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Abstract

Efficiently representing real world data in a suc-
cinct and parsimonious manner is of central im-
portance in many fields. We present a general-
ized greedy pursuit framework, allowing us to
efficiently solve structured matrix factorization
problems, where the factors are allowed to be
from arbitrary sets of structured vectors. Such
structure may include sparsity, non-negativeness,
order, or a combination thereof. The algorithm
approximates a given matrix by a linear combi-
nation of few rank-1 matrices, each factorized
into an outer product of two vector atoms of the
desired structure. For the non-convex subprob-
lems of obtaining good rank-1 structured matrix
atoms, we employ and analyze a general atomic
power method. In addition to the above appli-
cations, we prove linear convergence for gener-
alized pursuit variants in Hilbert spaces — for
the task of approximation over the linear span of
arbitrary dictionaries — which generalizes OMP
and is useful beyond matrix problems. Our ex-
periments on real datasets confirm both the ef-
ficiency and also the broad applicability of our
framework in practice.

1. Introduction

Approximating a matrix using a structured low-rank ma-
trix factorization is a cornerstone problem in a huge variety
of data-driven applications. This problem can be seen as
projecting a given matrix onto a linear combination of few
rank-1 matrices, each of which being an outer product of
two vectors, each from a structured set of vectors. Exam-
ples of such structure in the vectors can be sparsity, group
sparsity, non-negativeness etc. The structure is generally
encoded as a constraint on each of the two factors of the
factorization problem. Even without imposing structure,
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the rank-constrained problem is already NP-hard to solve
in generall . Instead of a rank constraint, convex relaxations
are therefore typically applied. However, this involves giv-
ing up explicit control over the resulting rank. Neverthe-
less, there has been a strong body of research studying re-
covery and performance under several convex relaxations
of rank-constrained problems (Candes and Recht, 2009;
Candes and Tao, 2010; Toh and Yun, 2009; Pong et al.,
2010).

In this paper, we take a different approach. We keep ex-
plicit control over the rank of the factorization, as well as
the precise structure of the used (vector) factors, which
we call atoms. Our approach is a greedy method adding
one rank-1 atom per outer iteration, as in matrix variants
of matching pursuit (Wang et al., 2014) as well as Frank-
Wolfe algorithms on factorizations (Hazan, 2008; Jaggi and
Sulovsky, 2010; Dudik et al., 2012; Jaggi, 2013; Bach,
2013). By keeping the explicit low-rank factorization into
the vector atoms at all times, we can study general algo-
rithms and correction variants applying directly to the orig-
inal non-convex problems.

Iteratively adding a rank-1 atom for structured matrix fac-
torization falls into the purview of pursuit algorithms,
which we here present in general form. Each update is
obtained from a linear minimization oracle (LMO), which
outputs the best rank-1 atom with respect to a linearized
version of the objective. Each iteration hence increases the
rank by 1, while improving the approximation quality. We
will systematically study this tradeoff between rank and ap-
proximation quality, by providing convergence rates of the
iterates to the best possible structured approximation of the
given matrix.

To study the convergence rates for matrix pursuit over

! For example, least-squares matrix completion is NP hard
even for a rank-1 factorization, as shown by (Gillis and Glineur,
2011).



Pursuits in Structured Non-Convex Matrix Factorizations

structured sets, we adapt the convergence results for pursuit
algorithms from the compressed sensing literature. While
most of the existing work focuses on assessing the qual-
ity of k-greedy selection of atoms vis-a-vis a best possible
k-atom selection, there is some work that discusses linear
convergence of greedy pursuit approaches in an optimiza-
tion sense (Davis et al., 1997; Mallat and Zhang, 1993; Gri-
bonval and Vandergheynst, 2006; Blumensath and Davies,
2008; Jones, 1987; Dupé, 2015). However, they are not
directly applicable to matrix pursuit for structured factor-
ization, because they typically require the observed vec-
tor to lie within the span of the given dictionary (i.e., the
structured sets) and make strong structural assumptions
about the dictionary (e.g., incoherence, see Section 2.1).
We show that even in the more general case when the ob-
servation is not in the span of dictionary, greedy pursuit
in a Hilbert space converges linearly to the best possi-
ble approximation. In the language of functional analy-
sis, the line of research of DeVore and Temlyakov (2014);
Temlyakov (2014) is closest to this approach. Note that
such results have a wider scope than just the applications
to matrix pursuit.

The general nature of our convergence result allows its ap-
plication to any set of atoms which induce an inner product
— which in turn induces a distance function, that can be
minimized by greedy pursuit. It is easy to show that the
low rank structured matrix completion problem can be cast
in this framework as well, and this yields an algorithm that
works for any atomic vector set. For the specific case of
atomic vector sets being unit 2-norm balls without any fur-
ther structure, this setup was used by Wang et al. (2014),
who showed linear convergence for matrix pursuit on 2-
norm balls as vector atomic sets. This is a special case of
our framework, because we show linear convergence with
any compact vector atomic sets. We also present empirical
results on real world datasets that show that this generaliza-
tion is useful in practice.

The linear convergence of the matching pursuit in Hilbert
spaces specifies the decay in reconstruction error in terms
of number of calls made to the LMO. For the matrix pursuit
algorithm, the linear problem being solved by the LMO it-
self may be a NP-hard, though efficient solutions are avail-
able in some cases (Bach et al., 2008; Recht et al., 2010).
We also analyze the pursuit using only an approximate ver-
sion of the LMO, and we show that the linear convergence
rate is still maintained, but the decay is less sharp depend-
ing on the approximation quality of the LMO.

