < � , the modi“ed model predicts a large change, while the plant dif-
fers only a little from the previous iteration, thus indicating a large disagreement
between the two. Hence, the trust region is decreased.

€ For � � � k � � 1, the changes in Lagrangians are suf“ciently similar to accept
the new input vector u�

k+ 1, but the trust region is still decreased as the model
prediction is not suf“ciently close to the actual performance.

€ For � 1 � � k < � 2, the prediction is good as it mostly agrees with the actual
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Algorithm 5.1 TR-ADMA

Step 0 (Initialization) : Choose the eigenvalues of the (typically diagonal) “lter matrices K� �
,

K � , K � and KGi in the interval ]0,1]. Initialize the input vector u0. Set the modi“ers
� �

0 = 0, � �
0 = 0, � Gi

0 = 0 and � Gi
0 = 0. Choose the maximal allowable step size � max, the

parameters 0 < � 1 < 1, � 2 > 1, the updating range parameters 0 � � � � 1 < � 2 < 1
and set � 0 to an arbitrarily large value.

for k = 0 � �

Step 1. Compute

(u�
k+ 1, µ�

k+ 1) = argmin
u

� m,k(u) (5.8a)

s.t. Gm,i,k(u) � 0, i = 1, . . . ,ng and uk Š � k � u � uk + � k. (5.8b)

Step 2. Apply u�
k+ 1 to the plant and measure the noisy cost �� p(u�

k+ 1) and noisy constraints
�Gp(u�

k+ 1) and thereby compute, �L p(u�
k+ 1, µ�

k+ 1).

Step 3. Update the step size

if k = 0, then � k = 1

else � k =
�L p(uk,µk)Š �L p(u�

k+ 1,µ�
k+ 1)

L m,k(uk,µk)ŠL m,k(u�
k+ 1,µ�

k+ 1)

endif

if � k > � 2, then � k+ 1 = min ( � 2 · � k, � max )

elseif � k < � 1, then � k+ 1 = � 1 · � k

else � k+ 1 = � k

endif

if � k � � , then (uk+ 1, µk+ 1) := ( u�
k+ 1, µ�

k+ 1).

else (uk+ 1, µk+ 1) = ( uk, µk), �W 1,k+ 1 = �W 1,k, (� �
k+ 1, � G

k+ 1, � �
k+ 1, � Gi

k+ 1) = ( � �
k , � G

k , � �
k , � Gi

k ) and

( �� � k+ 1, �� Gi,k+ 1) = ( �� � k, �� Gi,k) for i = 1, . . . ,ng and goto step 1.

endif

Step 4. Find the privileged directions matrix �W 1,k+ 1 using Algorithm 3.2 and esti-
mate the directional derivatives of the plant cost � �W 1,k+ 1

� p(uk+ 1) and constraints

� �W 1,k+ 1
Gp,i (uk+ 1), for example, via “nite differences. the full gradients are computed as

�� u � p(uk+ 1) := � u � (uk+ 1, � 0)( I nu Š �W 1,k+ 1 �W
+
1,k+ 1) + � �W 1,k+ 1

� p(uk+ 1) �W
+
1,k+ 1.

Step 6. Update the modi“ers

� �
k+ 1 = ( Ing Š K� �

) � �
k + K� �

( �� p(uk+ 1) Š � (uk+ 1, � ))

� G
k+ 1 = ( I ng Š K� )� G

k + K� �
�Gp(uk+ 1) Š G(uk+ 1, � 0)

�
,

� �
k+ 1 = ( I nu Š K� )� �

k + K� � �� u � p(uk+ 1) Š � u � (uk+ 1, � 0)
� T

,

� Gi
k+ 1 = ( I nu Š KGi )� Gi

k + KGi
� �� uGp,i (uk+ 1) Š � uGi(uk+ 1, � 0)

� T
, i = 1, . . . ,ng.

endfor
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performance. Hence, the input vector u�
k+ 1 is accepted and the trust region � k is

kept at the same value for the next iteration.

€ For � 2 � � k, the agreement between prediction and actual performance is excel-
lent. The input vector u�

k+ 1 is accepted and the trust region is enlarged.

Remark 5.1. Note that the TR-ADMA algorithm is a heuristic approach that is used to enforce
convergence. However, to guarantee global convergence, any trust-region approach requires to
satisfy the Cauchy decrease condition (see [26]) which is not enforced here. Moreover, the
local gradient corrections are only partial, thus resulting in gradient errors. Hence, global
convergence properties are dif“cult to achieve. For the locally corrected models, it has been
shown in [12] that, if the gradient error is bounded, then global convergence can be guaranteed.
It is of future interest to establish such properties for TR-ADMA .

5.1.5 Optimization Results

Here 3 cases are discussed and their important features are summarized in Table 5.2.
The trust-region parameters used is Cases 2 and 3 are given in Table 5.3. The measure
of performance is the optimality loss, that is, the pe rcentage of improvement upon
convergence compared to the plant optimum:

optim ality loss :=
� p(u�

p) Š � p(u� )

� p(u�
p)

, (5.10)

with u� being the converged input value.

Recall that Case 1 considers the application of ADMA using noise-free measure-
ments and no trust region. The left plot at the top of the Figure 5.2 compares the
predicted and the actual plant behavior in Case 1. The large jump in model prediction
is the result of letting the plant free to jump far away from one iteration to the next.
Hence, without effective step-length control, the method is not applicable to real cases.
Even if full gradient correct ions are made as is traditionally done in MA , plant opti-
mality is not reach ed. Indeed, MA also results in oscillations. A better performance
can be achieved by formulating a convex problem at the price of reduced model accu-
racy. Alternatively, the incorporation of a trust region can help control the step length,
thereby enforcing convergence, while avoiding large jumps.

Case 2 considers TR-ADMA using noise-free measurements. As a result, the plant
exhibits a perfect behavior as seen in the middle plots of Figure 5.2. Large improve-

Table 5.3 … Trust-region parameters

� � 1 � 2 � max � 1 � 2

0.015 1/4 3/4 0.1 1/2 2
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Figure 5.2 … ADMA applied to the simulated kite. Top plots: Case 1. Middle plots:
Case 2.Bottom plots: Case 3. The “rst two plots correspond to a single noise realiza-
tion, while the last plot of Case 3 shows the average performance over 40 noise real-
izations. Left plots : Black solid lines - Plant Lagrangian, Blue dashed lines - Model
Lagrangian, Red - Plant Lagrangian at the plant optimum. Center Plots: Green -
Model optimal path, Red - Plant optimal path, Black - Plant behavior over RTO itera-
tions, Magenta - Altitude constraint. Right plots : Black - Plant output evolution. Red
- Optimal line tension.

ment in plant performance happens during the “rst 7 iterations, after which the algo-
rithm slows down as the trust region adjusts itself to avoid jumping around the plant
optimum. The left plot in the middle of the Figure 5.2 shows how the trust-region ad-
justment decisions are made. A poor prediction causes tightening of the trust region,
thereby leading to a better agreement between prediction and actual performance.

As observed in Case 2, the choice of only 2 privileged directions appear to be
appropriate in the sense that they lead to littl e optimality lo ss. More input directions
could be chosen, which however will inevitably result in a larger experimental effort
for gradient evaluation. It has also been observed that the incorporation of 4 privileged
directions reduces the optimality loss v ery close to zero (not shown here).
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5.2. Fuel-Cell System

Case 3 considers TR-ADMA and noisy measurements. An additive Gaussian noise
with a magnitude of 3 % of the nominal values is added to the plant measurements.
The “nite-difference scheme gives only rough estimates of the plant directional deriva-
tives. Therefore, the modi“ers need “ltering. The bottom plots of Figure 5.2 show
that it is possible to obtain good performance if the “ltering is appropriate. Note
that, even with high noise, convergence is achieved. Since the gradient corrections are
not so accurate due to the noise, the trust region shrinks, thereby resulting in slower
convergence. For Case 3, 40 simulation runs are performed with each run having dif-
ferent random noise realization. The TR-ADMA algorithm converges every time with
an averageoptimality loss of 7.1 %.

5.2 Fuel-Cell System

This fuel-cell system is studied under a joint project that includes the Automatic
Control Laboratory of EPFL, group of Energy Materials at EPFL and HTceramix SA-
SOLIDpower. The simulation study presented here is part of this project that aims at
modelling and optimization of t he system. In this section various RTO schemes are
tested and compared, including ADMA.

Note that the system described here is a an approximation of the actual system
studied. The description of actual system is not pro vided because of con“den tiality
reasons.

System Components Description

The system consists of a solid oxide fuel cell with other components that are needed
for its proper functioning. These components include a reformer, a heat exchanger
system and a burner that are interconnected. The layout of the fuel-cell system is
described in Figure 5.3. A small description of different components of the system is
as following.

Reformer: The fuel used in the system is the methane gas. It is converted into
hydrogen which is “nally consumed in the fuel-cell stack to produce electricity. The
conversion to hydrogen is done through steam reforming and water-gas shift that
takes place in the reformer. It involves the following reactions

CH4 + H2O � CO + 3H2 � Hr = 206.1 kJ molŠ1, (5.11)

CO + H2O � CO2 + H2 � Hr = Š41.15 kJ molŠ1. (5.12)

The overall reaction system in reforming is endothermic. Therefore, methane entering
the reformer is preheated. The preheated water is supplied by the heat exchanger
system. The output of the reformer is syngas that is sent to the heat exchanger system
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for preheating. Note that the methane to hydrogen conversion is “xed at 99%.

Fuel-cell stack: This is the principle componen t of the system that allows produc-
ing the electrical power. It takes hydrogen present in the syngas and oxidizes it with
the hot air supplied by the heat exchanger system. In another reaction, it performs an
internal reforming of the residual methane present in the syngas stream:

CH4 + 2H2O � CO2 + 4H2, (5.13)

H2 +
1
2

O2 � H2O. (5.14)

Burner: The output gas ”ow of the fuel cell stack consists of a small amount of
methane, hydrogen and carbon monoxide. The gas mixture is sent to the burner that
heats them to produce hot gases:

CH4 + 2O2 � CO2 + 2H2O, (5.15)

H2 +
1
2

O2 � H2O, (5.16)

CO +
1
2

O2 � CO2. (5.17)

The produced energy is then u tilized by the different components of the fuel-cell sys-
tem.

Heat exchanger system: The heat exchanger system preheats the air, syngas and
water by utilizing the hot stream of gases produced by the burner. Hotbox: This is a
big box where the fuel-cell stack, the heat exchanger system and the burner are placed.
So, in addition to the heat exchanger system, the various components of the fuel-cell
system are exchanging heat through radiative and convective transfer with the hotbox.

The overall system consists of 4 inputs that can be adjusted to achieve the desired
performance of the system. There are several measurable outputs of the system and
some unmeasurable outputs. The inputs and the outputs are described as following.

Inputs of the system

€ qCH4 the methane ”owrate (L min Š1)

€ qair the air ”owrate (L min Š1)

€ I the current (A)

€ qH2O the water ”owrate ( µg min Š1)
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Figure 5.3 … Layout of the fuel-cell system.

Outputs of the system

€ Pel the electrical power (W)

€ Ucell the cell voltage (V)

Other measurable states of the system

€ 15 temperatures of different components of the fuel-cell system.

Unmeasurable state of the system

€ qf umes = � 3
i= 1 qHEX,i

f umes the cold fumes. This is an output of the heat exchanger
system that is unmeasurable and of no interest for t he optimization.