Related work: There exists a vast literature on structured
matrix factorizations. For our cases, the most relevant are
the lines of research with iterative rank-1 greedy approxi-
mations such as the Frank-Wolfe algorithm (Hazan, 2008;
Jaggi and Sulovsky, 2010; Dudik et al., 2012; Jaggi, 2013;

Bach, 2013). In the tensor case, a very similar approach has
recently been investigated by Yang et al. (2015), but not for
the case of structured factorizations like we do here. Their
linear convergence result is also a special case of our more
general convergence rate result in Hilbert spaces. Similarly,
for specific atomic sets, there is a large body of literature,
see, e.g., (Yuan and Zhang, 2013; Journée et al., 2010; Pa-
pailiopoulos et al., 2013) for Sparse PCA, (Sigg and Buh-
mann, 2008; Asteris et al., 2014) for sparse non-negative
PCA, and references therein.

There is a significant amount of research on pursuit algo-
rithms, even more so on one of its more commonly used
flavors known as orthogonal matching pursuit. Davis et al.
(1997) prove geometric convergence of matching pursuit
and its orthogonal counterpart for finite dictionaries, while
Mallat and Zhang (1993); Gribonval and Vandergheynst
(2006) give convergence results for (quasi-)incoherent dic-
tionaries in Hilbert spaces of finite or infinite dimension.
However, all of these assume the observed vector to lie
in the dictionary span, so that the goal is to exactly re-
construct it using as few atoms as possible rather than
to approximate it using as few atoms as possible. For
infinite-dimensional pursuit, Jones (1987) showed conver-
gence without providing rates.

The matrix completion problem has gained significant in-
terest recently, motivated by powerful applications in rec-
ommender systems (e.g. Netflix prize, Koren et al. (2009)),
signal processing (robust PCA, Candes et al. (2011)), and
most recently word-embeddings in NLP (Levy and Gold-
berg, 2014). Candes and Recht (2009); Recht (2009) and
several subsequent works study the completion problem by
convex optimization and provide bounds on exact matrix
completion for random matrices. Jain et al. (2013) provide
guarantees for low rank matrix completion by alternating
minimization under incoherence. These works and several
followups cast the matrix completion as minimization of
the rank of the matrix (or a convex surrogate) under the
constraint that the observed entries are reproduced exactly
or approximately. A matrix pursuit view of the problem
was taken by Wang et al. (2014) by adding rank-1 up-
dates iteratively to decrease the reproduction error on the
observed entries.

Contributions. Our key contributions are as follows:

e We devise and analyze a general algorithmic frame-
work for structured matrix factorizations, where the
factors are allowed to be from an arbitrary set of struc-
tured vectors. Our method only assumes a constrained
linear minimization oracle (LMO), and can be seen as
a special case of a more general class of pursuit algo-
rithms, which we analyze in Section 2.

e We prove a linear convergence guarantee for general-
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ized pursuit in Hilbert spaces for approximation over
the linear span of arbitrary dictionaries, which gener-
alizes OMP and is useful beyond matrix problems.

e For the non-convex rank-one factorization subprob-
lems per iteration, we propose a general atomic power
method, allowing to efficiently approximate the LMO
for arbitrary structured sets of vector atoms.

e We improve efficiency of the resulting methods in
terms of the required rank (number of atoms) by al-
lowing corrective variants of the algorithm.

¢ Finally, we provide strong experimental results on real
world datasets, confirming the efficiency and broad
applicability of our framework in practice.

Notation. We represent vectors as small letter bolds, e.g.,
u. Matrices are represented by capital bolds, e.g., X, T.
Vector/matrix transposes are represented by superscript T.
Identity matrix is represented as I. Sets are represented by
calligraphic letters, e.g., S. For a matrix A € R™*" and a
set of index pairs €2, A stands for the matrix that is equal
to A at the entries indexed by €2, and 0 elsewhere. Let [d]
be the set {1,2,...,d}. Let conv(S) be the convex hull
of the set S, and let lin(S) denote the linear span of the
elements in S. u ® v represents the rank-1 matrix given by
the outer product uv ' of two vectors u,v. Analogously
we write A; ® Ay for the set of outer products between
any pair of elements from two sets .4; and A, respectively.

2. Generalized Pursuit in Hilbert Spaces

In this section, we develop a generalized pursuit algorithm
for Hilbert spaces. Let H be a Hilbert space with associ-
ated inner product (x,y)#, Vx,y € H. The inner product
induces the norm ||x||3, := (x,X)3, Vx € H, as well as
the distance function dy(x,y) := ||x — y|ln, Vx,y € H.

Let S C H be a bounded set and let fz: H—R. We
would like to solve the optimization problem

i fru(x). (1)
We write x* for a minimizer of (1). For any y € H, and
bounded set S C H, a linear minimization oracle (LMO)
is defined as

LMOgs(y) := argmin (X, y)%.
xeS

Our generalized pursuit algorithm is presented as Algo-
rithm 1. In each iteration r, the linearized objective at the
previous iterate is minimized over the set S (which is pur-
pose of the LMO), in order to obtain the next atom z, to
be added.

Algorithm 1 Generalized Pursuit (GP) in Hilbert Spaces
Require: x5 € S, R, fy

1: forr=1..R do

2:  z,:= (Approx—)LMOg (qu.t (Xr,l))

3: @ :=mingegrr fH(ZiST ;Z;)

4:  Optional: Correction of some/all z;.
5
6

Update iterate x, := >, ®;%;
: end for

After that, we do allow for corrections of the weights of all
previous atoms, as shown in line 3. In other words, we ob-
tain the next iterate by minimizing f; over the linear span
of the current set of atoms. This idea is similar to the fully-
corrective Frank-Wolfe algorithm and its away step vari-
ants (Lacoste-Julien and Jaggi, 2015), as well as orthogo-
nal matching pursuit (OMP) (Chen et al., 1989), as we will
discuss below. E.g. for distance objective functions d?H as
of our interest here, this correction step is particularly easy
and efficient, and boils down to simply solving a linear sys-
tem of size r x 7.

A second type of (optional) additional correction is shown
in line 4, and allows to change some of the actual atoms
of the expansion, see e.g. Laue (2012). Both types of cor-
rections have the same motivation, namely to obtain bet-
ter objective cost while using the same (small) number of
atoms 7.

The total number of iterations R of Algorithm 1 controls
the the tradeoff between approximation quality, i.e., how
close fy(xpg) is to the optimum f(x*), and the “struc-
turedness” of xpr due to the fact that we only use R atoms
from S and through the structure of the atoms themselves
(e.g., sparsity). If H is an infinite dimensional Hilbert
space, then f is assumed to be Fréchet differentiable.

Note that the main difference between generalized pursuit
as in Algorithm 1 and Frank-Wolfe type algorithms (both
relying on the same LMO) is that pursuit maintains its re-
spective current iterates as a linear combination of the se-
lected atoms, while in FW restricts to convex combinations
of the atoms.

We next particularize Algorithm 1 to the least squares ob-
jective function fy(x) := 3d3(x,y) for fixed y € H.
As will be seen later, this variant of Algorithm 1 has many
practical applications. The minimization in line 3 of Al-
gorithm 1 hence amounts to orthogonal projection of y to
the linear span of {z;;4 < r}, and —V fy(x,) writes as
r,41 ‘= y — X,, henceforth referred to as the residual at
iteration r. We thus recover a variant of the OMP algo-
rithm (Chen et al., 1989). By minimizing only w.r.t. the
new weight «,. in line 3 of Algorithm 1 we further recover
a variant of the matching pursuit (MP) algorithm (Mallat
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and Zhang, 1993) 2.

Our first main result characterizes the convergence of Al-
gorithm 1 for fz,(x) := 3d3,(x,y).

Theorem 1. Let fy(x) := 1d3,(x,y) fory € H. For
every Xg € S, Algorithm 1 converges linearly to x*.

Discussion. The linear convergence guarantees [y (X;)
to be within € of the optimum value f(x*) after O(log 1/¢)
iterations. Moreover, since the atoms selected across iter-
ations are linearly independent, the maximum number of
iterations in the finite-dimensional case is equal to the di-
mension of H.

Algorithm 1 allows for an inexact LMO. In particular for
our main interest of matrix factorization problems here, an
exact LMO is often very costly, while approximate ver-
sions can be much more efficient. We refer to the supple-
mentary material for the the proof that the linear conver-
gence rate still holds for approximate LMO, in terms of
multiplicative error.

2.1. Relationship with coherence-based rates

Our presented convergence analysis (which holds for infi-
nite sets of atoms) can be seen as a generalization of ex-
isting coherence-based rates which were obtained for finite
dictionaries S = {s;;i € [n]} C H. Throughout this sec-
tion, we assume that the atoms are normalized according to
Isll% = 1,Vs € S, and that S is symmetric, i.e., s € S
implies —s € S.

In the general case, we assume y to lie in H (not necessar-
ily in S). In the sequel, we will restrict y to lie in lin(S)
in order to recover a known coherence-based convergence
result for OMP for finite dictionaries. Our results are based
on the cumulative coherence function.

Definition 2 (Cumulative coherence function (Tropp,
2004)). Let T C [n] be an index set. For an integer m,
cumulative coherence function is defined as:
m) = max max Sk, Si)H
'u( ) |I\=mk’€[n]\1iezl|< > |
Note that p(m) < mpu(l), and p(1) can be written as
max;-y |(S;, Sk)2|. Using the cumulative coherence func-

tion to restrict the structure of S, we obtain the following
result.

Theorem 3 (Coherence-based convergence rate). Let
rr =y —x*

If uln —1) < 1, wheren = |S
linear convergence as

* 17:“(”71) *
e =B < (1= S Y g, e

2In OMP and MP, the LMO
arg maX,.g |(X,rr—1)#| atiteration r.

, then the residuals follow

consist in solving

Writing out the condition p(n — 1) < 1 yields
MaXye(n] Y iefn\k |(Sk>Si)2| < 1, which implies that the
atoms in S need to be close to orthogonal when the number
of atoms is on the order of the ambient space dimension.
Thus, Theorem 3 gives us an explicit convergence rate at
the cost of imposing strong structural conditions on S.