Note that the power is a linear function of the current and the cell voltage

Pel = UcellNcellI (5.18)

where Ncell is the number of cells in the stack and Ucell is a nonlinear function of the
methane and the air ”owrate.
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Formulation of the Optimization Problem

The objective of the optimizatio n is to maximize the steady-state ef“ciency of the sys-
tem while providing the desired electrical power Pre f

el . The objective function reads

� :=
Pel

LHVCH4 · qCH4

(5.19)

where LHVCH4 is the lower heating value of the methane.

There are several constraints that are enforced while maximizing the ef“ciency. The
equality constraint on the power demand Pre f

el is imposed as

Pel = Pre f
el (5.20)

One of the major problem with the fuel cells is the ageing of the system. Indeed, it
has a limited number of working cycles. In order to increase this number, the intensity
use of the cell is decreased. This intensity can be quanti“ed throu gh fuel ut ilization
FU, a dimensionless quantity, which is forced to stay below the value of 0.7:

FU :=
Nc

8F
I

nCH4

=
Nc

8F
I

�vCH4qCH4

� 0.7 (5.21)

where F is the Faraday constant, n(.) is a molar ”ow and �v(.) is the conversion factor
from mol to m 3. For the same reason, the cell voltageUcell is constrained to be at least
0.7 (V).

To ensure complete reactions inside the reformer and the fuel-cell stack, excess
ratios on the air and the water are set. These excess ratios are:

� w :=
1
2

nH2O

nCH4

=
�vH2O

�vCH4

·
qH2O

qCH4

(5.22)

� air :=
1
2

nair

nCH4

=
�vair

�vCH4

·
qair

qCH4

(5.23)

The constraint on the water excess ratio � w is set to be at least 1.5 and the air excess
ratio � air is set to be at least 4.

In addition, the reformer temperature Tre f is constrained. It is set to lie between
663 (K) to 773 (K). As mentioned earlier, the input vector is u = [ qCH4

, qair, I , qH2O, ]T .
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The resulting optimization pro blem reads

maximize
u

� =
Pel

LHVCH4 · qCH4

, (5.24a)

subject to
�
��

��

Pel = Pre f
el , Pre f

el � { 50, 75 100} ,
Ucell � 0.7 (V),
390(� C) � Tre f � 500(� C),

constraints adap ted via modi“ers

(5.24b)
�
����

����

f (u) = 0,
FU � 0.7,
� air � 4,
� w � 1.5,

unadapted constraints

(5.24c)
�
����

����

0.16 (L minŠ1) � qCH4
� 0.6 (L minŠ1),

5 (L min Š1) � qair � 35 (L minŠ1),
0 � I � 50 (A),
0(µg min Š1) � qH2O � 2000(µg min Š1),

input bounds

(5.24d)

where f (u) = 0 are the steady-state model equations. The system ef“ciency is maxi-
mized for 3 different power set points Pre f

el = 50 W, 75 W and 100 W. For the fuel-cell
system, not all the constraints are adapted in the RTO schemes. The input bounds
(5.24d) and the constraints (5.24c), except for the steady-state equality equationsf (u),
are the same for the plant and the model as their mappings to the inputs are perfectly
known. Only the electrical power, the voltage inequality and the reformer temperature
constraints are adapted via modi“ers.

Structural Plant-Model Mismatch

In this simulation study, the modelutilized for the application of different RTO meth-
ods consists of an ideal fuel-cell stack. That is, it is assumed that no potential losses
occur inside the fuel cell. On the other hand, the simulated reality (plant) contains
these potential losses. The plant-model mismatch reads

Ucell = UN Š � loss (5.25)

� loss =

�
0 Model

� act,cath+ � diss+ � el + � di f f ,an + � di f f ,cath+ � MIC Plant
(5.26)

where UN is the reversible cell voltage, � loss is the sum of the overpotentials, � act,cath

is the activation loss in the cathode, � diss is the dissociation loss in the cathode, � el is
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number of inputs nu 4
number of parameters n� 21
adapted inequality constraints 3
adapted equality constraint 1

Table 5.4 … Dimensionality of thefuel cell opti mization problem.

the losses in the electrolyte, � di f f ,an is the diffusion loss in the anode, � di f f ,cath is the
diffusion loss in the cathode, � MIC is the ohmic loss in the metal interconnect. The
modeling of these losses and the reversible cell voltage is given in [82].

The resulting model contains a total of 21 uncertain parameters. The uncertainty
range is considered to be ± 15 % of the nominal value of the model parameters and
the parametric uncertainty is assumed to be uniformly distributed in this range. Table
5.4 summarizes the dimensionality of the problem.

Different RTO schemes such as CA, MA, DMA and ADMA are applied to the sim-
ulated fuel-cell system. To this end, all the RTO schemes are started at the initial input
point of u0 = [ 0.3 (L min)Š1, 20 (L min)Š1, 25(A ), 600(µg min Š1)]T . The initial value
of Pre f

el is set at 50 W, then the value is sequentially set to 75 W and “nally to 100 W. For
all the RTO schemes, the input “lter is applied and is set to K = diag(0.4 0.2 0.5 0.3).
For evaluating the plant gradients/directional derivatives, a forward-“nite-difference
method is used with a small perturbation of 10 Š4 as only a noise-free case is consid-
ered. The noise in the measurements is treated in the later sections.

5.2.1 Application of CA

CA is applied to the fuel-cell system and the results are plotted in Figure 5.4. The
y-axis of each of the plots in the “gure represen ts either the objective function, the con-
straints, or the inputs. The x-axis of the plots is the total plant experiments performed,
which in the case of CA is equal to the RTO iterations. The plant optimal values are
plotted in red dashed-dotted lines.