Considering the special case of our Theorem 1 for achiev-
able y € lin(S), finite dictionary, and fy(x) :=
2d3,(x,y), we recover the following known result for the
linear convergence of OMP under an analogous coherence
bound on S:

Corollary 4 (see also Gribonval and Vandergheynst (2006,
Thm. 2b)). Ify € lin(S), then V1 < r < ms.t. u(m —
)< 1l,m<n,

1—p(m—1)
Il < (1 =200

Proofs of Theorems 3 and Corollary 4 are provided in the
supplementary material.

3. Matrix Pursuit

Motivated from the pursuit algorithms from the previous
section, we here present a generalized pursuit framework
for structured matrix factorizations.

In order to encode interesting structure for matrix factoriza-
tions, we study the following class of matrix atoms, which
are simply constructed by arbitrary two sets of vector atoms
A; CR™and Ay C R™. We will study pursuit algorithms
on the set of rank-1 matrices A; ® A, each element being
an outer product of two vectors.

Specializing the general optimization problem (1) to sets
lin(A; ® Ay), we obtain the following structured ma-
trix factorization notion: Given an objective function
f:R™™ R, we want to find a matrix X optimizing

min X). 2)

Xelin(A1®A2) f( ) (

When restricting (2) to candidate solutions of rank at
most R, we obtain the following equivalent and more in-
terpretable factorized reformulation:

R
min a;u; @V . 3)
weA; ViE[R],f(Z o l) (
vi€As; Vie[R], i=1
acRP

Symmetric factorizations. The above problem structure
is also interesting in the special case of symmetric matrices,
when restricting to just one set of vector atoms .4; (and
u = v), which results in symmetric matrix factorizations

build from atoms of the form uu".
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Table 1. Some example applications for our matrix pursuit framework (Algorithm 2). The table characterizes the applications by the
set of atoms used as to enforce matrix structure (rows), and two prominent optimization objectives (columns), being low-rank matrix
approximation and low-rank matrix completion (MC). All cases apply for both symmetric as well as general rectangular matrices.

(a) Symmetric Structured Matrix Factorizations, u; € A; Vi

[ Atoms A, | =Y =Y ow@u|i [ [=]Y =, ciwi @ w3 |
{u:[jul]x=1} PCA MC
{u:||ullz2=1, ||ullo = k} sparse PCA structured MC

(b) Non-Symmetric Structured Matrix Factorizations, u; € A1, v; € Ax Vi

’AtOIIlS .Al \Atoms .AQ ‘f: ||Y—Zl o @ Vz”%«“‘f: ||Y—Zl o;u; @ V7||S22‘
{u:|ul2=1} {v:]|v]z2=1} SVD MC
{u:||ullz=1, ||ullo = &} {vi|vle=11v]o = ¢} sparse SVD structured MC
{u:||ul]2=1,u > 0} {v:]v|2=1,v >0} NMF structured MC
{u:|lullz=1,u>0,|ullp=k}{v:|v|2=1,v >0,]v]o=q} sparse NMF structured MC

Applications. We present some prominent applications
of structured matrix factorizations within our pursuit
framework in Table 1.

The vector atom sets A; and A5 encode the desired matrix
factorization structure. For example, in the special case
O, i @ vy) = [Y = 3, asu; @ vy||% for a given
matrix Y, and atoms A4; = Ay = {x : ||x||2 = 1}, prob-
lem (2) becomes the standard SVD.

Typical structures of interest for matrix factorizations in-
clude sparsity of the factors in various forms, including
group/graph structured sparsity (see (Baraniuk et al., 2010)
and references therein for more examples). Furthermore,
non-negative factorizations are widely used, also ordered
vectors and several other structures on the atom vectors. In
our framework, it is easy to also use combinations of sev-
eral different vector structures. Also, note that the sets A,
and A, are by no means required to be of the same struc-
ture. For the rest of the paper, we assume that the sets A
and A; are compact.

Algorithm. The main matrix pursuit algorithm derived
from Algorithm 1 applied to problems of form (3) is pre-
sented in Algorithm 2.
Algorithm 2 Generalized Matrix Pursuit (GMP)
Require: X, R

I: forr=1..Rdo

2 u., v, := (Appror—)LMO 4, g 4, (Vf(XT_l))

33 a=mingerr f(D,, o ® V)
4:  Optional: Correction of some/all u;, v;.
5
6

Update iterate X, := >, a;u;v,
: end for

In practice, the atom-correction step (Step 4) is specially
important for maintaining iterates of even smaller rank in

practice, as also highlighted by our experiments. Local cor-
rections are made to the already chosen set of atoms to po-
tentially improve the quality of rank-r solution.

Matrix completion. Variants of (structured) matrix com-
pletion are obtained for the objective function

f(Z%‘W@Vz‘) = HY_Zaiui@Vi

where () is set of observed indices. Here the norm on the
vector space is defined with respect to only the observed
entries. Formally, || Z||% = ||Zq||% is induced by the inner
product (A, B)q := tr(A{,Bg).

“4)

2
)
Q

Convergence. The linear rate of convergence proved in
Theorem 1 is directly applicable to Algorithm 2 as well.
This is again subject to the availability of a linear oracle
(LMO) for the used atoms.

The convergence rate presented by Wang et al. (2014) for
the case of matrix completion can be obtained directly as
a special case of our Theorem 1, for A; := {u : ||ul]z =
1} Ay :={v:|vl]a=1}and R* ;==Y — X* = 0.

Generalized rank for structured factorizations. For
the case of given y € lin(S), the number of iterations per-
formed by Algorithm 2 can be thought of as a complexity
measure of generalized matrix rank, specific to our objec-
tive function fz and the atomic sets. As an example, one
can directly obtain the analogue of the k-q rank of matrices
for sparse SVD defined by Richard et al. (2014).

3.1. Atom Correction Variants

Algorithms 1 and 2 guarantee linear convergence in terms
of number of calls made to the LMO oracle, each iteration
increasing the rank of the iterate by one. In many applica-
tions such as low rank PCA, low rank matrix completion
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etc., it is desirable to have iterates being a linear combi-
nation of only as few atoms as possible. As discussed in
the previous Section 2, we do allow for corrections to ob-
tain a possibly much lower function cost with a given fixed
rank approximation. The more severe corrections of atoms
themselves in step 4 (as opposed to just their weights) can
be made by updating them one or a few atoms at a time,
keeping the rest of them fixed. For the symmetric case, the
update of the 7™ atom can be written as

uj‘ = argminf(Zajuj ® uy —|—o¢iu®u>. (®)]
ucA; i

The update for non-symmetric case is analogous. The com-
plexity of atom corrections depends very strongly on the
structure of the used atomic sets A; and A5. One general
way is to call the LMO again, but assuming the current
iterate is ) i Uy ® u;. For the non-symmetric case,
techniques such as alternating minimization between u;
and v; are also useful if the call to the LMO is more
expensive. Note that for the nuclear norm special case
Ay = Ay = {x : ||x||]2 = 1}, variants of such correc-
tions of the atoms were studied by Laue (2012).

In contrast to the non-convex corrections of atoms u;, the
optimal updates of the weights ¢ alone as in line 3 can be
performed very efficiently after every atom update (as e.g.
in OMP), by simply solving a linear system of size r X 7.

4. Implementing the Linear Minimization
Oracle for Matrix Factorizations

As in the Frank-Wolfe algorithm, the LMO is required to
return a minimizer of the function linearized at the cur-
rent value of X. As we mentioned in the introduction, this
type of greedy oracle has been very widely used in several
classical algorithms, including many variants of match-
ing pursuit, Frank-Wolfe and related sparse greedy meth-
ods (Frank and Wolfe, 1956; Jaggi and Sulovsky, 2010;
Tewari et al., 2011; Wang et al., 2014; Bach, 2013).

Say X, € R™*™ is the current iterate of algorithm or Al-
gorithm 2 on a matrix problem, for the objective function
f(X) = ||Y — X]||%. In the symmetric case (the non-
symmetric case is analogous), for arbitrary 4;, the LMO
can be equivalently written as finding the vector which
solves

argmax (—Vf(X,),u® u) (6)

ucA,

It is easy to see (6) represents a generalized version of the
top eigenvector problem (or singular vector, for the non-
symmetric case). The problem in general is NP-hard for
arbitrary atomic sets (such for example already in the sim-
ple case of unit-length non-negative vectors (Murty and
Kabadi, 1987)). Specific atomic structures and assump-
tions can allow for an efficient LMO. Nevertheless, we
will here provide a very general technique to design the

LMO for arbitrary vector atoms, namely the atomic power
method. Our proposed method will iteratively run on the
LMO problem (which is non-convex in its variable vec-
tor u), in a an ascent fashion. As is the case with ascent
methods on non-convex problems, the presented analysis
will only show convergence to a fixed point. For hard
LMO problems, the atomic power method can be run sev-
eral times with different initialization, and the best outcome
can be chosen as the LMO solution.

4.1. The Atomic Power Method

We will first address the symmetric case of the non-
convex LMO problem (6). We use the Frank-Wolfe al-
gorithm (Frank and Wolfe, 1956; Jaggi, 2013) with a fixed
step size of 1 to approximate the LM O problem. Although
designed for constrained convex minimization, it is known
that using a fixed step size of 1 can make Frank-Wolfe
methods suitable for constrained (non-convex) maximiza-
tion as in our formulation (6) (Journée et al., 2010; Luss
and Teboulle, 2013).

To solve (6), say u® is the t™ jterate (u(o) € R" is the
initialization). Recall that, —V f(X,) = R,. The next
Frank-Wolfe iterate is obtained as

u*Y  arg max (u, R,u®) (7

ucA,;

We call the update step (7) an atomic power iteration. It
is easy to see that it recovers the standard power method
as a special case, as well as the Truncated Power Method
for sparse PCA suggested by Yuan and Zhang (2013), the
sparse power methods suggested by Luss and Teboulle
(2013), and the cone constrained power method suggested
by Deshpande et al. (2014). It can be shown that the iterates
monotonically increase the function value.

Analysis. Our analysis is based on the techniques sug-
gested by the work on convex constrained maximization
by Journée et al. (2010) and Luss and Teboulle (2013).
While their focus is on the sparse PCA setting, we ap-
ply their results to general sets of vector atoms. Let
g(u) := (R,, u® u) be the value of the LMO problem for
a given vector u, and I(t) := maxue4, (Y, u®, u—u®).
Note that 7(t) > 0 by definition. We assume Yu € A,
(R,,u®u) > 0 so that g(-) is convex on conv(A;). Or,
a looser assumption to make is that all atoms in A; are
normalized i.e. Yu € A;,u’u = const. Note that this
assumption holds for most practical applications. If this is
the case, g(-) can simply be made convex by defining it as
g(u) ;== (R, + kI,u ® u) for large enough . Adding a
term that is constant for all atoms in .4; does not change
the maximizer.