The ef“ciency plot in Figure 5.4 shows that CA converges to a sub-optimal solution
for each of the Pre f

el set points. CA correctly identi“es the active constraints on the cell
potential Ucell and the water excess ratio � w. It obviously meets the equality constraint
on Pre f

el . However, it fails to identify the optimal values for t he air ”owrate q air as it
incorrectly goes to the upperbound on the air ”owrate.
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Figure 5.4 … Application of CA to the fuel-cell system for 3 different power set points.
Red dashed-dotted line: plant optimum. Blue solid line: plant behavior. Black dashed
line: constraint bounds.
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Figure 5.5 … Application of MA to the fuel-cell system for 3 different power set points.
Red dashed-dotted line: plant optimum. Blue solid line: plant behavior. Black dashed
line: constraint bounds.
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5.2.2 Application of MA

CA indicates that, in order to reach plant optimality, gradie nt corrections are necessary.
Thus, MA is applied to the fuel-cell system. The results are plotted in the Figure 5.5.
The y-axis quantities in the plots remain the same. But the x-axis quantity - plant
experiment index now also includes the gradient estimation experiments in addition
to the RTO iterations.

The plots in Figure 5.5 show that the MA successfully “nds the plant optimum. In
addition to “nding the correct set of active constraints, MA is able to “nd the optimal
value for the air ”owrate. However, this performance comes at the cost of excessive
plant experiments. MA requires on average 30 plant experiments that includes experi-
ments required for gradient estimation. Note that the air ”owrate oscillates around the
optimal value, although the ef“ciency remains more or less stable. This phenomenon
occurs because the ef“ciency mapping to the air ”owrate is relatively ”at specially
near the plant optimum. Therefore, the ef“ciency changes little upon large changes in
the air ”owrate.

Note that MA requires many more plant experiments to converge as compared to
CA. This obviously happens due to additional plant experiments required for gradient
estimation. The large number of plant experiments limits the use of MA for this ap-
plication as the power setpoints may change at a faster rate then the time required for
MA to converge. Therefore, to reduce the experimental burden of gradient estimation,
DMA is tested next on the fuel-cell system.
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Figure 5.7 … Application of DMA to the fuel-cell system for 3 different power set points.
Red dashed-dotted line: plant optimum. Blue solid line: plant behavior. Black dashed
line: constraint bounds.
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5.2.3 Application of DMA

In order to apply DMA, an of”ine local sensitivity analysis is carried out at the model
optimums for three different Pre f

el values. The singular value decomposition of the local
sensitivity matrix results in 4 singular directions in the input space. The corresponding
squared singular values are plotted in the Figure 5.6. The large gap between the “rst
and the second singular value reveals that there is only one privileged direction at
each power setpoint Pre f

el .

In DMA, the privileged direction is “xed and, therefore, the plant directional
derivative is estimated along the same privileged direction at each RTO iteration. The
privileged direction found at Pre f

el = 50 W is [0.4, 0.9, 0, 0.18]T . Note that the constraint
on the power Pel is tracked by the current I . Since, this is an equality constraint, the
zeroth-order modi“er is suf“cient for its tracking and no gradient modi“er is needed.
Therefore, for the purpose of gradient estimation, the component corresponding to
the current I is dropped from the privileged direction.

The results of DMA are plotted in the Figure 5.7. In terms of reaching maximum
ef“ciency, DMA preforms sim ilar to CA despite the directional-der ivative corrections.
Notice that 4 input components converge to the same value for CA and DMA at each
power set-point Pre f

el . That is, DMA also fails to “n d the optimal value for the air
”owrate q air and the ”owrate converges to its upperbound. This happens because the
privileged direction found by the local sensitivity analysis is not the •correct• direction.
The local sensitivity analysis fails to capture the most sensitive input direction.

5.2.4 Application of ADMA

In ADMA, the privileged directions are computed via global sensitivity analysis. To
this end, one can utilize Algorithm 3.2. In Algorithm 3.2, computing the sensitivity
matrix �Ak via forward-“nite-difference requires, at each random sample, (nu + 1) ×
(n� + 1) model Lagrangian evaluations. This translates to 110 model Lagrangian evalu-
ations. Each model Lagrangian evaluation takes about a “fth of a second. This implies
that, if a total of 150 random samples are generated, then the computation of �Ak takes
(0.2) · 150· 110 � 1 h per RTO iteration. This computational time is prohibitive in this
application as it is desired t o apply RTO at a faster time scale, specially since the time
constant of the fuel-cell-system dynamics is much faster than the computational time
of one hour.

To reduce the computational effort, active subspaces are utilized. Active subspaces
help in reducing the parameter space from 21 parameters to a lower number and, thus,
in reducing the computation time of �Ak. To discover active subspaces, a local-linear-
model technique is used via Algorithm 3.5. The total number of samples used and
other parameters used in Algorithm 3.5 are summarized in Table 5.5. The time for
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Table 5.5 … Parameter values used in Algorithm 3.5 to discover active subspaces.
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Figure 5.8 … Eigenvalues of�Ck for different power set points computed at the model
optimum.

computing the active subspace is about 0.2(s)· 150 � 30 s.

Active Subspaces for Dimension Reduction

For illu stration purpo ses, the matrix �Ck is computed at the model optimum (u� , µ� )
for each of the 3 power setpoints. The eigenvalues of �Ck are plotted in Figure (5.8).
There is a large gap between the “rst and the second eigenvalues for each of the power
setpoints. This indicates a presence of one dimensional active subspace. To con“rm
the presence of the active subspace, the suf“cient summary plots (SSP)s introduced
in Section 2.6.3 are constructed. The SSPs are plotted for the “rst 4 eigenvectors of
�Ck corresponding to the 4 largest eigenvalues. The plots are shown in Figure 5.9.

For each value of Pre f
el , a clear univariate trend appears for the SSP plot (L ( j)

k , ( �q1,k)
T � j )

corresponding to the “rst eigenvector, whereas for the rest of the eigenvectors the SSPs
are scatter plots showing no particular trend. This con“rms the presence of a single
dimensional active subspace. Therefore, the parameter space is successfully reduced
from n� = 21 to m = 1.