The following proposition is a consequence of Theorem 3.4
in the work of Luss and Teboulle (2013).
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Proposition 5. IfvVu € A;,u'R,u > 0, and A, is com-
pact, then,

(a) The sequence {g(u™))} is monotonically increasing.
(b) The sequence {I(t)} — O.

(c) The sequence of iterates of atomic power method
{u®} converges to a stationary point of g(-).

Proof sketch. (a) follows because of interval convexity of
g(-) on A; which implies

g™ ) > g(u®) + (Ru® ut+H —u®)
= g(®) +1(2),

and because I(¢) > 0 by definition. (b) follows because
of (a) and because g(-) is upper bounded on .4; (compact-
ness assumption). (c) is a direct consequence from (b) by
definition of I(t). O

Hence at each iteration, the value of the optimization prob-
lem increases unless I(t) = 0 which is the first order opti-
mality condition till a fixed point is reached.

For sharper analysis, we make further assumptions on ¢g(-)
and A, and provide corresponding convergence results. We
assume a form of restricted strong convexity of the LMO
function on A;. It is easy to see that this is equivalent
to assuming (R, %) > Omin > 0, Vu € A;. This
directly implies that null(R,) N A; = {}. So, 3 s.t.
[Ryull2 > v > 0. Further, assume that conv(A4;) is d-
strongly convex. Using the analysis developed in (Journée
et al., 2010, Section 3.4), we can give guarantees for con-
vergence of the sequence {u(t)} developed in Proposi-
tion 5. Say ¢g* a stationary point of the sequence {g(u)}.

Proposition 6. If,

e g(u) is omin—strongly convex on Aj, and conse-
quently has Yu € Ay, |Ryull2 > v > 0 for some
v, and

o conv(.Ay) is a 0-strongly convex set with § > 0,

A 19 —g?)
then, for 7y, , omin as defined above, for k > i Sw—
the atomic power iterates converge as miny Hu(Hl) —

u(t)Hg S €.

Proof. See (Journée et al., 2010, Theorem 4). O

We discussed a generic way to design an LMO for the sym-
metric case. For the non-symmetric case, a natural way to
find the maximizing u, v is by alternating maximization,
which leads to an alternating power method. This is inter-
esting given the success of alternating minimization meth-
ods for matrix factorization problems (Hardt, 2013). Alter-

natively, we can set T = [ - B, t = [}] to reduce the

non-symmetric case to the symmetric one, and our previous
analysis can be re-applied.

5. Experiments

In this section, we demonstrate some results on real world
datasets. We provide empirical evidence for improvements
for two algorithms: Truncated Power Method for sparse
PCA and matrix completion by rank-1 pursuit, by apply-
ing atom corrections suggested in Section 3.1. We also ap-
ply to the framework to sparse non-negative vectors as the
atomic set to obtain a new algorithm using our proposed
LMO design and compare it to existing methods. For the
matrix completion, our framework yields a new general al-
gorithm for structured matrix completion. We use two ver-
sions of our algorithm - ApproxGMP solves the LMO by
power iterations without corrections, while ApproxGMPr
also uses corrections (Section 3.1). Note that GMP (solv-
ing the LMO exactly) is NP hard for the cases considered
here (except for the setup of matrix completion by Wang
et al. (2014) which uses SVD), and is seldom used in prac-
tice, hence it is not compared against.

Sparse PCA: Inadequacy of Deflation. Sparse PCA is
a special symmetric case of (3), with the respective vector
atom set defined as A; = {u : [lul, = 1,[juljo < k},
where £ is the desired sparsity level defined externally as a
parameter.

Since finding the top sparse eigenvector is an NP-hard
problem in general, various practical algorithms only solve
the problem approximately. As such, any deflation tech-
nique (see (Mackey, 2009) for an overview of deflation
for sparse PCA) coupled with finding an approximate
top-eigenvector of the deflated matrix are still greedy ap-
proaches similar to the un-corrected variant of Algorithm 2.
This suggests that the optional atom corrections could be
useful.

To illustrate the utility of performing atom corrections, we
consider the Truncated Power Method described by Yuan
and Zhang (2013) which can be derived as a special case
of the approximate LMO in Algorithm 2. We consider
the Leukemia and CBCL face training datasets (Lichman,
2013). The Leukemia dataset has 72 samples, each con-
sisting of expression values for 12582 probe sets. CBCL
face training dataset contains 2429 images each represented
as a feature vector of size 361 pixels. For r = 5 com-
ponents each with sparsity 300, GMP obtains 0.3472 as
the ratio of variance explained as opposed to 0.3438 by
TPower+orthogonal deflation. Similarly for CBCL data,
GMP and TPower obtain 0.7326 and 0.7231, respectively,
for sparsity=200.
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Figure 2. Ratio of variance explained vs. top-eigenvector

Sparse Non-Negative PCA. For Sparse Non-Negative
PCA, we use the Leukemia and CBCL Face training
datasets as well. The problem is a special symmetric
case of (3), with the respective vector atom set defined as
A = {u : |lullz2 = 1,|lullo £ k,u > 0}, where k is
the desired sparsity level defined externally as a parame-
ter. In this case study, in addition to using corrections as in
the previous case study, we use the atomic power method
described in Section 4.1 to derive a new algorithm for the
atomic set defined above which to our knowledge has not
been seen or studied before.

There is little prior work on Sparse Non-negative PCA.
We compare against the spannogramNN by Asteris et al.
(2014) and emPCA by Sigg and Buhmann (2008). Our al-
gorithm of atomic power iterations is easier to implement,
converges faster and gives better results compared to both
of these. Figure 1 shows reconstruction error with increas-
ing rank. Figure 2 shows the ratio of variance explained
for a rank one approximation for sparse non-negative PCA.
We note that ApproxGMP has performance comparable to
that of spannogramNN, and both ApproxGMP and spanno-
gramNN outperform emPCA.

Structured Low-Rank Matrix Completion. For A; =
{ueR":|julz =1}, A2 = {v € R¢: ||v||2 = 1}, and
f(Zz ;U ®V7,) = ||TQ _Zz CVZ[UZ@VZ]Q HF, GMP (Al-
gorithm 2) can be used for matrix completion. This recov-

ers the work of Wang et al. (2014) who study this special
case as their algorithm OR1MP and provide linear conver-
gence guarantees. We empirically show that by using cor-
rections, we get significantly better results in terms of re-
construction error. Furthermore, our more general analysis
shows that the linear convergence holds for any structured
sets. We consider the specific case of sparsity. Soni et al.
(2014) study the regularization impact of sparse low rank
matrix completion for robustness. Our framework yields a
new algorithm for simple rank-one pursuit with alternating
atomic power method for sparse factors. We used 3 movie-
lens datasets of varying sizes for our experiments. In each
dataset, we randomly split the ratings into 50-20-30 train-
ing, validation and testing split (we generate 20 different
splits). The validation dataset is used for selecting the rank
and applying further corrections for better generalization.
Our results (averaged over 20 runs) are reported in Table 2.
We find that our generalizations of the ORIMP results in
better reconstruction error for all three datasets. See the
work by Wang et al. (2014) for a comparison of the perfor-
mance of ORIMP with other matrix completion methods,
and the work by Soni et al. (2014) on robustness analysis
for sparse factor low rank matrix completion.
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Conclusion and Future Work

We presented a pursuit framework for structured low rank
matrix factorization and completion. Studying the tradeoff
between rank and approximation quality, we proved lin-
ear convergence of generalized pursuit in Hilbert Spaces,
of which matrix pursuit is a special case. Another direct
application would be tensor pursuit for low rank tensor fac-
torization and completion. A general design for the LMO
construction for structured sets for tensors is an interest-
ing future direction to explore. Moreover, generalization
of the convergence results beyond distance functions is an
interesting extension of the present work with many appli-
cations. Further, note that both the generalized pursuit and
the Frank-Wolfe algorithms solve the same LMO to set-
tle on the next best atom to add. We borrowed the idea
of correcting already chosen atoms from the FW frame-
work. Hence, studying the connection between the two
frameworks should yield more insights in the future.
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Dataset ApproxGMP | ApproxGMPr | ApproxGMPr (Sparse)
Movielens100k | 1.778 £ 0.03 1.691 £ 0.03 1.62 + 0.01
MovielensIM | 1.6863 £ 0.01 | 1.6537 + 0.01 1.6411 £ 0.01
Movielens10M | 1.8634 +0.01 | 1.8484 £+ 0.01 1.8452 £+ 0.01

Table 2. RMSE on test set : average over 20 runs £ variance. For ApproxGMPr (Sparse), left singular vector is fully dense while the
right one has sparsity 0.6 of its size (chosen by trial and error)
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A. Proofs
A.1. Proof of Theorem 1

We prove that Algorithm 1 converges linearly for x( to x*.
To bound the convergence rate, we need to study how the
residual changes over iterations. To this end, we define
q; := r; — ;1. We start by stating auxiliary results that
will be used to prove Theorem 1. Recall from Algorithm 1
that z; = LMO(—r;) = argmax, c5(z, ;).

Proposition 7. Let r; € H be a residual, ie., vr; =y —
2 j<i OZj, then maxges(ri, z)y = 0 iff r; =1~

Proof. Follows from the first-order optimality condition
for r*. O

Proposition 8. (r;,z;) =0, Vj <.

Proof. Follows from the first-order optimality condition
for o O

Proposition 9. (r;,q;) =0, Vj <.

Proof. By definition q; € lin({z1,...,2;}). O

Proposition 10.

|<Zi7 ri>7—[|2
laill3, > “—5—
' 1313,

Proof. Let P; be the orthogonal projection operator to
lin({z1,...,2;}), ie., for x € H we have P;x =
arg Mingelin({z,,....z,}) 12 — x||%,. Hence, x; = P;y and
r; = (I — P;—1)y, where | designates the identity operator
on H. By the Gram-Schmidt process we get

(1 =Pi1)y
e

(| — Pi—l)zi (l — Pi—l)zi
* <||<| = Pm>zl-||H’y>H 1= P: )il

which in turn implies
—Pi_1)z; > (1 —Pi1)z
y
g 11— Pi1)z4]
2

rit1 =

2

(o
(1= Pi—1)zil2

(=)

= T 5 oo Y

(1 =Pi—1)zilln " /4

_ |<Zi> (' - Pi—l)Y>H|2

(= Pi—1)zi|3,

_ zirowul?