An interesting trend to observe in the SSP plots is that the model Lagrangian is
(approximately) linear in the active subspace. This implies that, with respect to the
active subspace, the global sensitivity of the gradient of the model Lagrangian ( � uL )
can be approximated by the local sensitivity. Hence, only local sensitivity is computed
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Figure 5.9 … Suf“cient summary plots for active subspace discovery. (a)Pre f
el = 50 W.

(b) Pre f
el = 75 W. (c) Pre f

el = 100 W.

to discover the privileged direction. It results in further reduction of the computational
cost as the number of random samples N is replaced by M̄ = 1 in Algorithm 3.2. The
overall reduction in the computational cost of the privileged direction is summarized
in Table 5.6.

The results of active subspaces may seem to be surprising, as out of 21 parame-
ters, only a single parameter direction is in”uential. This shows that models can be
sloppy in the sense that there are many parametric redundancies. These redundancies
are discovered through sensitivity analysis as done in active subspaces. Many para-
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Table 5.6 … Summary of computational time taken by different algorithms for discov-
ering privileged directions.

Algorithm Evaluations of model Lagrangian
Computational

time

Algorithm 3.2 with
full parameter space

(nu + 1) × (n� + 1) × (N = 150 samples) = 16500 1 hour

Algorithm 3.2 with
active subspaces via

Algorithm 3.5
(nu + 1) × (m + 1) × (M̄ = 1 sample) + N̄ = 160 32 seconds

Table 5.7 … Fuel-cell system: comparison of different RTO schemes.

RTO
schemes

Optimality loss Plant experiments required

Pre f
el = 50 W Pre f

el = 75 W Pre f
el = 100 W Pre f

el = 50 W Pre f
el = 75 W Pre f

el = 100 W
CA 5.45 % 4.88 % 3.71 % 18 11 8

DMA 4.49 % 4.72 % 3.58 % 24 23 23
MA 0 % 0 % 0 % 24 30 36

ADMA 0.66 % 0.28 % 0.29 % 9 21 17

metric studies conducted using active subspaces have resulted in dramatic dimension
reduction as documented in [ 28].

Recall that the observed linear trend in SSPs is still dependent on the value of
power demand Pre f

el , the input vector u and the Lagrange multipliers vector µ. Indeed,
even if one reduced parameter is suf“cient, the linear combination to build it is not
the same for different Pre f

el values. During the application of ADMA, similar linear
trends with 1-dimensional active subspace are found at each RTO iteration as the
values of Pre f

el and/or ( uk, µk) change from one iteration to the next. This con“rms
that, throughout the RTO iterations, the local sensitivity of � uL with respect to the
active subspace is capable of discovering the correct set of privileged directions as it
adequately represents the global sensitivity.

Results and Discussion

Since a local sensitivity is computed with respect to a single parameter resulting from
the active subspace, similar to condition (3.7) of DMA, th e number of privileged di-
rections is “xed at 1 (as n� � m = 1). Note that, as detailed in Section 5.2.3 on DMA
application to fuel-cell system, here too the component of the privileged direction
corresponding to the current I is “xed at zero.

The results of ADMA application to the fuel-cell system are shown in Figure 5.10.
The model gradient corrections in a single direction is suf“cient in driving the plant to
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Figure 5.10 … Application of ADMA to the fuel-cell system for 3 different power set
points. Red dashed-dotted line: plant optimum. Blue solid line: plant behavior. Black
dashed line: constraint bounds.

(near) optimal ef“ciency. This con“rms that the ADMA successful in “nding the most
sensitive input direction in which the model requires corrections.
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The results obtained upon the application of different RTO schemes are summa-
rized in Table 5.7. In terms of ef“ciency, MA and ADMA outperforms the other RTO
schemes. ADMA results in negligible opti mality losses whereas MA is truly optimal.
However, when the total plant experiments required by the two RTO schemes are com-
pared, ADMA clearly outperforms MA at all 3 power setpoints as it requires less than
half the plant experiments required by MA. In fact, at power setpoint of 50 W, ADMA
requires only a third of the plant experiments required by MA. Note that CA converges
the fastest for all 3 power setpoints. Howe ver, CA results in con siderable optimality
loss as compared to ADMA. ADMA clearly outperforms the local-sensitivity-based
DMA in both, optimality l oss as well as in plant experiments required.

5.3 Summary

Optimal production of airborne wind energy via ”ying kites is heavily dependent on
the path that the kite traverses. In the presence of uncertainties, such as plant-model
mismatch and exogenous disturbances, it becomes essential to make measurement-
based corrections to the underlying kite model. Thus, ADMA was tested in simula-
tions on the kite system.

However, due to lack of high-order corrections in the model, ADMA fails to con-
verge to the optimal solution. Instead, it r esults in an oscillatory behavior, where
the plant “rst moves towards its optimum but then diverges due to disagreement in
the model and the plant Hessian. Therefore, it is proposed to control the input step
changes via a trust region. Trust region ad justs its size based on the agreement be-
tween the model prediction and the actual plant behavior. If needed, it shrinks itself
to ensure that the model-plant agreement is maintained. Incorporation of the trust
region in ADMA results in TR-ADMA algorithm that controls the input steps via trust
region, which changes the algorithm behavior drastically, thus leading to excellent
overall performance. The measurement noise is nicely handled by the combination of
“ltering the modi“ers and trust-region adaptation.

This chapter further discusses the case study of a fuel-cell system. The aim of the
study is ef“ciency maximizat ion, while simultan eously ensuring the minimal system
degradation by respecting critical, life-time enhancing process constraints. In addition,
the constantly changing power demand pushes for a technological solution that can
quickly adjust itself under varying conditions.

The MA-based RTO techniques are a natural “t to the problem as they guarantee
post convergence constraint satisfaction via zeroth-order/bias correction terms and
are capable of “nding the varying optimal regimes caused by ever changing power
demand conditions. Consequently, the simplest of all MA techniques, namely CA, is
tested on the fuel-cell system. The simulation results show that CA converges to a fea-
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sible yet sub-optimal point fo r every power setpoint. To ove rcome this sub-optimality,
other variants of MA techniques have been tested. MA itself gives excellent perfor-
mance in terms of feasibilit y and optimality, however, it takes too many plant experi-
ments for (full) gradient estimation. In ev er changing optimality c onditions, too many
plant experiments are prohibitive as MA may never converge under changing power
demand.

To reduce the number of plant experiments, the local-sensitivity-based DMA is
applied to the system. Howev er, DMA performs similar to CA in terms of optimality
which clearly indicates that of”ine-computed local sensitivities are not suf“cient to
point in right input (privileged) directions for model gradient corrections.

The above results clearly point towards the need for online-computed global sen-
sitivity analysis that can reveal the correct set of privileged directions. However, com-
puting global sensitivities via Algorithm 3.2 is very time consuming as the size of
the parameter space is large. To reduce the parameter space, active subspaces are
employed. The active subspaces are found by “tting computationally cheap locally-
linear models that reveals a one-dimensional active subspace and, thereby, drastically
reduces the parameter space from 21 parameters to a single parameter. Moreover, the
plotted SSPs reveal an interesting linear trend between the model Lagrangian and the
active subspace. This implies that local sensitivity with respect to the active subspace
is enough to “nd the correct privileged direction. This results in a drastic reduction
in computational time for “nding the privileged directions. The time is reduced from
one hour taken by Algorithm 3.2 when full parameter space is employed to 32 s when
Algorithm 3.2 exploits the active subspace and, thus, “nds sensitivities only locally in
only a single parameter direction.

The privileged directions in ADMA are recomputed at each RTO iteration and,
when applied to the fuel-cell system, they give excellent results. Not only near-optimal
performance is achieved as opposed to CA and DMA, but also the total number of
plant experiments required is signi“cantly reduced when compared to MA.
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6 Conclusion

6.1 Summary

This thesis shows that a tandem between the optimality c onditions and the model
parameters naturally occurs, which can b e unearthed when the right tools are put to
work. As any naturally occurring phenomenon, this tandem has its limitations that
deprives parameter adaptation from independent KKT matching. Such a model de“cit
can be well compensated by the tailor-made modi“ers leading to perfect KKT match-
ing. On the other hand, when this limitation is rather seen as a strength and more
con“dence is shown in the models, it leads to methodologically chosen experiments
that pushes towards the plant NCOs.

The “rst RTO scheme that is proposed here addresses the MA•s requirement of
excessive plant experiments for gradient estimation that may be prohibitive in prac-
tice. The experimental cost can be reduced by estimating the gradient only along a
few privileged input directions found via of”ine local parametric sensitivity analysis.
Unfortunately, the sensitivity analysis preformed at the model optimum is often no
more valid as the input iter ates move away from the model optimum and the active
set of constraints change. Moreover, local sensitivity is weak in approximating the cor-
responding global phenomenon when the mo dels are highly nonlinear in parameters.

The proposed ADMA methodology tackles these issues by conducting a globalsen-
sitivity analysis performed online. The active subspace theory is tailored to reveal the
privileged directions by computing the sensitivity of the model Lagrangian gradient at
random parameter samples. Each sensitivity sample is augmented to a big matrix that
represents global sensitivities. The eigenvalue decomposition of the sensitivity matrix
uncovers the input directions where the gradients are highly sensitive to parametric
perturbations. This procedure is repeated at each RTO iteration as the inputs and the
active set of constraints change. The modi“ers are adapted to match the model and
the plant gradients along the privileged directions.

113



Chapter 6. Conclusion

The simulation studies of run-to-run opti mization of semi-batch processes revealed
that only a few privileged directions found via global sensitivity analysis are suf“cient
to reach optimal plant performance even in the presence of structural plant-model
mismatch. Hence, fewer plant experiments are performed to estimate plant gradients
along the handful of privileged input directions.

Certain applications may have faster time scales and, therefore, the computational
time for global sensitivity analysis poses a problem. This challenge is handled by
again altering the active subspace tools so that parametric sensitivity of the model
Lagrangian gradient is approximated by only computing the Lagrangian gradients at
random parameter samples. The subtraction of mean from the samples approximates
the Lagrangian gradient sensitivity quite well and results in large reduction in compu-
tational time. Alternatively, when the parametric dimension is large, active subspace
theory is directly employed to “nd a low-dimensional in”uential parameter direction
also referred to as an active subspace. The sensitivities are then computed only with
respect to the low-dimensional active subspace of parameters that drastically reduces
the computational cost.

This thesis further discusses the role of model parameters and modi“ers in in”u-
encing the KKT conditions. It is found that the structural independence is an inherent
property of modi“er adaptation that enables independent KKT matching. The same
structural independence is searched in a given model that leads to the concept of
mirror parameters. Mirror parameters are the model parameters that behave similar
to modi“ers in terms of their ability to independently in”uence the KKT conditions.
The presence of mirror parameters is discovered by “nding the in”uential and non-
in”uential parameter spaces of each of the KKT element. This reveals whether there
exists a one-to-one correspondence between parameters and KKT elements. If such
a correspondence exists, then each KKT element of the model can be matched with
that of the plant by adjusting the corresponding mirror parameter. If some KKT ele-
ments lack mirror parameters, then the modi“ers are added to compensate. Moreover,
if a gradient component and a constraint compete for the same in”uential parameter
space, since the gradient estimation is expensive, the gradient component is given pri-
ority and it is matched by adapting the in”uential space. The constraint is then paired
with a zeroth-order modi“er.