0 =Pis1)z]3,

[(zi, vi) |
1233,

el = \
H

)

where we used that (I — P,_1) is a self-adjoint operator to
obtain the third equality, and || (I — P;—1)|op = 1 to get the
inequality. O

We are now ready to prove Theorem 1.

Theorem 11 (Theorem 1). Algorithm I converges linearly
for fr(x) = 5d3,(x,y). y € H.

Proof.
lriy1 — I‘*H%{ =|ri—r"— %H?{
= [lrs = v (3, + [laulF — 2(ri — ", qi)n
= |lri = r* (13, + llaill3,
—2(rip1 i — 7, di)n
= vy — x5 + llaull3, — 2flasll3,
= v — |3, — llaill%
A2
< i — )2 — Z2E0H (prop 10)
o2 (Ziri — )3
||I'z r ||’H ||ZZ||%L ( )
= (1 _ _miri— ) ri — |3,
- K3
12313, Irs — r*[I3,
= pllr; — % )
u € [0, 1) by Cauchy-Schwarz. O

We finally note that proving convergence of Algorithm 1
without specifying a rate can be achieved as follows.

Proposition 12. The sequence of residuals {r;} produced
by Algorithm 1 with fy(x) := 1d3,(x,y), y € H, con-
verges to r*.

Proof. We have
riall3 = llri — aqill%
= lIrall3 + llaill3 — 2(ri, @)
= llrall3e + el — 20ries + qi, qi
= [Jrill3 + lailld — 2(qi ai)n
= |lrill3 — llaill3
(Zuri)%
lzill5,
(z;,r;)3, = 0iff r; = r* the sequence {||r;|#} mono-
tonically decreases with increasing ¢ until it converges to
the lower bound ||r*||. O

From Prop 10, [rit13, < |[rill3, — Since

A.2. Proof of Theorem 3

Our proofs rely on the Gram matrix G(J) of the
atoms in S indexed by J C [n], ie., (G(J))i; =
<Si7sj>7'l7iaj S j
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To prove Theorem 3, we use the following known results.

Lemma 13 (Tropp (2004)). The smallest eigenvalue
Amin(G(T)) of G(T) obeys Amin(G(JT)) > 1—p(m—1),

where m = |J|.

Lemma 14 (DeVore and Temlyakov (1996)). For every in-
dex set J C [n] and every linear combination p of the
atoms in S indexed by J, i.e., p := ), 7 v;S;j, we have

lpllz, _ (v.G()v)
maxjer [(p,s;)n| = ”vﬁ - vl 2, where v # 0
is the vector having the v; as entries.

Proof of Theorem 3. Note that m; := r; — r* = (y —
x0) — (y — x*) = x* — xU=1 € 1in(S), Vi, by as-
sumption, which implies that there exists a vector v; # 0
s.t.my =3 o, (vi);s;. Setting J = [n], we have

by def. of z;
|<Ziari - I‘*>H\ . maX(<Sj,I‘i>H—<Sj7T*>H)
j€[n] —

=0

YOS [ (s, T) g — (85,7l

J€[n]
= max | (s;, m;) |
J€[n]
Lemma 14 ||ml||$_[
- [[vill1
< [[m; ||3,
- Vi vill2
(Vve G V)2 ) Il
B Vvl vill2
L 13 — _
emga MHW |
n

Replacing the second term in (8) in the proof of Theo-
rem 11 with the last expression above, and noting that
lz:||% = 1, we get the desired result.

To get the result in terms of p(1), note that 1 — W <
(1 =1/n)(1 + p(1)).

O

A.3. Proof of Corollary 4

Proof. The proof is similar to that of Theorem 3 with r* =
0 (which implies that r; lies in lin(S)). O

A.4. Inexact LMO

Instead of solving the LMO in each iteration exactly
(which may be prohibitively expensive), it is often more
realistic to obtain a §; € (0, 1] approximate solution to the
LMO at iteration 7. In other words, in each iteration our
update is z; instead of z; so that the following holds (for
simplicity all other notations including those of the resid-

ual vectors are overloaded)
(Ziyvi)1 > 0i(Zi, Ti)n.- (10)

Note that the o update in each iteration is still exact. To
make the effect of the inexact LMO on the rate explicit,
we assume that the atoms are normalized according to
Isll% = ¢,¥s € S, for some constant ¢ > 0. We em-
phasize that linear convergence guarantees can be obtained
for the inexact LMO even without this assumption. Pro-
ceeding as in the proof of Proposition 10, we get a slightly
weaker lower bound for ||q;||3,, namely

(i, ri)%, _ o0 (2,10
laill3, > 572 > §;
' IZill5, — " ll=llg
where we used ||Z;||zx = ||zi||%- We now obtain the fol-

lowing.

Theorem 15 (Linear convergence with inexact LMO). If
the LMO in Algorithm 1 is solved within accuracy §; as
in (10), then Algorithm 1 converges with a linear rate.

Proof. We proceed as in the proof of Theorem 1 to get
ris = e*[5 < v = x* (13, = 67 (zi ra)3,

L. px\2
Sy L

(EAIE
Z;,T; — r*>2
=(1-462 {2, i H )r‘—r*2
(1= e ) el
from which the result follows. O