The above discussed framework of generalized model adaptation is further devel-
oped to “nd the privileged direction to in”uential parameter correspondence. This
translates to reducing the plant suboptim ality at a reasonable experimental cost as
only partial KKT matching is performed. The simulation study of steady-state opti-
mization of the William s-Otto processshows that the tandem between the privileged
direction and the corresponding in”uential parameter is highly successful in reach-
ing near-optimal plant performance despite structural plant-model mismatch and the
presence of noise.
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Finally, the developed ADMA algorithm is tested on advanced simulation studies
of airborne wind energy system and solid-oxide fuel-cell system. For the case study
of a simulated ”ying kite, ADMA without a trust region is not able to converge as
the af“ne local corrections are insuf“cient to capture the plant behavior at far away in-
put points. Such a problem is overcome by controlling the input steps via trust-region,
which changes the algorithm behaviour drastically,thereby leading to an excellent over-
all performance.

The simulation study of the fuel-cell system is used to test different MA-based
methods, where the goal is to maximize the ef“ciency of the system while satisfying
lifetime critical process constraints. When only constraints are adapted using CA, the
system performance improves from its nominal values but converges to a suboptimal
but feasible input value. DMA performs more or less the same as CA and converges
also to a suboptimal input value, which shows that the of”ine-computed local sensi-
tivity analysis is insuf“cient in discovering the correct privileged input directions. MA
obviously converges to the optimal value, however, if the process conditions change
at a higher frequency than the one at which MA converges, then MA may never be
able to reach the plant optimality. The con vergence speed can be improved by reduc-
ing the number of plant experiments requir ed to reach plant optimality. To this end,
ADMA is applied that “nds privileged directions via global sensitivity analysis that
are computed online. Thereby, ADMA converges to near-optimal performance, while
requiring considerably less experiments than MA.

6.2 Perspectives

This thesis leaves many open research problems that are essential for the techniques
developed here to become industrial practice. In addition, the developed methodolo-
gies can be applied to other domains that deal with maximizing the information in
minimum effort.

Alternate Methods for Global Sensitivity Analysis

This thesis shows that global sensitivity methods can outperform local sensitivities
in computing the most relevant set of privileged directions. To this end, the ideas of
active subspaces are tailored to RTO needs. However, the literature is full of alternative
methodologies for conducting global sensitivity analysis [ 25, 63, 112]. For instance, it
would be interesting if Sobol sensitivity indices [ 124] are utilized for “nding in”uential
parameters and compared with the results obtained via active subspaces.

Moreover, further research is needed to develop more ef“cient methods to compute
in”uential parameters and privileged input directions. For instance, Morris screening
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methods [77, 91] can be utilized to compute the sensitivities instead of performing
“nite-differences on random parameter samples. Another potential solution is to con-
struct surrogate models for faster computations by using response surface models,
gaussian processes [13, 99, 128] or polynomial chaos expansions [ 36] or radial basis
functions [ 98].

Privileged Surfaces

Privileged input directions constitute linear combinations of inputs that best describe
the gradient variability upon parametric perturbations. It should be investigated if,
instead of a linear combination, a response surface [13] could be found such that
the Lagrangian gradient varies signi“cantly along the surface when the parameters
are varied. The goal is then to use measurements to learn the plant mapping on
this surface. The learned response surface can be utilized to compensate for plant-
model mismatch. Ide ally, response surface should be designed such that minimal
experiments are required to learn the plant behavior along the surface. Privileged
surfaces would be really helpful in the cases when the historical plant data is available
that is suf“ciently rich in information. Such data can be utilized in the construction of
privileged surfaces.

Closed-Loop Implementation

The methodologies developed here are designed by considering the manipulated vari-
ables as the decision variables (referred to as input u). However, the process systems
in industry run in closed-loop, where the decision variables are the set-points passed
to a controller that manipulates the input u.

A straightforward solution is to directly use set-points as decision variables in nu-
merical optimization. However, this requires that the contr oller is robus tly designed to
work at each set-point passed by the optimization layer. The controllers are designed
to work mostly around the local operating conditions and may not be appropriate
when there are large set-point changes. Hence, there is a need for integrating the RTO
and control design techniques for practical implementation of RTO methods, such as
ADMA. To this end, robust control design techniques [ 71, 107, 122] would be very
useful that can handle changing operating conditions.

An alternative is to combine implicit and explicit RTO schemes. An implicit RTO
scheme such as NCO tracking [46, 125, 127] constructs a solution model via of”ine
numerical optimization. The s olution model is used to desi gn the control structure.
The performance of the scheme is dependent on the solution model.

To update the solution model, global-sensitivity-based privileged directions can
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be utilized f or system excitation and process model can be updated by the resulting
plant measurements. This could be done by either adapting modi“ers or in”uential
parameters. The process model can then be utilized to update the solution model via
numerical optimization.

Adaptive Control

In adaptive control, model parameters are adapted and the updated model is used
in the feedback control design. The goal is to “nd and adapt the model parameters
that in”uences the controller performance the most and thereby, adjust the control law
to achieve the desired behavior [75, 129]. Clearly, the framework developed here “ts
the adaptive control well. The main differen ce is that the optim ization objectives are
replaced by the control objectives.

Optimal Experimental Design in Systems Biology

The models constructed for predicting c ellular behavior can b e calibrated by opti-
mal experimental design via dynamic experimental techniques [ 14, 106]. Carefully
designed dynamic perturbations excites the real process to extract information that
reduces the variance of parameter estimates by manyfold when compared to intuition-
driven non-optimized experiments [ 7]. To this end, optimal control problems are for-
mulated that yield most promising temporal input pro“les for system excitation [ 9].
A tandem between the excitation input signal and parameter estimation is established
that is analogous to the synergy found between privileged input directions and mirror
parameters. Hence, the discovered knowledge in this thesis can be applied to better
predict the behavior of cellu lar systems via iterative exper iments that ut ilize opti mized
inputs.

Optimal Control of Drug Therapy in Cancer Treatment

Cancer remains one of the most dangerous illn esses that causes many deaths every
year. The traditional treatment regimes include administering chemotherapy. The
dosage of the therapy must be carefully adjusted in order to cause the minimum
damage to healthy tissue, whilst killing a maximum number of tumour cells [ 92].
Recently, model-based optimal treatment regimes are proposed that can minimize the
cancer cells in addition to the total amount of chemotherapy [ 40, 64]. However, the
model calibration is patient dependent [ 40]. Therefore, only minimal experiments can
be performed, if any. Hence, it becomes important to understand well the relation
between drug regimes and the parameter identi“ability, which directly links to the
developments in this thesis. The mirror parameters can be found that are adapted
for each patient while ensuring minimal experimentation via system excitation along
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privileged input directions.
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A Models Studied in Chapter 3

A.1 Williams-Otto Reactor Model

The model equations are as follows:

dV
dt

=
FB

q
(A.1a)

dmA

dt
= Šr1V (A.1b)

dmB

dt
= FB Š

M wA

M wB

r1V + r2V (A.1c)

dmC

dt
=

M wC

M wA

r1V Š
M wC

M wB

r2V Š r3V (A.1d)

dmE

dt
=

M wE

M wB

r2V (A.1e)

dmG

dt
=

M wG

M wC

r3V (A.1f)

dmP

dt
=

M wP

M wB

r2V Š
M wP

M wC

r3V (A.1g)

dTr

dt
=

H
VCp

(A.1h)

ci = mi/ V; i = A, B, C, P, E, G

ki = aie
Š bi (Tr+ Tre f) ; i = 1, 2, 3

r1 = k1cAcB; r2 = k2cBcC; r3 = k3cCcP

H = FBCpTin Š � H1r1V Š � H2r2V Š � H3r3V Š V
A0

V0
U(Tr Š Tw)
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Appendix A. Models Studied in Chapter 3

Table A.1 … Reaction parameters and operating conditions for the Williams-Otto semi-
batch reactor

Variable De“nition Value
M A, M B, M P Molar mass - components A, B, P 100 kg kmolŠ1

M C, M E Molar mass - component C, G 200 kg kmolŠ1

M G Molar mass - component G 300 kg kmolŠ1

a3 Pre-exponential fraction - reaction 3 2.6745· 1012 sŠ1

b3 Activation energy - reaction 3 11111 K
Tre f Reference temperature 273.15 K
Tin Inlet temperature ( B) 308.15 K

� H1 Enthalpy - reaction 1 236.8 kJ kgŠ1

� H2 Enthalpy - reaction 2 158.3 kJ kgŠ1

� H3 Enthalpy - reaction 3 226.3 kJ kgŠ1

A0 Heat-transfer area 9.2903 m2

V0 Cooling jacket volume 2.1052 m3

U Heat-transfer coef“cient 0.23082 kJ (m2 K s)Š1

V(0) Initial reactor volume 2 m3

Tr (0) Initial reactor temperature 338.15 K
mA(0) Initial mass - component A 2000 kg

mB(0), mC(0), mP(0),
mE(0), mG(0)

Initial mass - components
B, C, P, E, G 0 kg

Cp Speci“c heat capacity 4.184 kJ kgŠ1 CŠ1

q Fluid density 1000 kg m3

PP Price of P 555.4 $ kgŠ1

PE Price of E 125.91 $ kgŠ1

A.2 Diketene-Pyrrole Reactor Model

The “rst-principles model for the semi-batch reactor reads:

dcA

dt
= Šk1cAcB Š

FB

V
cA (A.2a)

dcB

dt
= Šk1cAcB Š 2k2c2

B Š k3cB Š k4cBcC +
FB

V
(cin

B Š cB) (A.2b)

dcC

dt
= k1cAcB Š k4cBcC Š

FB

V
(cC) (A.2c)

dcD

dt
= k2c2

B Š
FB

V
(cD) (A.2d)

dV
dt

= FB, (A.2e)

where cA, cB, cC and cD represent the concentrations of the species A, B, C and D,
respectively. V is the reactor volume, FB is the inlet ”owrate of species B, and cin

B is the
concentration of B in the feed.
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A.2. Diketene-Pyrrole Reactor Model

Table A.2 … Reaction parameters and operating conditions for the diketene-pyrrole
semi-batch reactor

Variable De“nition Value
cin

B Concentration of B in the feed 5 mol L Š1

V(0) Initial reactor volume 0 1 L
cA(0) Initial concentration of A 0.72 mol LŠ1

cB(0) Initial concentration of B 0.05 mol LŠ1

cC(0) Initial concentration of C 0.08 mol LŠ1

cD(0) Initial concentration of D 0.01 mol LŠ1

tf Final time 250 min
Fmax

B Maximal inlet ”owrate 2 · 10Š3 L min Š1

cmax
B Maximal concentration of B at “nal time 0.025 mol LŠ1

cmax
D Maximal concentration of D at “nal time 0.15 mol LŠ1


 Weight 10 mol min L Š2
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B Model Studied in Chapter 4

B.1 Williams-Otto Process

B.1.1 Plant Equations

The different units of the plant are described. The steady-state component material
balance and the reaction equations around the reactor are given as:

FA + FT,A Š FR,A Š V r1 = 0, (B.1a)

FB + FT,B Š FR,B Š V r1 Š V r2 = 0, (B.1b)

FT,C Š FR,C +
M C

M A
V r1 Š

M C

M B
V r2 Š V r3 = 0, (B.1c)

FT,E Š FR,E +
M C

M B
V r2 = 0, (B.1d)

FT,G Š FR,G +
M G

M C
V r3 = 0, (B.1e)

FT,P Š FR,P +
M P

M B
V r2 Š

M P

M C
V r3 = 0, (B.1f)

r1 = k1
FR,A FR,B

(FR)2 ; r2 = k2
FR,B FR,C

(FR)2 ; r3 = k3
FR,C FR,P

(FR)2 , (B.1g)

FR Š (FR,A + FR,B + FR,C + FR,E + FR,G + FR,P) = 0, (B.1h)

ki = Ai exp
	

ŠEi

Tr + 273.15



; i = 1, 2, 3. (B.1i)
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